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Abstract

 Background—Environmental exposures play a critical role in the genesis of some child 

mental health problems.

 Methods—We open with a discussion of children’s vulnerability to neurotoxic substances, 

changes in the distribution of toxic exposures, and co-occurrence of social and physical exposures. 

We address trends in prevalence of mental health disorders, and approaches to the definition of 

disorders that are sensitive to the subtle effects of toxic exposures. We suggest broadening 

outcomes to include dimensional measures of autism spectrum disorders, attention deficit 

hyperactivity disorder, and child learning capacity, as well as direct assessment of brain function.

 Findings—We consider the impact of two important exposures on children’s mental health: 

lead and pesticides. We argue that longitudinal research designs may capture the cascading effects 

of exposures across biological systems and the full-range of neuropsychological endpoints. 

Neuroimaging is a valuable tool for observing brain maturation under varying environmental 

conditions. A dimensional approach to measurement may be sensitive to subtle sub-clinical toxic 

effects, permitting the development of exposure-related profiles and testing of complex functional 

relationships between brain and behavior. Questions about the neurotoxic effects of chemicals 

become more pressing when viewed through the lens of environmental justice.

 Conclusions—Reduction in the burden of child mental health disorders will require 

longitudinal study of neurotoxic exposures, incorporating dimensional approaches to outcome 

assessment and measures of brain function. Research that seeks to identify links between toxic 

exposures and mental health outcomes has enormous public health and societal value.
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 Introduction

The environment is now known to be a powerful determinant of child health, with increasing 

evidence that some chemicals are particularly toxic to the human brain. This evidence, 

documenting links between exposures and neurodevelopmental damage, was 

comprehensively reviewed by Grandjean and Landrigan in 2006 (Grandjean & Landrigan, 

2006) and updated in 2014 (Grandjean & Landrigan, 2014). The authors identified more 

than a dozen industrial chemicals that can be reliably classified as known developmental 

neurotoxicants, and postulated that there are thousands of potential neurotoxicants that 

remain untested in humans (Grandjean, Satoh, Murata & Eto, 2010, Slotkin & Seidler, 2012; 

Grandjean, 2013). The story of exposures to such hazardous chemicals, dubbed the 

‘chemical brain drain’ (Grandjean & Landrigan, 2014), frequently begins with observations 

of adult clinical toxicity, followed much later by worrisome findings of child or even fetal 

subclinical toxicity, occurring at exposure levels previously thought to be safe (Needleman, 

2000; Landrigan & Goldman, 2011). Neurotoxicants are relevant to mental health generally 

but particularly when mental health is conceptualized in relation to neurodevelopmental 

disorders as introduced in DSM-5.

The developing brain is particularly vulnerable to toxic chemical exposures, as exemplified 

by lead and selected pesticides, and this sensitivity is likely greatest in utero and throughout 

early childhood (Grandjean, 2013). From the animal literature, we know that, during these 

critical periods of brain development, low exposures that would have little or no adverse 

effect in adults can cause permanent disruptions in normal maturational processes (Rice & 

Barone, 2000). Although it is more difficult to establish causality in human populations, 

strategies such as sibling designs or the incorporation of genetic variants that modulate 

toxicant metabolism in a natural experiment can clarify the likelihood of causal effects 

(Lewis, Relton, Zammit & Smith, 2013). The central nervous system disruptions associated 

with some toxic chemical exposures may have far-reaching effects on socioemotional 

adjustment, educational success, and quality of life. Adverse child outcomes that have been 

associated with early chemical exposures highlight the entire neurodevelopmental spectrum, 

including intellectual disability, autism spectrum disorder (Landrigan, Lambertini & 

Birnbaum, 2012), ADHD (Sagiv et al., 2012a; Sagiv et al., 2012b, Boucher et al., 2012; 

Froehlich, Anixt et al., 2011), motor delays (Lucchini, Guazzetti et al. 2012; Roze, Meijer et 

al., 2009), and learning disabilities (Zhang, Baker et al., 2013; Khan, Wasserman et al., 

2012; Kofman, Berger, Massarwa, Friedman, & Jaffar, 2006), to more subtle deficits, such as 

slightly lowered IQ and subclinical learning or attention problems (Rauh, Arunajadai et al., 

2011; Yolton, Dietrich, Auinger, Lanphear, & Hornung, 2005; Cho, Frijters, Zhang, Miller & 

Gruen, 2013). We now know that even small cognitive deficits can have important 

consequences for long-term academic success and productivity, particularly when viewed at 

the level of impacts on society (Bellinger, 2009; Gould, 2009). A recent review showed that 

the magnitude of total IQ losses attributable to lead, pesticides, and other neurotoxic 
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exposures was comparable to, or greater than, the IQ deficits associated with major pediatric 

medical events such as preterm birth, traumatic brain injury, brain tumors, and congenital 

heart disease (Bellinger, 2012). Furthermore, the antisocial behavior, violence, and substance 

abuse associated with early-life exposures to some neurotoxic chemicals are extremely 

costly to individuals and society (Schwartz, 1994; Nevin, 2007; Gould, 2009). Thus, 

continued scrutiny of these associations is extremely important.

While increasing numbers of epidemiologic and clinical studies continue to explore links 

between neurotoxic exposures and child mental health, new research findings need regular 

evaluation in the context of secular changes in the definition and prevalence of child 

psychopathology as well as changes in the environmental distribution of neurotoxic 

substances. The present review begins with a brief discussion of children’s unique 

vulnerability to neurotoxic substances. Secondly, we review changes over time in the 

distribution of toxic environmental exposures, including the often neglected issue of the co-

occurrence and potential interactions between social and physical environmental exposures. 

Thirdly, we address trends in the prevalence of mental health and neuropsychological 

disorders, and new approaches to the definition of disorders that may be more sensitive to 

the subtle effects of toxic exposures. Fourthly, we argue for the further broadening of 

outcomes in neurotoxicology studies to include (a) measures of brain function, and (b) 

increased attention to the domains of learning capacity, attention deficit hyperactivity 

disorder, and autism spectrum disorder—outcomes with important implications for 

understanding child psychological well-being. Finally, in light of the changing landscape, 

we reconsider the impact of two important environmental exposures on children’s mental 

health and neuropsychological development: lead and pesticides.

Our selection of lead and pesticides to illustrate links between toxicant exposures and mental 

health outcomes aims to illustrate important principles, not to imply that the study of these 

two neurotoxicants is sufficient. The growing public health problem of widespread exposure 

in the general population to a range of synthetic chemicals, plasticizers and other endocrine 

disrupting or neurotoxic compounds is a relatively recent source of concern to the medical 

and public health communities, especially with respect to the potential for early and 

persistent brain compromise (Genius, 2008). As yet, only a few industrial chemicals (e.g., 

lead, methylmercury, polychlorinated biphenyls, arsenic, and toluene) are widely recognized 

contributors to neurodevelopmental disorders and subclinical brain dysfunction. According 

to a review by Grandjean and Landrigan (2006), another 200 chemicals are associated with 

clinical neurotoxoic effects in adults, but have not yet been fully tested in relation to 

children, so that we are lacking the high level of proof required for regulation. The high 

volume of new chemicals that are being introduced annually and the urgent need for updated 

safety standards have severely strained the capacity of the U.S. EPA to manage the risk 

assessment process (U.S. Government Accountability Office,2008; U.S. EPA, 2009: 

McCarthy & Copeland, 2015).

 Vulnerability of the developing child

Children are fundamentally more vulnerable than adults to toxic chemicals in their 

environment (Faustman, Silbernagel, Fenske, Burbacher & Ponce, 2000; Thompson, 2004; 
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Landrigan, Kimmel, Correa, & Eskenazi, 2004; Dourson, Chernly, & Schuenplein, 2002). 

