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Summary

Among the diverse transcription factors that are necessary to elicit changes in cell fate, both in 

embryonic development and in cellular reprogramming, a subset of factors are capable of binding 

to their target sequences on nucleosomal DNA and initiating regulatory events in silent chromatin. 

Such “pioneer transcription factors” initiate cooperative interactions with other regulatory proteins 

to elicit changes in local chromatin structure. As a consequence of pioneer factor binding, the local 

chromatin can either become open and competent for activation, closed and repressed, or 

transcriptionally active. Understanding how pioneer factors initiate chromatin dynamics and how 

such can be blocked at heterochromatic sites provides insights into controlling cell fate transitions 

at will.
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 Pioneer factors: A simple means to initiate regulatory events in silent 

chromatin

Large eukaryotic genomes fit into the cell's nucleus by distinct levels of chromatin 

compaction. The first level of compaction is by the DNA is wrapping nearly twice around an 

octamer of the four core histones, to make nucleosomes (Luger et al., 1997). The second 

level of compaction arises from the regular spacing of nucleosomes on the DNA, so that the 

local inter-nucleosomal interactions allow the formation of higher levels of chromatin 

condensation (Schalch et al., 2005). These levels of compaction of DNA into chromatin limit 

the amount of free DNA that is available for many regulatory factors to bind. Thus, 
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chromatin structure is intrinsically repressive, which helps to stabilize gene expression states 

and prevents undirected cell fate transitions. How do regulatory proteins gain access to DNA 

in chromatin, particularly at silent genes that are not yet programmed for expression (or 

repression), to control cell fate?

One model for transcription factor access to silent DNA in chromatin holds that the DNA 

would be transiently nucleosome-free during DNA replication. Yet DNA replication is 

tightly linked to chromatin assembly (Polo and Almouzni, 2006), suggesting little access for 

stable transcription factor access to DNA. Moreover, early developmental patterning can 

proceed in the absence of DNA replication (Harris and Hartenstein, 1991) and cell fate can 

be reprogrammed in the absence of cell division (Chiu and Blau, 1984; Di Tullio and Graf, 

2012). Another model holds that the histone themselves may be dynamic on DNA; but 

measurements of histone exchange in living cell chromatin show that core histones are 

relatively stable (Kimura and Cook, 2001). Also, it appears that DNA sequences with 

clusters of transcription factor binding sites, i.e. regulatory DNA, actually stabilize 

nucleosomes rather than destabilize them (Tillo et al., 2010). Another model holds that ATP-

dependent nucleosome remodelers constantly survey the genome, loosening nucleosomal 

sites to be sampled by transcription factors (de la Serna et al., 2006). But remodelers seem to 

be concentrated at regulatory sequences, where they are apparently recruited by transcription 

factors, and remodeling complexes are much larger than the nucleosome and use one ATP 

per base pair of DNA “remodeled,” and thus are energetically expensive (Clapier and Cairns, 

2009). New theories suggest that remodelers may be most important for modulating higher-

order chromatin structure (Ho and Crabtree, 2010). Perhaps the simplest model for targeting 

silent chromatin is by the action of pioneer transcription factors, which are distinguished 

from other transcription factors by their ability to bind their cognate DNA sites directly on a 

nucleosome, even in chromatin that is locally compacted by linker histone (Cirillo et al., 

1998; Cirillo et al., 2002). Thus, pioneer factors are less impeded by the first level of DNA 

compaction into chromatin, i.e., by the nucleosome, though as we will see, they can be 

impeded by higher levels of compaction.

 Nucleosome binding as a defining characteristic of pioneer factors

The paradigm pioneer factor, FoxA, was initially discovered in the mouse embryonic 

endoderm, where it binds to an enhancer sequence at a silent liver gene (Gualdi et al., 1996; 

Bossard and Zaret, 2000; Lee et al., 2005). FoxA persists at the enhancer in chromatin as the 

endoderm becomes induced to the liver fate, concomitant with activating the liver gene. 

