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The objective of this study was to determine whether antibiotic exposure is associated with extended-spectrum-beta-lactamase-
or AmpC-producing Escherichia coli or Klebsiella pneumoniae infections in children. We collected extended-spectrum-beta-
lactamase- or AmpC-producing E. coli or K. pneumoniae isolates and same-species susceptible controls from normally sterile
sites of patients aged <21 years, along with associated clinical data, at four free-standing pediatric centers. After controlling for
potential confounders, the relative risk of having an extended-spectrum-beta-lactamase-producing isolate rather than a suscep-
tible isolate was 2.2 times higher (95% confidence interval [CI], 1.49 to 3.35) among those with antibiotic exposure in the 30 days
prior to infection than in those with no antibiotic exposure. The results were similar when analyses were limited to exposure to
third-generation cephalosporins, other broad-spectrum beta-lactams, or trimethoprim-sulfamethoxazole. Conversely, the rela-
tive risk of having an AmpC-producing versus a susceptible isolate was not significantly elevated with any antibiotic exposure in
the 30 days prior to infection (adjusted relative risk ratio, 1.12; 95% CI, 0.65 to 1.91). However, when examining subgroups of
antibiotics, the relative risk of having an AmpC-producing isolate was higher for patients with exposure to third-generation
cephalosporins (adjusted relative risk ratio, 4.48; 95% CI, 1.75 to 11.43). Dose-response relationships between antibiotic expo-
sure and extended-spectrum-beta-lactamase-producing or AmpC-producing isolates were not demonstrated. These results rein-
force the need to study and implement pediatric antimicrobial stewardship strategies, and they indicate that epidemiological
studies of third-generation cephalosporin-resistant E. coli and K. pneumoniae isolates should include resistance mechanisms
when possible.

Emerging antibiotic resistance is a serious threat to global public
health. Multidrug resistance in Enterobacteriaceae specifically

is a growing concern due to the continual increase in rates of
resistance, the rapid emergence of new mechanisms of resistance,
and a limited pipeline of new antibacterial agents (1, 2).

Antibiotic use promotes antibiotic resistance by selecting
for antibiotic-resistant organisms and/or by disrupting the an-
tibiotic-susceptible flora within individuals (3). Multiple stud-
ies of adult patients have demonstrated an association between
prior antibiotic exposure and infection with extended-spec-
trum-beta-lactamase (ESBL)-producing Escherichia coli and
Klebsiella species (4–10), but there are fewer data from pediatric
settings. Additionally, very few studies have specifically examined
the role of antibiotic use in the development of AmpC-producing
infections (11–16). Although recent data suggest that AmpC-pro-
ducing Enterobacteriaceae may be increasingly prevalent within
pediatric settings, the epidemiology of AmpC-producing infec-
tions in pediatrics has not been well characterized (17).

The objective of this study was to investigate the relationship
between prior antibiotic exposure and subsequent ESBL- and
AmpC-producing E. coli and Klebsiella pneumoniae infections in
pediatric patients. We also sought to examine differential risks in
hospitalization for treatment of the infection between pediatric
patients with ESBL- or AmpC-producing isolates and those with
susceptible isolates.

MATERIALS AND METHODS
Setting and institutional review. This prospective surveillance study in-
volved four hospitals, referred to as “West,” “Midwest 1,” “Midwest 2,”
and “East.” The Institutional Review Board at each hospital approved the
study protocol.

Subjects and study isolates. Between 1 September 2009 and 30 Sep-
tember 2013, participating hospitals collected all extended-spectrum-
cephalosporin-resistant E. coli and K. pneumoniae isolates recovered from
urine or other normally sterile sites during routine clinical care of both
hospitalized and outpatient children �21 years of age. These candidate
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resistant case isolates included those nonsusceptible to ceftriaxone, cefo-
taxime, ceftazidime, cefepime, or aztreonam. For each resistant case iso-
late, three subsequent same-species isolates that were susceptible to the
aforementioned agents were collected; these isolates will be referred to
hereinafter as susceptible controls. Each hospital used its routine clinical
microbiological methods to preliminarily classify isolates as susceptible or
resistant. Isolates were archived at �70°C and shipped to the coordinating
center quarterly. The date of isolate collection for both cases and controls
represented the index date.