They have disproportionately heavier exposures to chemicals, reflecting their higher 

metabolic rate and therefore greater consumption of food, water and air per pound of body 

weight. Furthermore, children are undergoing rapid growth and development, especially in 

the central nervous system, and these processes are accompanied by windows of great 

plasticity and vulnerability. In addition, immature metabolic pathways render children less 

able than adults to break down and excrete toxic compounds. The identification of 

developmental periods during which an exposure is likely to be highest and have the greatest 

effect has implications for dose-response relationships over time and for risk assessment 

tolerances at different stages of maturation. Because multiple biological mechanisms 

participate in the relevant pathophysiologic processes, some neurodevelopmental pathways 

may be activated or disturbed at lower levels of exposure than others. As a result, apparently 

‘safe’ levels of exposure for some pathways may be toxic for other pathways.

 Secular changes in patterns of neurotoxic exposures

Over the past 50 years, there have been broad-scale improvements in the physical and 

chemical environment, including improved sanitation and clean drinking water. At the same 

time, there have also been dramatic increases in the production of new chemicals, largely 

synthetic, including plastics, pesticides, building materials, antibiotics, flame retardants and 

synthetic hormones (Grandjean, Satoh, Murata & Eto, 2010; Grandjean & Landrigan, 2014). 

Each neurotoxic exposure has its own unique history of use, regulatory action and patterns 

of exposure. As described below in relation to lead and pesticides, changes in the 

population-level distribution of exposures, often as a result of regulatory policies, may 

represent a reduction in the total burden of risk to children, without addressing differential 

neurodevelopmental risk to groups of children who vary by age and susceptibility.

Ideally, regulatory decisions for chemicals are based on the weight of the scientific evidence. 

However, regulatory action often lags years behind the science, at least partly as a function 

of social and economic interests (Rosner & Markowitz, 2005; Markowitz & Rosner, 2003). 

For example, removal of lead from gasoline was a slow process occurring over a 20-year 

period from 1975 to 1996, despite the fact that the U.S. Environmental Protection Agency 

had released a report in 1972, citing the evidence that lead was associated with adverse 

health outcomes (U.S. EPA, 1972). There has likewise been some tightening of pesticide 

safety standards, consistent with research showing adverse pesticide effects at lower, sub-

clinical exposure levels (e.g., Rauh, Arunajadai et al., 2011; Engel, Wetmur et al., 2011; 

Bouchard, Chevrier et al., 2011). Given that the timing of exposure likely influences the 

toxicity of the effect of these subclinical exposures, and that effects involve multiple 

biological pathways (at the cellular, neural systems, and neurobehavioral levels), traditional 

toxicological methods of risk assessment based on classic monotonic dose-response 

relationships may fail to capture the complexities of these effects.

Common to many neurotoxic exposures is their disproportionate distribution across 

population groups, with most inequities falling along racial and socioeconomic lines (Brulle 

& Pellow, 2006). For example, current cases of lead poisoning are disproportionately 

concentrated in poor minority communities in the United States (Landrigan, Rauh & Galvez, 
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2010). With respect to pesticides, farm families and migrant worker communities now carry 

the heaviest burden (Curwin, Hein et al., 2005; Arcury, Strambi, Novelli, Lunghini & Bozzi, 

2007). This disproportionately heavy exposure of poor and minority populations to toxic 

chemicals, contaminated air and water, and other environmental hazards has been termed 

environmental injustice (Landrigan, Rauh & Galvez, 2010; Birnbaum, Zenick & Brance, 

2009). Infants and children, because of their unique biological vulnerabilities and age-

related patterns of exposure, are especially vulnerable to the health impacts of environmental 

injustice.

Finally, the neuropsychological effects of toxic exposures are likely amplified by 

psychosocial adversity both in utero and during early development. This further increases 

the risk disparity among different groups of children, because disadvantaged populations 

with disproportionate chemical exposures are also more likely to experience a range of 

potentially stressful living conditions, including substandard housing, poor nutrition, 

neighborhood crime, and inadequate health care (e.g., Rauh, Landrigan & Claudio, 2008; 

Mohhai, Lantz, Morenoff, House & Mero, 2009). Such adverse conditions carry their own 

risk, resulting in damage to the developing brain--a phenomenon now termed ‘toxic stress’ 

(Shonkoff & Garner, 2012). Moreover, the exacerbation of chemical risk by social risk has 

now been demonstrated at both the individual level and the community levels (Clougherty, 

Levy et al., 2007; Rauh, Whyatt et al., 2004; Morello-Frosch & Shenassa, 2006; Boyle & 

Cordero, 2005; Rauh, Landrigan & Claudio, 2008; Cory-Slechta, Virgolini et al., 2008). 

Therefore, while low level exposures to toxic chemicals are widespread and of general 

concern, it is important to realize that these risks must be understood in their psychosocial 

context.

 Shifting patterns in the definition, identification and prevalence of child 

neurodevelopmental and mental health disorders

Rates of identification of some child developmental and mental health conditions, 

particularly autism, attention-deficit/hyperactivity disorder, and developmental disabilities, 

have increased dramatically over the past few decades and even further, in just the past 

decade, in the U.S. and some other developed nations (Boyle & Cordero, 2005; CDC, 2012). 

Such apparent changes in prevalence over time are at least partly due to increased reporting 

of a disorder and/or modifications in diagnostic criteria, but true increases in incidence are 

also possible. In California, a 600% increased incidence in autism was observed among 

children up to 5 years of age for births from 1990 to 2001, yet only one-third of the rise 

could be explained by identified factors such as changing diagnostic criteria and a younger 

age at diagnosis (Hertz-Picciotto & Delwiche, 2009).

Accurate assessment of the contribution of newly emerging neurotoxic exposures to any real 

increase in mental health disorders will depend upon a clearer understanding of other 

influences and real changes in the distribution or expression of psychopathology over time. 

It is currently estimated that 13–20% of children living in the United States experience a 

mental disorder in a given year (Bloom, Cohen & Freeman, 2009). Prevalence estimates for 

specific mental health categories for U.S. children aged 3–17 years were recently provided 
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in a comprehensive report from the Centers for Disease Control and Prevention (CDC, 

2013). ADHD was the most frequent diagnosis (6.8%), followed by behavioral or conduct 

problems (3.5%), anxiety (3.0%), depression (2.1%), autism spectrum disorders (1.1%), and 

Tourette syndrome (0.2%). Among adolescents aged 12–17 years, rates for illicit drug use 

disorder, alcohol use disorder and cigarette dependence ranged from 2.8% to 4.7%. Overall, 

the number of children with a mental disorder increased with age, with the exception of 

autism spectrum disorders, which was highest among 6 to 11 year old children. Boys were 

more likely than girls to have ADHD, behavioral or conduct problems, autism spectrum 

disorders, anxiety, Tourette syndrome, and cigarette dependence. Among adolescents, boys 

were more likely than girls to die by suicide, and girls were more likely than boys to have 

depression or an alcohol use disorder.

Prevalence estimates for clinical diagnoses at different ages are key to understanding how 

early mental health problems affect longer-term developmental trajectories. National Health 

Interview Survey (NHIS) data show that rates of childhood disability have increased from 

2% in 1960 to 8% in 2010 (Halfon, Houtrow, Larson & Newacheck, 2012). Although 

childhood disability due to physical conditions has declined, there was a 21% increase in 

frequency of disabilities related to neurodevelopmental or mental health problems. For the 

first time since the NHIS began tracking childhood disability in 1957, the rise in reported 

prevalence was highest (28.4%) among socially advantaged families.