Further studies showed that PHA-4, a homolog of FoxA in C. elegans, is similarly the first to 

bind silent target genes in worm foregut development (Gaudet and Mango, 2002; Fakhouri et 

al., 2010; Hsu, 2015). Purified FoxA and PHA-4 proteins efficiently bind to their cognate 

sequences on a nucleosome (Cirillo et al., 1998; Hsu, 2015), explaining how they can target 

silent chromatin in development. Further studies showed that FoxA can act as a pioneer 

factor in differentiated cells by opening the local chromatin and allowing hormone-

responsive transcription factors to bind (Carroll et al., 2005; Zaret and Carroll, 2011; 

Pihlajamaa et al., 2014). Indeed, pioneer factors can be discovered by DNA sequence motifs 

at sites that become DNase hypersensitive in a developmental sequence (Sherwood et al., 

2014). Yet the binding of pioneer factors can also lead to repressed chromatin, with binding 
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adjacent to repressors or corepressors and with reduced local nuclease sensitivity (Sekiya 

and Zaret, 2007; Watts et al., 2011). The emergent picture is that pioneer factors enable 

states of competence to be activated or competence to be repressed (Figure 1). This view 

was underscored by a recent genome-wide study showing that FoxA binding, in endoderm 

derived from human embryonic stem cells, occurs at sites for target genes that could be 

either activated or repressed during differentiation to different lineages (Wang et al., 2015).

In mammals, extensive genome-wide chromatin immunoprecipitation studies (ChIP-Seq) 

have shown that FoxA proteins and other pioneer factors most frequently bind distal 

regulatory sequences, i.e., enhancers, while also binding to promoters (Motallebipour et al., 

2009; He et al., 2010; Serandour et al., 2011). At such distal sequences, during the 

differentiation of ES cells in vitro, FoxA binding can recruit chromatin remodelers to elicit 

nucleosome loss (Li et al., 2012). But new studies in C. elegans development, where PHA-4 

frequently binds promoters, show that FoxA binding can directly result in recruitment of 

RNA polymerase II, in either a poised or actively transcribing state (Hsu, 2015). The careful 

staging of embryos in this system revealed that opening of the local chromatin occurred 

predominantly after polymerase recruitment, not beforehand, raising the possibility that 

polymerase could contribute to chromatin opening (Scruggs et al., 2015). Given that 

enhancers are now known to be transcribed in mammalian cells (Arner et al., 2015), it is of 

interest to determine whether the initial binding of pioneer factors at distal enhancers in 

those contexts is also accompanied by polymerase recruitment, prior to local chromatin 

opening and enhancer activation.

In summary, pioneer factors, as exemplified by FoxA/PHA-4, have been defined by their 

intrinsic ability to target DNA sites on nucleosomes and where such binding can initiate 

regulatory events in silent chromatin. Such regulatory events include establishing 

competence for subsequent induction, e.g. as in development or in response to hormones, 

establishing a repressed domain, or the direct transcriptional activation of a local promoter.

 Pioneer factors in cellular reprogramming

Recent studies on the use of transcription factors to interconvert cells of different types have 

revealed additional ways that pioneer factors are distinguished from other transcription 

factors. Consider the collection of transcription factors required to convert fibroblasts to 

induced pluripotent stem cells (iPS) (Takahashi and Yamanaka, 2006) or fibroblasts to 

neurons (Vierbuchen et al., 2010). In each case, a group of transcription factors is necessary 

to elicit the conversion. Yet from a mechanistic point of view, do they all function similarly; 

i.e., act as pioneers? The answer appears to be no. Direct assessments of the initial binding 

of the iPS factors Oct4, Sox2, Klf4, and c-Myc showed that Oct4 and Sox2, and to a lesser 

extent Klf4, but not c-Myc, target predominantly silent, unmarked, and DNase-resistant 

chromatin when they are first expressed in human fibroblast cells (Soufi et al., 2012). Most 

of such binding is distal to promoters; i.e., at enhancers, similar to what has been seen for 

FoxA proteins. By contrast, c-Myc targets “closed” chromatin sites when co-bound with 

Oct4 and Sox2. A similar assessment showed that the neuronal factor Ascl1, but not Brn2 or 

Myt1l, targets silent, DNase-resistant chromatin when they are first expressed in fibroblasts; 

and Ascl1 can recruit Brn2 to closed regions, while Myt1l targets open regions (Wapinski et 
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al., 2013). Similarly, Pax7 can reprogram a corticotrope cell line into a melanotrope-like cell 

by targeting closed chromatin sites and recruiting the Tpit factor (Budry et al., 2012). C/

EBPα that is ectopically expressed in pre-B cells, in conjunction with endogenous PU.1 

(Barozzi et al., 2014), can convert the cells to macrophages by targeting closed chromatin 

(van Oevelen et al., 2015). In conclusion, not all reprogramming factors are pioneer factors, 

but reprogramming factor “cocktails” appear to include at least one pioneer factor.