Coordinating center methods for confirmation and further charac-
terization of study isolates. (i) Overview. Upon arrival from participat-
ing laboratories, candidate resistant isolates and control isolates were fur-
ther evaluated at the coordinating center using standardized methods to
confirm species and antibiotic susceptibility and to characterize resistance
phenotype (ESBL versus AmpC producing) and genotype as described
below.

(ii) Identification. Study isolates were identified to the species level
using the Vitek card for identification of Gram-negative organisms (GN
ID card; bioMérieux).

(iii) Antibiotic susceptibility testing. Antibiotic susceptibility was de-
termined by disk diffusion. All isolates were tested for susceptibility to
ampicillin, amoxicillin-clavulanic acid, cefazolin, cefuroxime, ceftazi-
dime, ceftriaxone, cefepime, meropenem, piperacillin-tazobactam, cipro-
floxacin, gentamicin, and sulfamethoxazole-trimethoprim. The cephalo-
sporin breakpoints recommended by CLSI in 2010 (18) were applied to all
candidate resistant isolates.

(iv) Phenotypic characterization. The class A ESBL phenotype was
characterized using paired disk diffusion and Etests (19, 20). The class C
AmpC phenotype was identified using cefepime and cefoxitin disks and
Etest strips (bioMérieux) containing cefotetan with and without cloxacil-
lin (21, 22). Control strains included the CLSI-recommended strains E.
coli ATCC 25922 and K. pneumoniae ATCC 700603 and a laboratory-
characterized E. coli strain containing blaCMY-2 (19).

(v) Resistance genotyping. All study isolates (cases and controls) were
tested by PCR using primer sets for genes encoding common extended-
spectrum cephalosporinases, including class A CTX-M and extended-
spectrum TEM and SHV, as well as class C CMY, DHA, and FOX (see
Table S1 in the supplemental material) (19, 23–25). Because narrow-spec-
trum blaSHV-type ampicillinases are ubiquitous chromosomal traits
among K. pneumoniae, all isolates of this species were screened for the
presence of extended-spectrum blaSHV variants (typically associated with
IS26 elements) using a combination of primers, as previously described
(19, 26). Assembly and alignment of nucleotide sequences were per-
formed to type the genetic determinants as previously described (19).
Given the high prevalence of narrow-spectrum TEM among Entero-
bacteriaceae, sequencing of TEM amplicons was carried out only in case
isolates with no resistance determinants detected.

Clinical data. Demographic and clinical data were collected from the
medical records of cases and controls using standardized case report
forms. Data on underlying medical conditions were collected and catego-
rized using the strategy developed by Feudtner et al. (see Table S2 in the
supplemental material) (27). Additionally, we added vesicoureteral reflux
and neurogenic bladder (categorized as urologic) and neurogenic bowel
(categorized as gastrointestinal) to our data collection form, as these con-
ditions were not included in the strategy of Feudtner et al. For patients
contributing urine isolates, symptom and culture data (collection
method, etc.) were collected. Patients were characterized as likely having a
urinary tract infection (UTI) if the culture was considered clinically sig-
nificant (i.e., met standard microbiology laboratory criteria for suscepti-
bility testing) (28) and/or the patient had symptoms of a UTI (presence of
fever, abdominal/flank pain, vomiting, change in color or odor of urine,
change in continence pattern, hematuria, dysuria, or frequency/urgency).
All documented exposures to systemic (i.e., oral or intravenous) inpatient
and outpatient antibiotic treatment and prophylaxis in the year prior to
the index date were collected. Outpatient antibiotic and prophylaxis data

were collected from orders or prescriptions from pharmacy records or
from clinical chart notes. These data were recorded by the calendar month
of exposure using the case report form. Inpatient antibiotic treatment
exposures were obtained from the Pediatric Health Information System
(PHIS) database, and the antibiotic administered, route of administra-
tion, and calendar date of receipt were recorded. The PHIS database is an
administrative database that contains comprehensive inpatient data from
45 free-standing children’s hospitals across the United States, including
the 4 participating hospitals. The PHIS hospitals include the largest chil-
dren’s hospitals in America. Participating hospitals provide deidentified
data that were subjected to rigorous reliability and validity checks before
being incorporated into the database.