 Dimensional versus categorical approaches and research domain criteria (RDoC)

Toxic exposures have multiple effects on neural, cognitive, social and emotional function, 

yet such effects can be subclinical, often failing to reach diagnostic criteria for any single 

disorder. The current categorical framework (American Psychiatric Association, DSM-5, 

2013) does not capture subclinical effects on neurobiological systems that may be altered by 

chemical exposures. Further, despite efforts to add severity codes to DSM-5, this framework 

does not effectively map degree of disorder, including dimensional variation in co-occurring 

symptoms that cut across diagnostic categories. As a result the DSM framework is often 

inadequate to assess the magnitude of a dose-response relationship. Since the effects of 

environmental exposures can often be observed across a range of symptoms and biological 

pathways, the dimensional severity or dose-response magnitude of effect may actually be a 

more important research question than ‘caseness’ itself (Rose, 1985; Sagiv, Kalkbrenner & 

Bellinger, 2015). Because subclinical effects are more common than clinical diagnoses, 

overreliance on diagnostic categories as endpoints for environmental exposures may result in 

under-identification of meaningful toxic effects, potentially resulting in misclassification of 

outcomes (Sagiv, Kalkbrenner & Bellinger, 2015).

Dimensional approaches to understanding psychopathology, including sub-phenotypes or 

endophenotypes (e.g., Swanson, Kinsbourne et al., 2007), complement the categorical 

approach and may provide greater sensitivity than diagnostic approaches in neurotoxicity 

studies. While this approach has been longstanding in the field, it is notable that a renewed 

focus on dimensional constructs at the national level is proposed via the Research Domain 

Criteria Project (RDoC), developed by the National Institute of Mental Health (Cuthbert & 

Kozak, 2013; Cuthbert, 2014; Morris & Cuthbert, 2012). The goal of RDoC is to provide a 
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biologically-valid framework for understanding mental disorders, and to accelerate the 

integration of approaches in genetics, neuroscience, and behavioral science (Cuthbert & 

Insel, 2013; Morris, Rumsey & Cuthbert, 2014)—an emphasis that is well suited to the study 

of neurotoxicity. RDoC research thus starts with basic mechanisms as a way to understand 

homogeneous symptom sets that cut across multiple disorders. RDoC lends itself to the use 

of phenotypic dimensions, enabling us to develop neuropsychological profiles of children 

with various exposures and then to study the trajectory of development over time. Co-

variation of symptoms, interactions, and nonlinearities are more easily explored using 

continuous outcomes. Such an approach improves statistical power, reduces bias due to 

diagnostic misclassification (Sagiv, Kalkbrenner & Bellinger, 2015), facilitates trajectory 

analyses (Insel, Cuthbert et al., 2010), and is inherently translational. Despite some 

controversies, this approach promises to further inform the study of links between 

neurotoxic exposures and child mental health.

 Broadening outcome measures in neurotoxicology research

 Neurodevelopmental domains deserving more attention in toxicology studies

Although intellectual development (IQ) has been widely studied in relation to 

neurotoxicants, learning disability (LD), autism spectrum disorders (ASD), and attention 

deficit hyperactivity disorder (ADHD)—all domains with increasing prevalence--have 

received somewhat less attention. These foci are particularly important now that DSM-5 has 

placed ADHD in a neurodevelopmental cluster with learning disabilities, autism spectrum 

disorders, and intellectual disability. Furthermore, such neurodevelopmental domains are 

well-suited to a dimensional approach, allowing for the study of dose-response effects on 

degree of impairment, along including subclinical findings. Here, we briefly introduce the 

rationale for including such domains in future neurotoxicology studies; later, we review the 

emerging evidence for lead and pesticide effects on these domains.

Etiologic research on Learning Disabilities (LD) has focused largely on endogenous factors, 

such as genetics, intelligence, and specific cognitive abilities, with scant attention to the 

influence of exogenous environmental factors on the manifestation of learning and 

achievement problems (Vellutino, Fletcher, Snowling, & Scanlon, 2004). Several studies 

have demonstrated that toxic exposures are associated with decreases in performance on 

achievement tests, using continuous outcome measures (Yolton, Dietrich, Auinger, Lanphear 

& Hornung, 2005; Cho, Frijters, Zhang, Miller & Gruen, 2013), yet little is known about the 

neurobiological pathways by which these exposures alter performance. The evidence for 

potentially causal associations of environmental factors with LD comes from experimental 

work and some mechanistic human studies. Animal studies demonstrate that the neural 

systems supporting memory and learning are particularly vulnerable to prenatal neurotoxic 

exposures (Roy, Seidler & Slotkin, 2002; Hyman, 2010). In humans, toxic exposures during 

critical developmental windows may yield alterations in the maturational trajectory of 

discrete brain-based circuits that produce distinct learning and achievement processes in 

otherwise healthy children. For example, single-word reading is supported by a well-defined 

left hemisphere neural circuit that is disrupted in dyslexia (Richlan, 2012). The maturation 

of this neural circuit may be affected by a neurotoxic exposure, producing idiopathic 
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learning problems, but the nature and developmental timing of these possible exposure 

effects have yet to be examined. Research linking toxic exposures to LDs could potentially 

yield a unique set of environmentally-associated learning problem phenotypes. Because 

exposures to some neurotoxic conditions are potentially modifiable, the potential 

identification of neurotoxic determinants of learning and achievement problems (including 

reading and math) has important public health implications for treatment and the 

development of primary prevention strategies.

Autism spectrum disorders (ASD) constitute a major public health problem affecting one in 

68 children (CDC, 2013). To date, we lack a clear understanding of the causes of ASD 

despite its serious social impact. Based on the most recent reviews of the role of 

environmental toxicants in the etiology of ASD (e.g., Rossignol, Genuis & Frye, 2014; 

Suades-González, Gascon, Guxens, & Sunyer, 2015; Talbott, Marshall et al., 2015), a 

number of classes of chemicals have been identified as potential contributors, including 

pesticides, phthalates, polychlorinated biphenyls (PCBs), solvents, air particulates (PM2.5), 

traffic-related pollutants, ozone, and heavy metals, with the strongest evidence found for air 

pollutants and pesticides. Current findings are tempered by at least three issues—all of 

which suggest future directions for neurotoxicology research in the mental health arena. 

First, environmental exposures implicated in ASD typically occur in mixtures, so it is 

difficult to disentangle the effects of specific compounds or the potentiating effects of joint 

exposures. Efforts to identify etiologic chemicals will require sophisticated statistical 

techniques to accommodate the challenges posed by co-occurrence in complex mixtures 

(Hastie, Tibshirani & Friedman, 2009). Second, most extant studies have relied on 

population-level estimates; possible confounding by socioeconomic status and place of 

residence is a concern, because both sociodemographic conditions may be related to ASD 

case ascertainment and other potential causal risk factors (Weisskopf, Kioumourtzoglou & 

Roberts, 2015). Studies including biomarkers of exposure have yielded less consistent 

findings, smaller sample sizes, and have tended to focus on heavy metals, reporting higher 

concentrations in blood, urine, hair, brain or teeth of children with ASD compared with 

controls. Other biomarker studies have found solvent, phthalate and pesticide levels to be 

associated with ASD. Third, since the involvement of genetic abnormalities in ASD is well-

accepted, the etiology of ASD may involve, at least in a subset of children, complex 

interactions between genetic factors and specific environmental toxicants. Carefully 

designed genetic studies, including attention to critical periods of development, are needed 

to lend weight to possible causal links in this arena.