Importantly, these findings were drawn by comparing the genomic sites that are targeted by 

the factors, when they are first induced in cells, with the chromatin states of the sites in the 

cells prior to the induction of the factors. That is, it is necessary to know the “pre-bound” 

state of the chromatin which is being targeted by the factors, in order to assess whether or 

not the factors are targeting silent chromatin and are thus pioneers. A list of pioneer factors 

in development and reprogramming has been presented recently, elsewhere (Iwafuchi-Doi 

and Zaret, 2014)

 Mechanism of targeting nucleosomes by pioneer factors and binding 

cooperativity

What is the extent to which there are substantial parts of the genome that are not “pre-

marked” by specific histone modifications, and/or not in open, nuclease-sensitive DNA, and 

thus might require a pioneer factor for changes in activity? Initial ENCODE studies 

indicated that about 40% of the genomes studied had “low signal states,” i.e. lacked 

distinguishing chromatin features in a given cell type (Kharchenko et al., 2011; Ho et al., 

2014), while more recent assessments suggest that about 67% of a cell's chromatin, 

including regulatory sequences, is in such unmarked chromatin (Roadmap Epigenomics et 

al., 2015). More striking, a recent study found a paucity of canonical “active” chromatin 

marks at genes that are dynamically regulated in development (Perez-Lluch et al., 2015). 

Thus, there appears to be plenty of “unprogrammed” chromatin for pioneers and other 

factors to bind during development and reprogramming.

Several parameters govern what allows pioneer factors to target sites on nucleosomes better 

than other transcription factors. First, in nucleosomes, one face of the DNA helix, along the 

long axis of DNA, is partially hidden by extensive contacts with the histone octamer (Luger 

et al., 1997). The “winged helix” DNA binding domain of FoxA proteins interacts with one 

surface along the DNA long axis (Clark et al., 1993), with extensive specific and nonspecific 

interactions (Cirillo and Zaret, 2007) that appear compatible with histone binding (Cirillo et 

al., 1998). In addition, FoxA has a separate, C-terminal domain that interacts with core 

histones (Cirillo et al., 2002), further stabilizing binding. The Pygo transcription factor 

contains a domain that binds core histone H3 and its interactions with H3 are governed by 

H3K4 methylation state and associated factors (Fiedler et al., 2008). Pygo acts like a pioneer 

factor by initially engaging Wnt target genes and endowing them with the ability to be 

toggled into active or silent states (Fiedler et al., 2015). Far more work is needed on other 

pioneer factors to determine the extent to which histone interactions stabilize their ability to 

target nucleosomes.

Zaret and Mango Page 4

Curr Opin Genet Dev. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A second parameter that allows pioneer factor binding was discovered by curating the 

nucleosomal targeted sites, separately from the free DNA targeted sites, for enriched 

sequence motifs. Oct4 and Klf4 were found to target a reduced sequence motif on 

nucleosomal sites, consistent with the idea that the pioneer factors tolerate reduced protein-

DNA interactions during the initial nucleosome targeting (Soufi et al., 2015). The reduced 

motif could be modeled as being exposed on the nucleosome surface and the pioneers’ DNA 

binding domains, but not that of non-pioneer factors, exhibit structural dynamics that could 

recognize the reduced motif on the nucleosome surface. Furthermore, while Sox2 normally 

bends DNA more than could be accommodated on a nucleosome (Remenyi et al., 2003), the 

Sox2 targeted sites on nucleosomes have a sequence that allows half as much DNA bending, 

about the amount the DNA is bent on the nucleosome surface (Soufi et al., 2015). Thus the 

conformation of DNA on the nucleosome may be favorable for certain pioneer factors to 

bind, and other pioneer factors may have an inherent adaptability of their DNA binding 

domain that is suitable for nucleosome recognition.

Dynamic monitoring of FoxA factors in living cells showed that they move in the nucleus 

much more slowly than non-pioneer factors and that both specific and nonspecific DNA 

contacts are necessary for the slow movement (Sekiya et al., 2009). Taking all of the data 

together, it appears that pioneer factors have increased residence time on nucleosomal target 

sites, compared to other factors. Such increased residence time would favor cooperative 

interactions with other factors, or be associated with chromatin opening that secondarily 

allows other factors to bind, thus forming a stable regulatory complex that could not be 

established by factors that cannot target nucleosomes.

 Restrictions on pioneer factor binding to chromatin

Despite the ability of pioneer factors to target DNA on nucleosomes, it is clear that they do 

not occupy all of their cognate sites in a cell; i.e., they exhibit cell-specific DNA binding. It 

seems likely that as the factors scan sites, they will remain more stably bound to sites where 

they exhibit cooperative binding with other transcription factors. While such cooperative 

binding is typical of all transcription factors, the observation remains that such events can be 

nucleated by the nucleosome targeting capacity of pioneer factors.