Antibiotic exposure. For statistical analyses, we grouped antibiotic
exposure (whether prophylactic or treatment) into the following non-
mutually exclusive categories: (i) any agent, denoting any antibiotic;
(ii) broad-spectrum beta-lactams, including (a) the third-generation
cephalosporins ceftriaxone, cefotaxime, ceftazidime, cefdinir, ce-
fixime, and cefpodoxime, (b) carbapenems, and (c) cefepime and beta-
lactam/beta-lactamase inhibitor combinations; (iii) fluoroquinolones,
including ciprofloxacin, moxifloxacin, and levofloxacin; (iv) amino-
glycosides, including gentamicin, tobramycin, and amikacin; (v)
trimethoprim-sulfamethoxazole (TMP-SMX); and (vi) anaerobic
agents, including beta-lactam/beta-lactamase inhibitor combinations,
carbapenems, cefoxitin, clindamycin, metronidazole, moxifloxacin,
and tigecycline.

A breakdown of antibiotic exposure by each category and/or individ-
ual antibiotic is provided in Table S3 in the supplemental material.

Statistical analyses. Isolates demonstrating both ESBL and AmpC
phenotypes and/or those with both class A and class C genes detected were
excluded from all analyses.

We first assessed distributional characteristics in demographic and
clinical variables between the cases and controls. The Kruskal Wallis test
was used for continuous variables, and chi-square was used for categorical
variables; a Mantel-Haenszel approach with stratification by hospital was
applied when the sample size was sufficiently large at each hospital.

To evaluate the association between prior antibiotic exposure (both
any exposure and by the individual categories described above) and sub-
sequent infection with a resistant isolate, we used multinomial logistic
regression, as the outcome of interest was case status with three categories:
ESBL producing, AmpC producing, and susceptible (controls). The asso-
ciation was quantified by a relative risk ratio (RRR) estimate. We selected
potential confounders a priori, including age, sex, previous hospitaliza-
tion in the past year, presence of an indwelling device (categorized as
central venous catheter, urinary catheter without central venous catheter,
or other), immunosuppression (defined in Table 1), and underlying med-
ical conditions. As we were primarily interested in examining those med-
ical conditions known to confer increased risk of UTI or infection overall,
we initially planned to focus on urologic conditions and malignancy ver-
sus other diagnoses. For the analyses, end-stage renal disease was removed
from the original urologic category and recategorized as “other” due to
the difference in pathophysiology from the other urologic conditions. We
also examined neuromuscular and gastrointestinal conditions, given their
relatively high frequencies in our data set (see Table S2 in the supplemen-
tal material). Preliminary analyses demonstrated that neuromuscular and
urologic conditions were highly correlated (76% of those with a neuro-
muscular condition also had a urologic condition, mostly neurogenic
bladder). Similarly, half of the gastrointestinal conditions were neuro-
genic bowel and 60% of those with a gastrointestinal condition also had a
urologic condition. Based on these findings, we formulated a categorical
variable with the mutually exclusive categories of “urologic,” “malignancy
without urologic condition,” and “other condition without urologic or
malignancy.” We initially intended to include international travel as a
confounder but later excluded this variable due to poor data quality at the
majority of sites. Reassuringly, there was no evidence of an association
between international travel and previous antibiotic use at the site where
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TABLE 1 Demographic and clinical information of patients with resistant versus control isolates

Characteristic

No. (%) unless otherwise noted

All patients (n � 1,204) ESBL cases (n � 210) AmpC cases (n � 94) Controls (n � 900) P valuea

Hospital 0.91
West 417 (35) 73 (35) 32 (34) 312 (35)
Midwest 1 306 (25) 51 (24) 27 (29) 228 (25)
Midwest 2 168 (14) 27 (13) 15 (16) 126 (14)
East 313 (26) 59 (28) 20 (21) 234 (26)

Species 0.38
E. coli 1,058 (88) 178 (85) 89 (95) 791 (88)
K. pneumoniae 146 (12) 32 (15) 5 (5) 109 (12)

