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This study aimed to evaluate the trypanocidal activity of mycophenolic acid (MPA) and its derivatives for Trypanosoma congo-
lense. The proliferation of T. congolense was completely inhibited by adding <1 �M MPA and its derivatives. In addition, the
IMP dehydrogenase in T. congolense was molecularly characterized as the target of these compounds. The results suggest that
MPA and its derivatives have the potential to be new candidates as novel trypanocidal drugs.

Trypanosoma congolense causes animal African trypanosomiasis
(AAT) in livestock. The lack of effective vaccines makes the use

of chemotherapeutic agents the most effective measure for con-
trolling AAT. Limited numbers of commercial drugs have long
been used to treat AAT. The emergence of drug-resistant trypano-
somes and cases of drug-refractory trypanosomiasis have been
reported (1–4), underscoring the need for development of new
drugs.

A candidate target for drug development is IMP dehydroge-
nase (IMPDH). This enzyme is very important in the Trypano-
soma spp. because it lacks a de novo purine synthesis pathway,
which makes the purine nucleotide synthesis in these parasites
solely dependent on a salvage pathway in the glycosomes (5–7).
IMPDH converts IMP into XMP through this pathway, which
is a rate-limiting step in the metabolism of guanine nucleotides
(8). Mycophenolic acid (MPA), compound 1, is a well-known
IMPDH inhibitor (Fig. 1). Its enzymatic activity has already been

proven in many protozoan parasites (9–14). The antiprotozoan
activities of MPA against Babesia spp. were reported in in vivo and
in vitro studies (9, 15). Thus, the activity of MPA against IMPDH
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FIG 1 The structures of mycophenolic acid (MPA) and its derivatives.
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is expected to lead to a novel strategy for the development of
trypanocides.

The novel IMPDH orthologue of T. congolense (TcIMPDH)
(accession no. LC094350) was identified from T. congolense rese-
quencing data (unpublished data). The recombinant TcIMPDH
showed IMPDH activity in vitro (see Fig. S1A and B in the supple-
mental material). The nanomolar levels of MPA clearly inhibited
NADH production by TcIMPDH in a dose-dependent manner
(50% inhibitory concentration [IC50] � 26.2 nM) (see Fig. S1C
in the supplemental material). The expression profile and cel-
lular localization of TcIMPDH were analyzed by Western blot-
ting and immunofluorescence microscopy. TcIMPDH was ex-
pressed in glycosomes as granulated forms throughout the life
cycle stages of T. congolense (see Fig. S2 in the supplemental ma-
terial). TcIMPDH was expressed at similar levels in bloodstream
form (BSF), procyclic form (PCF), and epimastigote form (EMF).
In contrast, TcIMPDH expression in the metacyclic form (MCF)
was significantly lower than in the other stages (P � 0.05, Tukey’s
multiple-comparison test). This result suggests that purine syn-
thesis is highly important in the proliferative stages of the parasite
but not in the nonproliferative MCF stage.

The aim of this study was to reveal the trypanocidal activities of
MPA derivatives for developing effective trypanocidal drugs. Var-
ious inhibitory activities and the cell-differentiation activity of
MPA derivatives against mammalian cells have been reported in
vitro. Some MPA derivatives (compounds 2, 4, 9, and 10) have
shown particularly significant inhibitory activities against human

IMPDH and were observed to induce erythroid differentiation in
K562 cells (16, 17). The earlier reports suggested that some MPA
derivatives might be specific inhibitors for Trypanosoma. The
chemical structures of the MPA derivatives in this study are shown
in Fig. 1. We evaluated the trypanocidal activity against T. congo-
lense, T. b. brucei, and T. evansi using an ATP-based luciferase
viability system (18). To evaluate the trypanocidal activity of MPA
(compound 1) and its derivatives in vitro, BSFs were cultivated
with 1 �M of each compound. At 1 �M, nine derivatives showed
�10% anti-T. congolense activity (Table 1). In contrast, only three
compounds, 1, 2, and 4, inhibited T. congolense growth by 99.60 �
0.38%, 94.46 � 3.89%, and 98.87 � 0.78% at 1 �M, respectively
(Table 1). Although compound 1 showed high trypanocidal activ-
ity against T. b. brucei and T. evansi, compounds 2 and 4 showed
lower inhibitory activities at 1 �M against T. b. brucei and T. evansi
than against T. congolense (Table 1). The low plasma membrane
permeability of compounds 3, 5, 6, 7, 8, 11, and 12 might account
for their low trypanocidal activity, while the low trypanocidal ac-
tivity of compounds 9 and 10 against all of the tested trypanosome
species and of compound 2 against T. b. brucei and T. evansi sug-
gests their low affinity with these trypanosome IMPDHs or the
deactivation of these compounds by other species-specific en-
zymes in cytosol. The IC50s of compounds 1, 2, and 4 to T. congo-
lense were 0.10 � 0.04, 0.56 � 0.21, and 0.16 � 0.04 �M, respec-
tively (Table 2). The IC50s of these three compounds to MDBK
cells were 0.52 � 0.12, 1.40 � 0.18, and 0.84 � 0.21 �M, respec-
tively. The selectivity indices of MPA and the two derivatives in T.
congolense were 5.14, 2.62, and 5.10, respectively (Table 2). How-
ever, the higher IC50s and lower selectivity indices of these three
compounds were shown in T. b. brucei and T. evansi (Table 2). The
cytotoxicity of these compounds was higher than that of commer-
cial drugs (19). However, the IC50s of compounds 1 and 4 for T.
congolense BSF were comparable to those of two commercially
available trypanocides (pentamidine [0.17 �M] and diminazene
[0.11 �M]) against T. congolense (18). These results suggest that
compounds 1, 2, and 4 might be potential lead compounds in the
development of trypanocides, especially against T. congolense.