ADHD is the most common childhood neurodevelopmental disorder, with estimated 

prevalence rates in school-age children of 3%–8% (American Psychiatric Association, 2013; 

CDC, 2013). ADHD is associated with altered brain functioning and is characterized by an 

inability to focus on tasks, as well as impulsive hyperactive behavior, lethargic inattention, 

or both. The co-occurrence of ASD and ADHD supports the conceptualization of ADHD as 

a neurodevelopmental disorder, and argues for increased efforts to identify toxic substances 

with shared and distinct etiological effects on both ADHD and ASD (Musser, Hawkey et al., 

2014). Not surprisingly, there is also high comorbidity of LD with ADHD, but again the 

etiologic basis for this comorbidity is not clear. Although ADHD has been well-studied, 

recent progress in its conceptualization has potential to further advance our understanding of 
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how neurotoxic exposures affect different subgroups of children, resulting in a range of 

ADHD type problems. For example, Fair et al. (2012) propose that (a) typically developing 

children can be classified into distinct neuropsychological subgroups with high precision, 

and (b) some of the heterogeneity in individuals with ADHD might be “nested” in this 

normal variation (Fair, Bathula, Nikolas & Nigg, 2012). This suggests that future studies 

seeking to identify links between toxic chemicals and ADHD-type problems will need to 

take into consideration the impact of exposures on the full range of ADHD subtypes and the 

neuropsychological domains that may account for this disorder (Nikolas & Nigg, 2013).

 Brain-based indicators of neurotoxicity

The brain is inseparable from children’s neurodevelopmental disorders like ADHD, ASD, 

Intellectual disability, and LD as well as other psychopathologies of childhood. Recently, 

several research groups are using Magnetic Resonance Imaging (MRI) in combination with 

epidemiologic studies to investigate the effects of toxic exposures on neurodevelopment and 

mental health. Such strategies can potentially detect sub-clinical biological changes at 

different time points in order to more completely describe the multifaceted complexities of 

development. MRI also permits in vivo visualization of many aspects of brain activity, with 

different imaging modalities yielding powerful information about brain structure, function, 

and connectivity within the same individuals. Several modalities are particularly well-suited 

for studies of neurotoxicity because (a) they capture aspects of brain activity that are known 

to be sensitive to environmental exposures, and (b) they detect disturbances that have been 

linked to functional developmental and mental health problems. Such tools thus provide 

more sensitive ways of detecting more subtle neurotoxicant effects, including subclinical 

changes.

Briefly, structural or anatomical MRI generates static measurements of brain morphology. 

Rather than estimating volumes of brain regions as was done in early MRI studies, surface 

morphometric techniques now allow for the comparison of cortical thickness or thinness in 

local regions as well as comparison of local surface perturbations such as inflections in local 

cortical surfaces (Bansal, Staib, Xu, Zhu & Peterson, 2007). Perhaps the most well-known 

modality of MRI is functional MRI (fMRI), which provides an indirect measure of neuronal 

activity by measuring changes in blood oxygenation level (BOLD signal). In task-related 

fMRI, a subject completes a task during scanning, and specific patterns of brain activation 

identify which brain regions are active and therefore relevant to the activity. Resting state 

fMRI (rsfMRI) captures spontaneous brain activity when the subject is not performing an 

explicit task. Brain regions that demonstrate strong coherence of neural activity (synchrony) 

are thought to be connected in functional networks (Matthews & Fair, 2015) and variations 

in these measures are widely associated with developmental psychopathology. Diffusion 

Tensor Imaging (DTI) measures white matter integrity and fiber connectivity. White matter 

tracts are myelinated tracts that connect distal and proximal regions in the brain. DTI 

measures connectivity between brain structures by measuring the direction of movement of 

water molecules through tissue (Watts, Liston, Niogi & Ulug, 2003; Casey, Tottenham, 

Liston & Durston, 2005) and are also associated with ADHD other neurodevelopmental 

conditions.
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The potential value of MRI-based assessments of children who have been exposed to 

neurotoxic chemicals at different concentrations and at different points in development is 

only recently being explored, and will be discussed in relation to each of the illustrative 

chemical exposures. Briefly, such powerful tools will permit researchers to not only identify 

the direct structural, functional and metabolic effects of neurotoxic exposures on the brain, 

but also to determine how these brain-based changes mediate the impact of chemical 

exposures on neuropsychological symptoms and clinical outcomes over time. It will be 

fascinating to determine to what extent observed brain changes in child mental health 

disorders are related to neurotoxicant exposures. Most importantly, these tools have the 

potential to inform the development of biologically targeted, therapeutic interventions in 

response to evidence of neurotoxicity in the brain and behavioral realm.

 The case of lead

 Trends in environmental lead exposure

Childhood lead poisoning, an entirely preventable condition, is one of the most extensively 

studied childhood diseases of toxic environmental origin (CDC, 2000), accounting for about 

0.6% of the global burden of disease (WHO, 2009). As a result of substantial efforts in the 

U.S. to remove lead from gasoline, paint, pigments, and solder (introduced above and 

elaborated here), the percentage of children aged 1–5 years with blood lead levels ≥10 µg/dL 

has dropped dramatically from 88% in 1976–1980, to 4.4% during 1991–1994, to 1.6% 

during 1999–2002, and to 0.8% during 2007–2010 (CDC, 2013). Currently, a blood lead 

level ≥5 µg/dL (down from ≥10 µg/dL) is defined as high. Despite these improvements, an 

estimated 535,000 U.S. children aged 1–5 years have levels ≥5 µg/dL based on the U.S. 

Census Bureau 2010 data, and about 25% of homes with children under age 6 still have a 

lead-based paint hazard. As described below, there is ample evidence that even low levels of 

exposure to lead are associated with neuropsychological deficits (e.g., Lanphear, Dietrich, 

Auinger, & Cox, 2000; Canfield, Henderson et al., 2003 Lanphear, Hornung et al., 2005; 

Jusko, Henderson et al., 2008), continuing to present excess, often unacceptable, risk for 

children. Lead exposure is now thought to be unsafe at any detectable level (Landrigan, 

2000), yet nearly all children have detectable levels of lead in their body. Despite decades of 

evidence about the toxic impact of lead on children’s mental health and development, lead 

continues to be added to paints, toys, cosmetics and other consumer products worldwide, at 

least partly due to the shift in manufacturing to lower income countries lacking effective 

environmental control policies.

We have failed to reach the Healthy People 2020 objective of reducing mean blood lead 

levels for all children in the U.S.(U.S. Department of Health and Human Services, 2012), 

and differences between the mean blood lead levels of different racial/ethnic and income 

groups persist. Specifically, the difference between mean blood lead levels of non-Hispanic 

black children (1.8 µg/dL), compared with either non-Hispanic white (1.3 µg/dL) or 

Mexican American (1.3 µg/dL) children remains significant (p<0.01) (CDC, 2013). The 

difference in mean blood lead levels among children belonging to families with a poverty 

income ratio <1.3 compared with families with a poverty income ratio ≥1.3 is also 

significant (1.6 µg/dL versus 1.2 µg/dL, respectively [p<0.01]) (CDC, 2013). These 
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significant differences between the mean blood lead levels by race/ethnicity and income 

indicate a persistent disparity. According to the U.S. Environmental Protection Agency’s 

definition of environmental justice, this unfair distribution of the lead burden is an example 

of environmental injustice (EPA, 2014). Such disparities can be traced to racial and income-

related differences in housing quality, environmental conditions, nutrition, and other factors 

designed to control or eliminate lead exposure (CDC, 2012).

 Vulnerability of children to lead

Children’s greater risk of exposure to lead, as with many other toxic chemicals, reflects their 

typical hand-to-mouth behavior as well as their tendency to eat more food, drink more water 

and breathe more air per unit of body weight than adults (American Academy of Pediatrics 

Committee on Environmental Health, 2003). The major route of children’s exposure to lead 

in the U.S. is through paint, via ingestion of lead-contaminated dust that forms inside homes 

from the flaking and chipping of older lead-based paint. Children between the ages of 1 and 

6 years are at highest risk of lead exposure because normal exploratory behavior facilitates 

the transfer of lead dust from the environment into children’s bodies. Furthermore, unlike 

many other neurotoxicants, lead can accumulate over time in a pregnant woman’s bones, and 

then readily pass through the immature blood–brain barrier to the developing fetal brain. 