Median age (range) (yr) 5.2 (0.1–21.9) 4.3 (0.1–20.4) 7.7 (0.1–20.6) 5.2 (0.1–21.9) 0.02
IQR 1.4, 12.2 0.9, 10.5 1.9, 13.5 1.4, 12.5
Female 976 (81) 154 (73) 73 (78) 749 (83) 0.006
Hispanic ethnicity 165 (14) 25 (13) 20 (21) 120 (14) 0.18

Race �0.001
Caucasian 740 (64) 110 (56) 65 (70) 565 (66)
African-American 270 (23) 29 (15) 19 (20) 222 (26)
Asian 101 (9) 50 (25) 3 (3) 48 (6)
Native American 14 (1) 6 (3) 0 (0) 8 (1)
Pacific Islander 15 (1) 3 (2) 5 (5) 7 (1)
More than one race 13 (1) 0 (0) 1 (1) 12 (1)

Site of culture �0.001
Urine 1,110 (92) 186 (89) 84 (89) 840 (93)
Blood 77 (6) 15 (7) 7 (7) 55 (6)
Otherb 17 (1) 9 (4) 3 (3) 5 (1)

Onsetc �0.001
Community associated 573 (48) 67 (32) 25 (26) 481 (53)
Healthcare associated 503 (42) 107 (51) 58 (62) 338 (38)
Hospital associated 128 (10) 36 (17) 11 (12) 81 (9)

Hospitalization (in last yr) 357 (30) 91 (43) 48 (51) 218 (24) �0.001

Medical condition category �0.001
Urologicd 317 (26) 72 (34) 40 (43) 205 (23)
Malignancy 53 (4) 17 (8) 4 (4) 32 (3)
Other condition 197 (16) 44 (21) 20 (22) 133 (15)
No condition 634 (53) 77 (37) 29 (31) 528 (59)

History of Transplantation 62 (5) 18 (9) 9 (10) 35 (4) �0.001
Immunosuppression (in last yr)e 137 (11) 36 (17) 17 (18) 84 (9) �0.001

Device type �0.001
Central venous catheter 135 (11) 40 (19) 11 (12) 84 (9)
Foley catheter 26 (2) 9 (4) 2 (2) 15 (2)
Other device 120 (10) 32 (16) 18 (19) 70 (8)
No device 922 (77) 128 (61) 63 (67) 731 (81)

Other antibiotic susceptibilitiesf

Nonsusceptible to cip 231 (19) 150 (71) 18 (19) 63 (7) �0.001
Nonsusceptible to gent 172 (14) 103 (49) 26 (28) 43 (5) �0.001
Nonsusceptible to TMP-SMX 434 (36) 151 (72) 46 (49) 237 (26) �0.001
Nonsusceptible to TMP-SMX and cip 171 (14) 115 (55) 16 (17) 40 (4) �0.001
Nonsusceptible to all three 79 (7) 61 (29) 7 (7) 11 (1) �0.001
Susceptible to all three 685 (57) 15 (7) 41 (44) 629 (70) �0.001

a Generated comparing 3 categories of outcome for case status: ESBL producing, AmpC producing, and susceptible (controls).
b Other sites of infection include the following: in ESBL cases, peritoneal fluid (n � 4), bone (n � 3), and surgical wound (n � 2); in AmpC cases, peritoneal fluid (n � 2) and
cerebrospinal fluid (CSF) (n � 1); and in controls, peritoneal fluid (n � 4) and CSF (n � 1).
c Definitions of onset are as follows: community associated, culture obtained in an outpatient setting or �48 h after hospital admission from an otherwise healthy patient without
hospitalization in the previous year; healthcare associated, culture obtained in an outpatient setting or �48 h after hospital admission from a patient who had been hospitalized in
the previous year and/or had a chronic medical condition requiring frequent health care or prolonged/recurrent antibiotic courses; and hospital associated, culture obtained �48 h
after hospital admission or �48 h after hospital discharge from a patient without signs or symptoms of infection on admission.
d Diagnoses included in the urologic category are congenital urological abnormality, neurogenic bladder, and vesicoureteral reflux.
e Immunosuppressants included antineoplastic agents, high-dose glucocorticoids (�2mg/kg of body weight), tumor necrosis factor inhibitors, calcineurin inhibitors, and
mycophenolate mofetil.
f cip, ciprofloxacin; gent, gentamicin; TMP-SMX, trimethoprim-sulfamethoxazole.
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this variable was captured most completely and systematically (data not
shown).