To clarify the mode of action of compounds 1 and 4 in
trypanosomes, the effects of guanosine and xanthine supple-
mentation on the trypanocidal effects of these compounds
were examined. The IC50s of compounds 1 and 4 were in-
creased by guanosine in a dose-dependent manner (Table 3),
while xanthine supplementation did not alter the IC50s of either
compound 1 or compound 4 in T. congolense BSF (Table 3). These
results suggest that guanosine was transported into the T. congo-
lense BSF and converted into GMP as a purine nucleotide source,
while no xanthine was transported or converted into XMP by
hypoxanthine-guanine phosphoribosyltransferase in T. congo-
lense. We therefore concluded that the proliferation inhibitory

TABLE 1 Trypanocidal activity of MPA and its derivatives

Compound

Inhibition rate (%)a

T. congolense T. b. brucei T. evansi

1 (MPA) 99.60 � 0.38 82.99 � 2.82 90.53 � 1.22
2 94.46 � 3.89 5.24 � 13.12 14.21 � 8.64
3 2.36 � 8.64 7.83 � 10.35 16.66 � 5.55
4 98.87 � 0.78 46.13 � 5.21 42.79 � 4.58
5 4.65 � 15.29 14.29 � 34.17 32.43 � 4.88
6 1.45 � 10.94 22.27 � 4.81 17.11 � 6.14
7 4.59 � 15.12 14.50 � 13.76 29.44 � 10.03
8 3.59 � 14.06 22.99 � 12.90 19.94 � 8.44
9 0.06 � 8.66 9.28 � 5.15 11.99 � 1.59
10 3.15 � 8.43 9.03 � 7.91 9.49 � 6.13
11 6.51 � 14.38 16.47 � 6.97 12.79 � 4.49
12 3.03 � 12.91 11.56 � 4.17 13.61 � 8.67
Pentamidineb 99.93 � 0.07 99.96 � 0.06 99.94 � 0.07
Controlc 0.00 � 1.74 0.48 � 1.58 �0.24 � 2.25
a Trypanocidal activity of MPA (compound 1) and 11 MPA derivatives (see Fig. 1) at a
concentration of 1 �M was evaluated for T. congolense IL3000 strain, T. b. brucei GUTat
3.1 strain, and T. evansi Tansui strain. The inhibition rate was calculated from 3
independent experiments and expressed as the mean inhibition rate � SD.
b Pentamidine 500 ng/ml was used as a 100% inhibition control.
c HMI-9 medium with 0.25% dimethyl sulfoxide (DMSO) was used as a 0% inhibition
control.

TABLE 2 IC50 and selectivity index of MPA and MPA derivatives 2 and 4 against T. b. brucei and T. evansi

Compound

IC50 (�M)a for: Selectivity indexa,b for:

T. congolense T. b. brucei T. evansi MDBK cell T. congolense T. b. brucei T. evansi

1 (MPA) 0.10 � 0.04 0.62 � 0.05 0.61 � 0.002 0.52 � 0.12 5.14 0.84 0.85
2 0.56 � 0.21 �2.5 �2.5 1.4 � 0.18 2.62 ND ND
4 0.16 � 0.04 1.26 � 0.009 1.38 � 0.10 0.84 � 0.21 5.10 0.67 0.61
a All values were calculated from 3 independent experiments and expressed as means � SD.
b Mean IC50 of MDBK cells/mean IC50 of trypanosomes. ND, not determined.
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effects of MPA against T. congolense BSF were caused by the inhi-
bition of intracellular TcIMPDH.

Hypoxanthine and inosine were predicted to be the main pu-
rine sources in T. brucei (20). Hypoxanthine and inosine have also
been shown to be present in the blood at higher concentrations
than other purines (21), suggesting their roles as the main purine
sources in trypanosomes and that they are supplied via the salvage
pathway. The concentration of purine bases and nucleosides in
the extracellular environment is lower than that in the intracellu-
lar environment (21). T. brucei spp. proliferate in blood circula-
tion and then invade the central nervous system through the
blood-brain barrier (22, 23), while T. congolense only proliferates
in blood circulation by adhesion to the vascular endothelium (24).
In conclusion, MPA and its derivatives might therefore also in-
hibit trypanosome proliferation in vivo, particularly in T. congo-
lense.

Nucleotide sequence accession number. The sequence for the
novel IMPDH orthologue of T. congolense (TcIMPDH) can be
found in the GenBank database under accession no. LC094350.
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