Having reached the brain, lead can interfere with growth and development, and this 

vulnerability extends from prenatal life into infancy and early childhood.

Lead exposure affects the developing brain through pharmacological and morphological 

mechanisms and is highly age and dose dependent (Silbergeld, 1992; Goyer, 1996). Animal 

studies have shown, at the pharmacologic level, that prenatal exposure to lead affects 

neurotransmitter receptor density and affinity; the type of neurotransmitter receptor change 

varies depending on the timing of exposure (Rossouw, Offermeier, & van Rooyen, 1987). At 

the morphological level, prenatal lead exposure delays structural development of the fetal 

cortex (Bull, McCauley, Taylor & Croften, 1983), and affects differentiation and 

synaptogenesis (Regan, 1989). Although it is more difficult to study potentially causal 

mechanisms in human studies, Mendelian randomization as mentioned earlier lends further 

weight to the causal evidence linking lead exposure to neurobehavioral outcomes in children 

(Nigg, Elmore, Natarajan, Friderici & Nikolas, in press).

 Brain and behavioral consequences of lead exposure

The earliest studies of the adverse consequences of lead exposure focused on IQ (e.g., 

Needleman, Gunnoe et al. 1979), and showed that clinically asymptomatic children with 

elevated body lead burdens had a 4 to 5-point deficit in mean verbal IQ scores compared 

with children from the same communities with lower lead burdens. More recent studies have 

shown that the average IQ scores of children with levels of only 5–10 µg/dL are about 5 

points lower than the IQ scores of children with levels less than 5 µg/dL (Canfield, 

Henderson et al., 2003), and these effect sizes persist into the school years (Jusko, henderson 

et al., 2008). The cognitive deficits associated with lead exposure are considered to be 

irreversible (Mazumdar, Bellinger et al. 2011; Dietrich, Ris, Succop, Berger & Bornschein, 

2001; Bellinger, Stiles & Needleman, 1992; Wright, Dietrich et al., 2008); and it is generally 
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agreed that no safe level of exposure to lead exists (Grandjean, 2010; Lanphear, Hornung et 

al. 2005; Budtz-Jorgensen, Bellinger, Lanphear & Grandjean, 2013).

Early lead exposure has also been linked to conduct disorder, juvenile delinquency, drug use 

and incarceration (National Research Council, 1993; Sciarillo, Alexander & Farrell,1992; 

Needleman, McFarland, Ness, Fienberg & Tobin, 2002; Dietrich, Ris, Succopa, Bergerb & 

Bornscheina, 2001; Braun, Kahn, Froehlich, Auinger & Lanphear, 2006; Fergusson, Boden 

& Horwood, 2008; Nigg, Knottnerus et al., 2008; Wang, Chen et al., 2008; Ha, Kwon et al., 

2009). Although externalizing behavior problems have been most frequently reported in 

relation to lead exposure, some studies have also found teacher-reported withdrawn behavior 

(e.g., Chiodo, Jacobson & Jacobson, 2004). Progress in our understanding of internalizing 

disorders in young children in general has lagged behind advances in the other areas of 

psychopathology in this age group, at least in part because such problems are less disruptive 

or visible to parents and teachers (Tandon, Cardeli & Luby, 2009). Recognizing and 

describing mood and anxiety disorders in children as a possible consequence of a toxic 

chemical exposure such as lead may benefit from the more flexible dimensional approach, as 

opposed to the more rigid diagnostic classifications.

Other deficits associated with prenatal exposure to lead include fine-motor skill problems as 

measured by slow finger tapping and reaction time, poor eye-hand coordination, and poor 

visuo-motor coordination skills (Chiodo, Jacobson & Jacobson, 2004; Needleman, Schell, 

Bellinger, Leviton & Allred, 1990), with some deficits persisting over time into adulthood, 

even at low levels of exposure (Mason, Harp & Han, 2014). Public health policy concerning 

lead has evolved steadily over the years in response to increasing scientific evidence that 

adverse effects are seen at very low levels of exposure.

 Learning problems, ASD and ADHD associated with lead—Even very low levels 

of exposure to lead are associated with poorer school performance, marked by shortening of 

attention span, reading problems, attention deficit–hyperactivity disorder, and school failure 

(Needleman, Gunnoe et al., 1979; Bellinger, Stiles & Needleman, 1992). Analysis of data 

from more than 4800 children 6–16 years of age, who participated in the Third National 

Health and Nutrition Examination Survey in the U.S., found an inverse relationship between 

blood lead levels and math and reading scores at concentrations lower than 5µg/dl. In fact, 

the dose–response relationship between blood lead levels and loss of IQ was stronger at 

levels lower than 10µg/dl than at higher levels (Lanphear, Dietrich, Auinger & Cox, 2000). 

An international pooled analysis of data from multiple cohorts demonstrated that there are 

adverse effects below 10µg/dl and that the effects are steepest at the lowest levels of 

exposure (Lanphear et al., 2005). This non-monotonic dose-effect relationship has been 

confirmed by numerous investigators (Emory et al, 1999, 2003; Bellinger & Needleman, 

2003; Wasserman, Factor-Litvak et al., 2003; Chiodo, Jacobson & Jacobson, 2004; Després, 

Beuter et al., 2005; Fraser, Muckle & Despres, 2006; Hu, Tellez-Rojo et al., 2006; Kordas, 

Canfield et al., 2006; Schnaas, Rothenberg et al., 2006; Tellez-Rojo, Bellinger et al., 2006; 

Chiodo, Covington et al., 2007; Surkan, Zhang et al., 2007).

Early studies showed an association between dentine lead, whole-tooth lead, hair lead, and 

symptoms of inattention (e.g., Bellinger, Leviton, Allred & Rabinowitz, 1994; Needleman, 
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Gunnoe et al., 1979). Subsequent studies reported associations between lead and attention 

deficit disorder and impulsivity (e.g., Brockel & Cory-Slechta, 1998; Wasserman, 

Staghezza-Jaramillo, Shrout, Popovac & Graziano, 1998), but virtually all of this work 

showed effects at lead levels much higher than current U.S. population averages. More 

recently, Nigg, Knottnerus et al. (2008) were the first to conduct a low-lead study in children 

formally diagnosed with ADHD by standardized methods, using sensitive exposure 

detection measures with limits 3–8 fold lower than previously used methods. Lead effects on 

ADHD are biologically plausible because lead disrupts midbrain dopamine and other 

neurotransmission circuitry (Cory-Slechta, 2005)--systems that are also implicated in 

ADHD (Nigg, 2006). Furthermore, since ADHD, like ASD, carries well-established genetic 

influences on susceptibility (Waldman & Gizer, 2006), it will be important to determine how 

lead may interact with that susceptibility (Purcell, 2002).

The role of lead in ASD has received less attention. In a recent study of autistic children 

(Adams, Audhya et al., 2013), the autism group had significantly higher levels of several 

metals including lead in their red blood cells (41%), and significantly higher urinary levels 

of lead (74%), thallium (77%), tin (115%), and tungsten (44%). Further, levels of several 

toxic metals were significantly associated with variations in the severity of autism for all 

three of the autism severity scales investigated.

 Brain anomalies associated with lead—MRI has been used to better understand the 

mechanisms underlying the effects of lead exposure on neurological function. Studies of 

exposed children have found decreased brain volume, as well as altered myelination and 

axonal integrity (Cecil, Brubaker et al., 2008; Cecil, Dietrich et al., 2011; Brubaker, 

Schmithorst et al., 2009). The Cincinnati Lead Study (CLS) was the first longitudinal 

epidemiologic study to use MRI in a population well characterized for lead exposure 

(Bornschein, Hammond et al.,1985), demonstrating that prenatal or early childhood 

exposure was associated with a variety of adverse effects on adult brain structure, 

organization, and function. Young adults demonstrate reductions in grey matter volume 

associated with increased prenatal and/or early childhood blood lead, and the magnitude of 

loss increases with age (Cecil, Brubaker et al. 2008; Brubaker, Dietrich, Lanphear & Cecil, 

2010). The associations were most striking in frontal regions, particularly the anterior 

cingulate and ventrolateral prefrontal cortices, and were stronger for males than females. 