Next, we used multinomial logistic regression to explore whether a
dose-response relationship existed between antibiotic exposure in the 90
days prior to infection and having a resistant isolate. The model was con-
structed using the same set of potential confounders as listed above. Since
we only had calendar month of receipt for outpatient antibiotic use, we
assigned each documented outpatient antibiotic course to count as 10
days of antibiotic use, as this is a common treatment duration for many
pediatric indications (29, 30; http://www.cdc.gov/getsmart/community
/for-hcp/outpatient-hcp/pediatric-treatment-rec.html). If the outpatient
antibiotic course was identified as prophylaxis, the antibiotic was consid-
ered to be given every day between the start and stop month. The distri-
bution of the data limited the categories of antibiotic exposure we could
examine in multivariable analysis. Most patients (60%) had no antibiotic
exposure in the preceding 90 days, while �11% had 1 to 15 days, �8% had
16 to 30 days, �7% had 31 to 60 days, and �14% had 61 to 90 days. Based
on clinically meaningful cut points and the distribution of the data, we
divided days of antibiotic exposure into 3 categories: 0 days, 1 to 30 days,
and 31 to 90 days of use. The referent category was 1 to 30 days of antibi-
otic use. A dose-response relationship would be supported if both the
RRR comparing 0 days of antibiotic exposure to 1 to 30 days of antibiotic
exposure was significantly less than 1 and the RRR comparing 31 to 90
days of exposure to 1 to 30 days of exposure was significantly greater than
1 (31).

Finally, we used multivariable logistic regression to evaluate the odds
of being hospitalized after the identification of infection among case and
control patients that were not already hospitalized when their index iso-
late was collected (i.e., hospital-acquired cases were excluded). We con-
trolled for age, sex, previous hospitalization, any indwelling device, any
underlying medical condition, immunosuppression (as defined in Table
1), species, and hospital in this model.

Statistical analyses were performed using Stata (version 12.1; Stata
Corp., College Station, TX). We considered a two-tailed P value of �0.05
significant.

RESULTS

A total of 304 case isolates, including 210 ESBL- and 94 AmpC-
producing isolates, and 900 susceptible control isolates were in-
cluded in this study (12 controls were missing due to errors in
collection or failure to meet eligibility criteria). Overall, E. coli and
K. pneumoniae accounted for 88% and 12% of isolates, respec-
tively (Table 1). Urine was the source of 92% of the isolates, and
99% of these met the criteria for likely UTI. An ESBL determinant
was detected in 91% of the isolates with an ESBL phenotype; no
determinant was detected in the remaining 9%. An AmpC deter-
minant was detected in 88% of the isolates with an AmpC pheno-
type; no determinant was detected in the remaining 12%.

Demographic and clinical factors. Overall, the median age of
the subjects was 5.2 years (range, 0.1 to 21.9; interquartile range,
1.4, 12.2). Subjects with ESBL isolates were younger than the con-
trols, while those with AmpC isolates were older than the controls
(Table 1). In addition, compared to the controls, patients with
ESBL- or AmpC-producing isolates were more likely to be male
and to have underlying medical conditions, indwelling devices,
and previous hospitalizations in the past year (P � 0.01 for all
comparisons) (Table 1). Both AmpC- and ESBL-producing iso-
lates were more likely than controls to be resistant to TMP-SMX,
ciprofloxacin, and gentamicin (Table 1).

Antibiotic exposure as a risk factor for an ESBL- or AmpC-
producing isolate. Compared to controls, a larger proportion of
patients with ESBL- or AmpC-producing isolates were exposed to
antibiotics in the 30 and 90 days prior to the culture date of the

study isolate (Table 2). A similar pattern was seen when examining
the subcategories of broad-spectrum beta-lactams and TMP-SMX
exposure (Table 2).