Another explanation for the cell-restricted patterns of pioneer factor binding is that they can 

be actively excluded from certain chromatin domains by repressive features; particularly by 

the higher order compaction imposed by heterochromatin. This was first demonstrated in a 

study of where the OSKM factors first bind the human fibroblast genome, during conversion 

to iPS cells (Soufi et al., 2012). Large, megabase-sized regions of chromatin block OSKM 

binding to DNA in fibroblasts, but the domains are occupied by the factors in pluripotent 

cells. Further research showed that these “Differentially Bound Regions” or DBRs are 

enriched for the chromatin mark H3K9me3, the classic modification associated with 

heterochromatin (Lachner et al., 2001). The DBRs harbor genes required for late stages of 

cellular reprogramming to pluripotency (Buganim et al., 2012). Indeed, knockdown of the 

methyltransferases that impose the H3K9me3 mark (Lachner et al., 2001) allow Oct4 and 

Sox2 to bind the DBRs and greatly improve the pace of cellular reprogramming. These 

studies reveal that heterochromatin imposes an impediment to pioneer factor binding and 
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that understanding the basis for the impediment can inform about ways to enhance the 

reprogramming process. Further work is needed to understand how other chromatin states 

may impede pioneer factor binding.

 Control of higher order chromatin structure by pioneer factors

In addition to their local effects, pioneer factors alter higher-order chromatin structure. 

PHA-4/FoxA association with target genes leads to large-scale chromatin decompaction 

(Fakhouri et al., 2010). Decompaction initiates prior to transcription and may facilitate 

interactions between cis-regulatory sites. In mammals, FoxA1 and Estrogen Receptor (ER) 

α associate with enhancers that typically lie tens of kilobases from the target promoter 

(Carroll et al., 2005; Lupien et al., 2008). FoxA1 promotes ERα binding and looping 

between enhancers and promoters to activate target genes.

Decompaction can reflect the recruitment of the histone variant H2A.Z by PHA-4/FoxA and 

consequent histone depletion (Updike and Mango, 2006; Hsu, 2015). In mammals, FoxA2 

and CLOCK:BMAL1 recruit H2A.Z to target promoters and promote nucleosome loss (Li et 

al., 2012; Menet et al., 2014). Nucleosomes containing acetylated H2A.Z, coupled to histone 

H3.3, form unstable nucleosomes that are easily lost from chromatin (Suto et al., 2000; 

Bruce et al., 2005; Jin et al., 2009). While H2A.Z and histone loss is observed locally, at the 

site of pioneer binding, decompaction occurs more broadly, suggesting pioneer factors 

regulate higher-order chromatin by additional, indirect mechanisms. Curiously though, 

nucleosome loss occurs less at distal enhancer sequences in differentiated liver cells, where 

FoxA can be detected bound to nucleosomes in vivo (Chaya et al., 2001; Li et al., 2011).

 Future questions for the field

Given that cocktails of transcription factors that elicit cell fate changes can be found to 

include pioneer transcription factors, or prevail upon pioneer factors pre-existing in cells, it 

is of great interest to understand how such factors function and their activities could be 

enhanced, to improve cell reprogramming protocols. As noted above, detailed studies of how 

core histone interactions can stabilize pioneer factor interactions with nucleosomes will 

provide a better mechanistic understanding of how the factors function, and possibly how 

their pioneer activities can be improved. Similarly, a better understanding of the means by 

which heterochromatic regions can block pioneer factors from binding will shed light on 

ways to break down barriers to cell trans-differentiation. Recent studies with Hi-C methods 

have begun to illuminate the higher-order structure of chromatin domains. Given the roles of 

pioneer factors in local chromatin organization, it will be exciting to determine whether 

pioneer factors help sculpt the genome in three dimensions. Taken together, further work in 

these straightforward directions should enhance our ability to control cell fates at will.
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Figure 1. Activities of pioneer factors
(top) Pioneer factors can scan nucleosomal DNA for their target sites in silent chromatin. 

(middle) Increased residence time at targeted sites allows for cooperative interactions with 

other factors and more stable binding. (bottom) Binding of pioneer factors can lead to 

activated sequences (left) with open chromatin features (green flags) and a state of 

competence to be expressed or direct transcriptional activity, or repressed sequences (right) 

with closed chromatin features (red flags).
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