CLS Investigators examined white matter connectivity using DTI, demonstrating associated 

reductions in fractional anisotropy (FA) (Brubaker, Schmithorst et al., 2009), and these 

changes were attributed to significant changes in radial diffusivity. Since radial diffusivity 

primarily reflects alterations in the myelin sheath thickness and organizational 

characteristics, these findings suggest that lead exposure disrupted the underlying neuronal 

network.

These results, among others, showing significant associations between childhood lead 

exposure and neuronal dysfunction in discrete anatomic regions and alterations in white 

matter connectivity, are consistent with behavioral studies suggesting cognitive, motor and 

behavioral effects of early childhood lead exposure. Lead thus appears to affect both brain 

volume, connectivity and metabolic content, and these disturbances very likely mediate 

observed deficits in cognition/learning, motor and behavioral function.
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 The case of pesticides

 Trends in pesticide exposure

The World Health Organization estimates that approximately 3 million cases of pesticide 

poisoning occur annually, with approximately 220,000 fatalities (WHO, 2010). While much 

of this disease burden is occupationally related, there is also substantial exposure of children 

who often accompany parents to workplaces, live in farm regions, come in contact with post-

application residue, and participate themselves in agricultural production, including 

pesticide application (Karr & Rauh, 2014). Daily, chronic low-level exposures to pesticides 

are more common today among children than acute pesticide poisonings. Children encounter 

pesticides in air, food, dust, and soil and on surfaces from lawn or garden applications, 

household insecticide use, pet applications, and agricultural product residues. Pesticides are 

purposefully applied directly to children’s skin to treat lice or scabies, most often from the 

classes of pesticides known as pyrethroids, organochlorines or organophosphates. For most 

children, the majority of exposure comes from two sources: pesticide residues in the food 

supply, and home pesticide use. Broadcast applications of pesticides in indoor environments 

can leave residues in air, carpet, toys, and house dust that persist for months and herbicides 

applied on the lawn or garden can be tracked into the home by people and pets. For 

subgroups of children, such as farm families and children of migrant workers, proximity to 

agricultural production activities results in an especially heavy burden of exposure because 

regular pesticide applications, with periodic airborne drift, take place near their homes, 

schools, and play areas (Marks, Harley et al., 2010). As is the case for lead, the burden of 

exposure in the U.S. is now greatest for lower-income minority children, thus providing 

another example of environmental injustice.

 Organophosphate pesticides—The class of pesticides known as organophosphate 

insecticides (OPs) poses a particularly serious health hazard because of their inherent acute 

toxicity and widespread use in residential pest control and food production. First registered 

in 1965 for agricultural and pest control purposes, chlorpyrifos (CPF) is a broad-spectrum, 

chlorinated OP. Prior to regulatory action by the Environmental Protection Agency (EPA) in 

2000–2001, CPF applications were particularly heavy in urban areas, where the exposed 

populations included pregnant women (Whyatt, Camaan et al., 2002; Whyatt, Barr et al., 

2003; Surgan, Congdon et al., 2002; Berkowitz et al., 2003). In a sample of pregnant women 

in New York City, detectable levels of CPF were found in 99.7% of personal air samples, 

100% of indoor air samples, and 64%-70% of blood samples collected from umbilical cord 

plasma at delivery (Whyatt, Camaan et al., 2002; Whyatt, Camaan et al., 2005). In 2001, the 

U.S. EPA banned indoor residential use of CPF (U.S. Environmental Protection Agency, 

2000; 2002), but continues to permit agricultural and commercial uses. Although the 

residential ban was effective in bringing down mean CPF blood levels among pregnant 

women in NYC (Whyatt, Rauh et al., 2004), pesticide metabolites continue to be detected in 

the urine of pregnant women and children living in farming communities across the U.S. 

from North Carolina to California (Bradman, Eskenazi et al., 2005; Accury, Grzywacz et al., 

2007). Outside the U.S., pesticide use is common, partly due to U.S. product exportation 

(Romyen, Hawker & Karnchanasest, 2007).
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Currently, diet is the most widespread source of children’s OP pesticide exposure (Aprea, 

Strambi, Novelli, Lunghini & Bozzi, 2000; Lu, Toepel et al., 2006). In CDC’s most recent 

Fourth National Report on Human Exposure to Environmental Chemicals, urinary 

concentrations of common OP insecticide metabolites were higher in the youngest age group 

sampled (age 6–11 years) than in older children and adults (Rohlman, Anger et al., 2001), 

largely because of high dietary consumption of apples, grapes, and carrots—all foods with 

OP pesticide residues. A recent study documented CPF levels by urinary metabolites in 

children, and found that an organic dietary intervention immediately reduced metabolites to 

nondetectable levels and remained nondetectable until conventional diets were reintroduced 

(Lu, Toepel et al., 2006).

 Vulnerability of children to pesticides

OPs have been detected in amnionic fluid and are known to cross the placenta, posing a 

threat to the unborn child during a period of rapid brain development (Bradman, Barr et al., 

2003). While OPs affect neurotransmission in adults, they act as neurodevelopmental 

disrupters in the fetal and neonatal brain. Much of the early evidence for neurotoxicity 

comes from animal studies; specifically, OPs inhibit AChE and overstimulate cholinergic 

targets in the developing brain, thereby disrupting normal patterns of neural cell proliferation 

and differentiation, axonogenesis, and synaptogenesis (Bigbee & Sharma, 2004). 

Noncholinergic mechanisms are also implicated in OP neurodevelopmental toxicity, 

involving disruption of neural cell development and neurotransmitter systems (Slotkin, 

2004; Aldridge, Levin, Seidler & Slotkin, 2005), including the formation and activity of 

synapses in different brain regions (Barone, Das, Lassiter & White, 2000; Gupta, 2004; 

Qiao, Seidler, Tate, Cousins & Slotkin, 2003). These effects are seen at exposure levels well 

below the threshold for systemic toxicity caused by chlolinesterase inhibition in the brain 

(Dam, Seidler & Slotkin, 2003; Slotkin & Seidler, 2005). Moreover, evidence for extensive 

cellular toxicity in rodent models suggests that CPF produces long-term effects on brain 

structure and function that are likely irreversible (Slotkin, 2004).

As a body of work, these experimental findings have important implications for 

understanding the developmental neurotoxicity of CPF in children (Levin, Addy et al., 

2002). First, the critical exposure period in which neuro-behavioral anomalies can be elicited 

likely extends through early postnatal brain development, suggesting multiple mechanisms 

by which CPF may alter the maturation of neural systems. Unlike most other cells in the 

body, neurons proliferate only during the first half of gestation. AChE-related and non-

related effects of CPF disrupt neuronal proliferation and differentiation, axonal elaboration, 

synaptogenesis, and neurotransmitter specification, thereby likely reducing neuronal cell 

number and disturbances in axonal connectivity in specific brain regions and producing 

related abnormalities in behavior and cognition. Second, non-cholinergic mechanisms 

dominate the low-dose neurotoxic effects of CPF, and cholinesterase inhibition dominates its 

toxic effects at high doses. Third, traditional methods of risk assessment based on classic 

monotonic dose-response relationships may not be appropriate for CPF because of its 

multiple mechanisms of action. Fourth, the timing of exposure during development likely 

determines the specificity of the effects of CPF toxicity at the cellular, neural systems, and 

neurobehavioral levels.
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Additional evidence for the genetic vulnerability of certain children to pesticide exposure, 

lending weight to the evidence for links between OP pesticides and developmental 

psychopathology, comes from several studies reporting greater adverse effects of prenatal 

organophosphate pesticide exposure on head circumference (Berkowitz, Obel et al., 2004), 

reflexes (Engel, Berkowitz et al., 2007) and early cognitive development among children of 

mothers with low paraoxonase 1 (PON1) (Engel, Wetmur et al., 2011). PON1 is a key 

enzyme in the metabolism of organophosphate pesticides (Costa, Li et al. 1999), and a 

biomarker of susceptibility to the toxic effects of organophosphate pesticides, both in 

animals (Costa, Richter et al. 2003), and in humans (Engel, Berkowitz et al. 2007; Engel, 

Wetmur et al., 2011; Eskenazi, Huen et al. 2010; Lee, London et al. 2003; Nielsen, McKean-

Cowdin et al. 2010). Future Mendelian randomization studies can help us to better 

understand possible causal links between pesticides (or any neurotoxicant) and 

neurodevelopmental outcomes, but such studies are currently limited in the case of 

pesticides by the lack of information on genetic metabolism of these compounds.