After controlling for potential confounding factors, the relative
risk of having an ESBL-producing isolate rather than a susceptible
isolate was 2.19 times higher (95% confidence interval [CI], 1.49
to 3.25) among those with antibiotic exposure in the 30 days prior
to infection than in those with no antibiotic exposure (Table 2).
Similar results were found when antibiotic exposure in the 90 days
prior to the index date was examined. Similar results were also
found when examining exposure to certain specific antibiotic cat-
egories in the 30 days prior to the index date, including noncar-
bapenem broad-spectrum beta-lactams and TMP-SMX. In con-
trast, exposure to other antibiotic subgroups was not associated
with an increased adjusted relative risk of an ESBL-producing iso-
late (Table 2). In the dose-response analysis of antibiotic exposure
in the 90 days prior to index infection, we found that compared to
patients with 1 to 30 days of antibiotic exposure, patients with no
exposure to antibiotics had a lower adjusted relative risk of having
an ESBL-producing isolate (adjusted relative risk ratio [aRRR] of
0.53; 95% CI, 0.35 to 0.80); however, patients with 31 to 90 days of
antibiotic exposure did not have a higher adjusted relative risk
of having an ESBL-producing isolate compared to patients with 1
to 30 days of exposure to antibiotics (aRRR of 1.05; 95% CI, 0.65
to 1.70). Therefore, a dose-response relationship between antibi-
otic exposure and ESBL-producing isolates was not supported by
these data.

In contrast to the ESBL findings, after controlling for potential
confounding factors, the relative risk of having an AmpC-produc-
ing isolate compared to a susceptible isolate was not higher with
antibiotic exposure in the 30 or 90 days prior to the index date
(Table 2). However, when examining subgroups of antibiotics, the
adjusted relative risk of having an AmpC-producing isolate was
higher for patients with exposure to third-generation cephalospo-
rins in the 30 days and 90 days prior to the index date. Addition-
ally, the adjusted relative risk of having an AmpC-producing iso-
late was higher with exposure to broad-spectrum beta-lactams in
the 90 days prior to the index date. Exposure to other antibiotic
subgroups was not associated with an increased adjusted relative
risk of an AmpC-producing isolate (Table 2). In the dose-re-
sponse analysis, patients with no exposure to antibiotics did not
have a significantly lower relative risk of having an AmpC-produc-
ing isolate and patients with 31 to 90 days of exposure to antibi-
otics did not have a significantly higher adjusted relative risk of
having an AmpC-producing isolate compared to patients with 1
to 30 days of antibiotic exposure (aRRR of 1.06 [95% CI, 0.58 to
1.92] and aRRR of 1.24 [95% CI, 0.63 to 2.47], respectively).
Therefore, a dose-response relationship between the use of any
antibiotic and having an AmpC-producing isolate was not sup-
ported by these data.

Hospitalization in resistant cases versus controls. The odds
of hospitalization for infection were 1.64 times higher (95% CI,
1.09 to 2.47; P � 0.02) in patients with ESBL-producing isolates
than in controls with susceptible isolates, even after controlling for
potential confounders. The odds of hospitalization were not
higher for patients with AmpC-producing isolates than for con-
trols with susceptible isolates (adjusted odds ratio of 0.72; 95% CI,
0.37 to 1.41; P � 0.33).
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DISCUSSION

We assessed the importance of prior antibiotic exposure as a risk
factor for ESBL- or AmpC-producing versus susceptible E. coli
and K. pneumoniae infections in children using prospectively col-
lected data from a 4-year, multicenter study. We found significant
associations between previous antibiotic exposure and infections
with ESBL- or AmpC-producing isolates even after adjusting for
potential confounding factors; however, the nature and the
strength of the associations varied by resistance phenotype. We
also found that the odds of hospitalization were higher in patients
with infections due to ESBL-producing organisms, but not
AmpC-producing organisms, than in controls.

The body of work supporting an association between previous
antibiotic use and infection with ESBL-producing E. coli and K.
pneumoniae in children is not as extensive as that in adults, but it
is growing (32–39). Several of the available pediatric studies have
focused on prophylaxis to prevent urinary tract infections (36–39)
and/or did not adjust for important potential confounders (34,
38). We are aware of only one published study that focused on
exposure to extended-spectrum cephalosporins (32). The current
study is the first to examine the separate relationships between the
risk of infection due to ESBL-producing organisms (compared to
infection due to susceptible organisms) in children and previous
exposure to different categories of antibiotics, including third-
generation cephalosporins, broad-spectrum beta-lactams, fluoro-
quinolones, aminoglycosides, TMP-SMX, and anaerobic antibi-
otics. We found that the association between any antibiotic use
and having an ESBL-producing isolate seemed to be driven by the

use of third-generation cephalosporins and other broad-spectrum
beta-lactams, as might be expected due to selection pressure and
overall impact on the microbiota. The use of TMP-SMX was also
significantly associated with an increased relative risk of having an
ESBL-producing isolate, perhaps as a reflection of coselection, as
ESBL-producing organisms frequently display coresistance to
TMP-SMX. ESBL-producing organisms are also frequently core-
sistant to fluoroquinolones, and yet, fluoroquinolone use did not
demonstrate an increased relative risk of ESBL-producing infec-
tion; however, fluoroquinolone use in pediatrics is less common
and we were likely underpowered to identify such an association.
These results reinforce the importance of antimicrobial steward-
ship efforts targeting the use of third-generation cephalosporins
and other broad-spectrum beta-lactams. Our findings may also
provide a basis for stewardship efforts to focus on the use of TMP-
SMX in an effort to prevent ESBL-producing Enterobacteriaceae
infections.

To our knowledge, this study is also the first to examine the
epidemiology of infections due to AmpC-producing E. coli and K.
pneumoniae in pediatrics. Studies that have examined previous
antibiotic use as a risk factor for the development of infections due
to AmpC-producing organisms in adult populations have had
mixed results: some have demonstrated an association (12, 13,
16), while others have not (11, 14, 15). Interestingly, we found that
the epidemiology of AmpC-producing organisms is different
from that of ESBL-producing organisms; any previous antibiotic
use was not a significant risk factor for having an AmpC-produc-
ing isolate compared to a susceptible isolate, while exposure to

TABLE 2 Descriptive statistics and adjusted odds ratios for antibiotic exposure in patients with ESBL-producing, AmpC-producing, and susceptible
infections in previous 30 days, 90 days, and by antibiotic category

Time of exposure, drug categorya

No. (%) Adjusted relative risk ratio (95% CI)b

ESBL n � 210 AmpC n � 94 Controls n � 900 ESBL vs control AmpC vs control

30 days before culture
Any antibiotic 100 (48) 32 (34) 200 (22) 2.19 (1.48–3.23) 1.12 (0.65–1.91)

Broad-spectrum beta-lactams 33 (16) 11 (12) 52 (6) 1.98 (1.15–3.40) 1.88 (0.86–4.11)
Third-generation cephalosporins 14 (7) 8 (9) 19 (2) 2.32 (1.09–4.93) 4.47 (1.75–11.41)
Carbapenems 3 (1) 1 (1) 3 (0) 2.35 (0.45–12.37) 2.06 (0.18–23.25)
Cefepime and/or BL/BLIs 24 (11) 4 (4) 34 (4) 2.01 (1.07–3.74) 0.88 (0.28–2.77)

Anaerobic agents 19 (9) 3 (3) 43 (5) 1.20 (0.65–2.20) 0.40 (0.12–1.37)
Aminoglycosides 10 (4) 1 (1) 22 (2) 0.89 (0.37–2.12) 0.37 (0.05–2.98)
Fluoroquinolones 7 (3) 3 (3) 12 (1) 1.62 (0.58–4.50) 1.71 (0.42–6.89)
TMP-SMX 44 (21) 19 (20) 74 (8) 1.81 (1.11–2.96) 1.69 (0.88–3.23)

90 days before culture
Any antibiotic 120 (57) 45 (48) 289 (32) 1.91 (1.31–2.79) 1.03 (0.62–1.73)

Broad-spectrum beta-lactams 49 (23) 25 (27) 109 (12) 1.31 (0.84–2.05) 1.91 (1.07–3.41)
Third-generation cephalosporins 21 (10) 20 (21) 62 (7) 0.92 (0.53–1.60) 2.68 (1.45–4.94)
Carbapenems 6 (3) 4 (4) 14 (2) 1.04 (0.37–2.90) 1.85 (0.53–6.48)
Cefepime and/or BL/BLIs 37 (18) 11 (12) 62 (7) 1.80 (1.07–3.02) 1.30 (0.60–2.81)