 Brain and behavioral consequences of pesticide exposure

Developmental problems in children exposed to pesticides were first reported more than 30 

years ago among 4–5-year-olds living in a Mexican agricultural community exposed to high 

OP and organochlorine pesticides, as compared to children from a nearby community with 

low exposure (Guillette, Meza, Aquilar, Soto & Garcia, 1998). Exposed children showed 

disturbances in stamina, hand-eye coordination, drawing ability, and short-term recall, but 

the study did not include any validation of exposure using biomarkers. More recent birth 

cohort studies in both urban and agricultural settings, using biomarkers of exposure, have 

found significant associations between prenatal maternal OP exposure and deviant neonatal 

reflexes (Young, Eskenazi et al., 2005), overall neonatal neurological performance (Zhang, 

Han et al., 2014), mental/ motor deficits and pervasive developmental disorder at 2–3 years 

(Engel, Berkowitz et al., 2007; Rauh, Garfinkel et al., 2006), and attention problems at 3 ½ 

to 5 years of age (Marks, Harley et al., 2010). In these same cohorts, cognitive deficits have 

persisted to at least 7 years of age (Rauh, Arunajadai et al., 2011; Engel, Wetmur et al., 

2011; Bouchard, Chevrier et al., 2011). Using data from the Nation Health and Nutrition 

Examination Survey, Bouchard et al. (Bouchard, Bellinger, Wright & Weisskopf, 2010) 

reported a 35% increase in the odds of developing ADHD with each 10-fold increase in 

urinary concentration of residue from OP exposure in children age 8–15 years, across the 

full range of exposures. This is an area where the RDoC approach to creating profiles of 

symptoms might complement and further inform the relationship between early exposure 

and ADHD-type behaviors, and could be even more informative than the diagnosis of 

ADHD ‘caseness’. Such early attention problems can be clinically persistent, putting 

children at risk for later psychiatric, neuropsychological, and academic difficulties. A recent 

study reports that children with prenatal exposure to chlorpyrifos are also likely to manifest 

moderate tremor in middle childhood, a disturbance that may underlie the frequently-

reported symptom of poor hand writing among children with ADHD-type problems (Rauh, 

Garcia & Louis, 2015).

Although the evidence that OP pesticides are associated with adverse developmental 

outcomes is growing, some studies have reported weak or no associations between OP 
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exposure and behavioral outcomes (Eskenazi, Rosas et al., 2008). In some cases, prenatal 

but not postnatal exposures are associated with poor behavioral outcomes; further, increased 

exposure has been associated with enhanced performance, i.e., increased exposure to DAP 

was associated with higher scores on the Bayley Scales (Eskenazi, Marks et al., 2007). More 

prospective studies with larger samples of children and a more sophisticated approach to 

understanding the timing of exposure are needed to disentangle these seemingly 

contradictory results.

The issue of environment injustice is complicated in the case of pesticides, since more 

affluent groups may have greater access to fresh fruits and vegetables, a potential source of 

dietary pesticide residue. However, in its latest report, the Dietary Guidelines Advisory 

Committee, a panel at the U.S. government’s Office of Disease Prevention and Health 

Promotion (CHHS, 2010), found that high levels of fruit and vegetable consumption are 

strongly or moderately associated with decreased risks of chronic diseases such as heart 

disease, high blood pressure, type 2 diabetes, obesity and cancer. The committee also found 

limited evidence that suggests that dietary patterns with high fruit and vegetable 

consumption may decrease the likelihood of congenital anomalies as well as neurological 

and psychological diseases. Therefore, to the extent that more affluent groups have greater 

access to fruits and vegetables, especially fresh produce, they have an advantage over less 

affluent groups. The argument here is that even eating conventionally produced fruits and 

vegetables (non-organic) is always healthier than not eating any fruits and vegetables 

(Roberts & Karr, 2012). Further, organic foods do have lower pesticide levels than 

conventional diets (Smith-Spangler, Brandeau et al., 2012). Perhaps more importantly, the 

exposure of less affluent groups, such as migratory workers and farm families, to pesticides 

through geographical proximity and occupational exposure remains a significant risk.

 Brain anomalies associated with OP exposure—Only one study to date has 

investigated associations between CPF exposure and brain morphology using MRI (Rauh, 

Perera et al., 2012). In a sample of 40 children, 5.9–11.2 years, selected from a community-

based cohort, high CPF exposure was associated with enlargement of superior temporal, 

posterior middle temporal, and inferior post-central gyri bilaterally, and enlarged superior 

frontal gyrus, gyrus rectus, cuneus, and precuneus along the mesial wall of the right 

hemisphere. Observed group differences reflected exposure-related changes in underlying 

white matter. Further, high exposure children did not show expected sex differences in the 

right inferior parietal lobule and superior marginal gyrus, and displayed reversal of sex 

differences in the right mesial superior frontal gyrus, consistent with disruption by CPF of 

normal behavioral sexual dimorphisms reported in animal models. High exposure children 

also showed frontal and parietal cortical thinning, and an inverse dose-response relationship 

between CPF and cortical thickness. This report suggests that prenatal exposure to CPF, at 

standard usage levels, is associated with structural changes in the developing human brain, 

in regions that subserve working memory, attention and executive function.

 Learning problems, ASD and ADHD associated with OP pesticides—There is 

some evidence that specific learning problems are seen in OP-exposed children, in the 

absence of overall IQ deficits. These findings include problems with verbal learning and 
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memory; specifically, inability to sustain attention on learning tasks (Kofman, Berger, 

Massarwa, Friedman & Jaffar, 2006). Other studies, although not specifically designed to 

assess OP impact on LDs, have included neurocognitive tasks that are essential for the 

learning process. In a sample of Hispanic children living in an agricultural community 

(Lizardi et al., 2008), OP levels have been associated with speed of attention, sequencing, 

mental flexibility, visual search, concept formation, and conceptual flexibility. These results 

are consistent with other reports, from both human and experimental studies, documenting 

OP exposure effects on verbal abstraction, attention, and memory (Qiao, Seidler,Tate, 

Cousins & Slotkin, 2003; Slotkin, Levin & Seidler, 2006). Inclusion of LD assessment tools 

and more refined measures of attention and ADHD-type problems in future studies will add 

greatly to our understanding of how these exposures may affect educational success and 

longer-term social adjustment.

Evidence for adverse OP effects on reciprocal social behavior, as measured by degree of 

social responsiveness, has been reported in a multi-ethnic urban population at 7–9 years of 

age, particularly among males (Furlong, Engel, Barr & Wolff, 2014). Another recent study 

reported that proximity to OPs at some point during gestation, specifically 2nd trimester 

chlorpyrifos applications, was associated with a 60% increased risk for autism spectrum 

disorders (Shelton, Geraghty et al., 2014). Much of this evidence has been well-reviewed 

elsewhere (Polanska, Jurewicz & Hanke, 2013; Munoz-Quezada, Lucero et al., 2013; 

Gonzalez-Alzaga, Lacasana et al., 2013). Most research implicating pesticides in the 

etiology of autism comes from recent epidemiological studies in U.S. agricultural areas, 

specifically in families who live or work in proximity to areas treated with pesticides. 