Anaerobic agents 30 (14) 12 (13) 80 (9) 1.08 (0.64–1.78) 0.96 (0.47–1.98)
Aminoglycosides 13 (6) 6 (6) 38 (4) 0.61 (0.30–1.28) 1.06 (0.38–2.94)
Fluoroquinolones 14 (7) 5 (5) 22 (2) 1.76 (0.83–3.74) 1.30 (0.44–3.82)
TMP-SMX 51 (24) 25 (27) 101 (11) 1.53 (0.97–2.41) 1.62 (0.90–2.92)
a BL/BLIs, beta-lactams/beta-lactamase inhibitors; TMP-SMX, trimethoprim-sulfamethoxazole.
b Multinomial logistic regression was performed controlling for age, sex, previous hospitalization in the last year, presence of an indwelling device, underlying medical conditions,
and immunosuppression as defined in Table 1.
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third-generation cephalosporins in particular was significantly as-
sociated with AmpC-producing isolates. The reason for this dif-
ferential association is unknown; one hypothesis is that there is
less coselection of AmpC-producing isolates than of ESBL-pro-
ducing isolates when examining “any antibiotic” exposure due to
the relatively lower frequency of coresistance to other antimicro-
bials in AmpC-producing isolates (15).

Several studies have examined differences in lengths of hospi-
talization between pediatric patients with ESBL-producing and
non-ESBL-producing infections, with mixed results (32–34, 36,
38). To our knowledge, no studies have examined differences in
risks of hospitalization or lengths of stay for either adult or pedi-
atric patients with AmpC-producing infections compared to sus-
ceptible infections. We found that the odds of hospitalization were
larger for patients with infections due to ESBL-producing organ-
isms than for patients with infections due to susceptible organ-
isms. We did not find the same relationship for infections due to
AmpC-producing organisms. Higher rates of coresistance to non-
beta-lactam antibiotics, such as ciprofloxacin and TMP-SMX, in
the ESBL-producing organisms could potentially explain this
finding by leading to more discordant empirical antimicrobial
therapy or lack of commonly used oral choices for definitive treat-
ment in the patients with infections due to ESBL-producing or-
ganisms. Another possible explanation is that ESBL-producing
organisms are more virulent and cause more severe symptoms
than AmpC-producing and susceptible organisms, as a large pro-
portion of these infections are caused by E. coli sequence type 131
(ST131), which is known to be highly virulent (40). Finally, it is
possible that the provider’s knowledge of ESBL status drove the
decision to hospitalize, and in parallel, a lack of awareness about
AmpC-producing organisms (since they were not routinely
flagged by all the clinical microbiology laboratories) influenced
management decisions. Together, these findings suggest that fu-
ture research assessing the epidemiology of infections due to
third-generation-cephalosporin-resistant organisms should dif-
ferentiate between ESBL- and AmpC-producing variants when
possible.

This study has several limitations. There are possibly unmea-
sured confounding variables for which we could not adjust and
which may have biased our results. Additionally, it may have been
ideal to include a second control group without infection to gain a
better understanding of the impact that antibiotic exposure may
have had on the development of resistant infections relative to the
uninfected state. While the lack of an uninfected control group has
also been shown to lead to an overestimation of the risk of antibi-
otic exposure for resistance (41, 42), an additional control group
was beyond the scope of this study. Because the majority of our
isolates were E. coli obtained from urine specimens, our results
may not be generalizable to other specimen types or organisms.
Also, our dose-response analyses were limited by the lack of daily
data for outpatient antibiotic exposure, which may have led to
either over- or underestimating true exposure, as well as by the
lack of variability in exposure duration in our data, which left us
unable to assess finer cut points of exposure. Finally, because this
study was performed in four tertiary-care pediatric hospitals, our
findings may not be generalizable to all pediatric settings. The
strengths of this study include the multicenter involvement, its
matched case-control design, its large (for pediatric research)
sample size, and the ability to distinguish between ESBL- and
AmpC-producing infections.

Antibiotic exposure appears to be an important factor in the
development of resistant infections in children, but the strength of
this association (and whether it is attributable to specific types of
antimicrobials) varies by the mechanism of antibiotic resistance.
These results reinforce the need to study and implement antimi-
crobial stewardship strategies in children, including those chil-
dren with underlying health conditions.
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