Significant associations have been reported between prenatal exposure OP pesticides and 

autism diagnosis (Roberts, English et al., 2007) and maternally reported pervasive 

developmental disorder (Eskenazi, Marks et al., 2007). Although pesticides are biologically 

plausible contributors to autism, more research is needed to determine critical windows of 

exposure, neurotoxicity in the context of genetic susceptibilities, and the role of co-

exposures, including chemical additives to pesticide compounds (Shelton, Hertz-Picciotto 

&,Pessah, 2012). Causes for the recent rise in autism diagnoses throughout the United States 

remain largely unknown. In California, a 600% increased incidence in autism was observed 

among children up to 5 years of age for births from 1990 to 2001, yet only one-third of the 

rise could be explained by identified factors such as changing diagnostic criteria and a 

younger age at diagnosis (Hertz-Picciotto and Delwiche 2009).

With respect to ADHD, Bouchard et al. (Bouchard, Bellinger, Wright & Weisskopf, 2010) 

reported a 35% increase in the odds of developing ADHD with each 10-fold increase in 

urinary concentration of residue from OP exposure in children age 8–15 years, across the 

full range of exposures. This is an area where the RDoC approach to creating profiles of 

symptoms might complement and further inform the relationship between early exposure 

and ADHD-type behaviors, and could be even more informative than the diagnosis of 

ADHD ‘caseness’. Such early attention problems can be clinically persistent, putting 

children at risk for later psychiatric, neuropsychological, and academic difficulties. A recent 

study reports that children with prenatal exposure to chlorpyrifos are also likely to manifest 

moderate tremor in middle childhood, a disturbance that may underlie the frequently-

reported symptom of poor hand writing among children with ADHD-type problems (Rauh, 
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Garcia & Louis, 2015). Whether or not the ADHD-type deficits observed in children 

exposed to pesticides are identical (anatomically or functionally) with ADHD as identified 

by DSM-5 in the general population is unknown; nor is there any data concerning the 

persistence of such symptoms into middle childhood among children who were exposed 

prenatally or in early childhood. This is an important gap in the literature, with implications 

for treatment, as well as for regulatory standards.

 Conclusions

In this review we first examined children’s unique vulnerability to neurotoxic substances. 

We then described how the distribution, identification and definition of toxic environmental 

exposures, as well as mental health outcomes, have changed over time and shifted the 

burden of risk to different populations. As a consequence, we have also seen heightened risk 

associated with different patterns of co-exposure to both social and chemical toxicants. 

Third, we considered outcome measures that are likely to be sensitive to the subtle effects of 

toxic exposures, and argue that current trends in psychiatric research, calling for the use of 

dimensional rather than categorical models to describe health outcomes, are particularly 

well-suited to neuro-epidemiologic investigations aimed at understanding the etiology of 

children’s neurodevelopmental disorders. Fourth, we presented our view that future 

neurotoxicology research will be further informed by the inclusion of additional mental 

health-related outcomes such as (a) measures of brain function, and (b) assessment of child 

learning capacity, ADHD and ASD. Finally, we discussed the history and impact of two 

important environmental exposures (lead and pesticides) on child mental health, reframing 

the discussion to consider shifts in population-based exposures and new approaches to 

outcome assessment.

Relevant to the role of environmental exposures in the etiology of neurodevelopmental 

disorders and mental health problems, but beyond the scope of this paper, are the many 

mechanistic and methodological challenges related to the interactive and potentially 

cumulative effects of toxic chemicals and social conditions. Approaches to measuring the 

combined effects of multiple exposures include toxicogenetic analysis (e.g., Mori, 

Kmoiyama et al., 2003), phased strategies (e.g., Menzie, MacDonell & Mumtaz, 2007), and 

complex mixtures analysis (e.g., Hastie, Tibshirani & Friedman, 2009). The difficulty arises 

when each exposure is low, but the cumulative effect of multiple exposures may be above 

the safe regulatory dose, as illustrated by a recent study of dietary sources of endocrine 

disrupting chemicals (Scheckter, Lorber et al., 2013). The task of identifying the 

etiologically-relevant compounds and/or mixtures associated with adverse health outcomes 

challenges standard regression-based techniques, due to the potentially strong correlation 

structure of the exposures as well as the hypothesized correlation between individual 

exposures and outcomes. The ‘exposome’ is a comprehensive term introduced to describe 

the totality of environmental exposures, as distinct from the genome (Wild, 2012), but this 

concept has yet to be applied to the etiology of neurodevelopmental and mental health 

disorders.

We argue that the adverse mental health consequences of exposure to toxic substances likely 

depend upon the complex effects of multiple chemical and social exposures on the 
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developing brain. Longitudinal research designs, with attention to the timing of exposures, 

are essential if we are to capture the cascading effects of early exposures across multiple 

biological systems and the full-range of neuropsychological endpoints. Neuroimaging at 

multiple time points, starting during the fetal period, will enable us to observe brain 

maturation under varying environmental conditions. Innovations in neuropsychological, 

physiological and behavioral assessments are sorely needed at the very earliest ages, as well 

as throughout childhood, including a range of performance-based indicators. At all ages, a 

continuous or dimensional approach to measurement across domains is not only likely to be 

sensitive to subtle sub-clinical toxic effects, but also permits the testing of complex 

functional relationships between brain and behavioral data. In addition, such an approach 

enables us to describe exposure-related profiles or phenotypes over time that may inform 

heterogeneity in children with specific mental health disorders (e.g., Fair, Bathula, Nikolas 

& Nigg, 2012).

Despite the public health policy response to scientific evidence that a number of 

environmental pollutants are toxic to the developing brain, including the examples of lead 

and pesticides, the problem of disproportionate exposure persists. Paradoxically, the 

overrepresentation of disadvantaged children in the most highly exposed groups often 

increases in response to regulatory activity, as more advantaged sectors of the population are 

protected. And of course, disproportionate exposures lead to social inequities in the mental 

health-related consequences of exposures—an example of environmental injustice.

Questions about how multiple exposures, the timing of exposures, and interactions of 

exposures with other social risk factors contribute to poor outcomes for children are 

scientifically important, but such questions become even more pressing when viewed 

through the lens of environmental justice. Any reduction in the burden of child mental health 

disorders (i.e., population attributable risk) that would be observed if we were to eliminate or 

reduce toxic exposures would be naturally limited, since most mental health problems are 

multiply determined by genetic and other risk factors. However, the important point is that 

this fraction of the excess risk for child mental health problems is entirely preventable. 

Research that seeks to identify links between toxic exposures and mental health outcomes is 

thus of enormous public health and societal value.
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Key points

• Environmental factors play a role in the origins of some child mental health 

disorders, as well as a range of subclinical neurodevelopmental deficits.

• The developing brain is particularly vulnerable to toxic chemical exposures, 

as exemplified by lead and pesticides, and this sensitivity is likely greatest 

in utero and throughout early childhood.

• Even at very low levels of exposure, toxic chemicals can have meaningful 

adverse effects on brain development and behavioral function, and these 

effects are often extremely costly to individuals and society.

• The inequitable distribution of environmental exposures in the population, 

resulting in a greater toxic burden among socially disadvantaged groups, is 

termed ‘environmental injustice’.

• We suggest broadening outcomes to include dimensional measures of 

autism spectrum disorders, attention deficit hyperactivity disorder, and child 

learning capacity, as well as direct assessment of brain function via 

neuroimaging.
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