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A series of colistin-resistant Escherichia coli clinical isolates was recovered from hospitalized and community patients in South
Africa. Seven clonally unrelated isolates harbored the mcr-1 gene located on different plasmid backbones. Two distinct plasmids
were fully sequenced, and identical 2,600-bp-long DNA sequences defining a mcr-1 cassette were identified. Promoter sequences
responsible for the expression of mcr-1, deduced from the precise identification of the �1 transcription start site for mcr-1, were
characterized.

The recent identification of a plasmid-encoded polymyxin re-
sistance mechanism (MCR-1) among human and animal en-

terobacterial isolates is a source of concern (1). Actually, polymyx-
ins (colistin and polymyxin B) are the last-resort antibiotics for
treating infections caused by carbapenemase producers. MCR-1 is
a phosphoethanolamine transferase that modifies the lipopolysac-
charide by adding phosphoethanolamine to lipid A, leading to
resistance to polymyxins (1). This resistance trait is transferable
and has been reported so far mostly in Enterobacteriaceae from
animal isolates but also in those from human isolates and from
food products (2–8). First identified in China as published in No-
vember 2015 (1), MCR-1-producing isolates are mostly Esche-
richia coli strains that have been reported in many different coun-
tries scattered throughout Europe, Asia, and North America. In
Africa, PCR and in silico analysis identified a few MCR-1-positive
E. coli isolates from chicken from Algeria and from a single human
E. coli isolate from Nigeria (9).

Our study was initiated by the isolation of seven colistin-resis-
tant enterobacterial E. coli isolates from patients hospitalized in
different hospitals in Johannesburg and Pretoria, South Africa,
and also from community patients in Johannesburg from March
2014 to June 2015. The clonal relationships of the isolates were
first evaluated by pulsed-field gel electrophoresis analysis as de-
scribed previously (10), and the results showed that the seven
isolates belonged to six distinct clones (data not shown) (Table 1).
Only isolates Af31 and Af48, both from Johannesburg, were indis-
tinguishable. However, isolate Af31 was from a community pa-
tient whereas isolate Af48 was from a hospitalized patient. Multi-
locus sequence typing performed as described previously (10)
confirmed that all isolates were distinct, with the exception of
isolates Af31 and Af48 (Table 1). Among those isolates, Af31 and
Af45 remained susceptible to all ß-lactams, Af23 and Af24 exhib-
ited a penicillinase phenotype related to TEM-1 production, and
isolates Af40 and Af49 exhibited an extended-spectrum-�-lacta-
mase (ESBL) phenotype related to CTX-M-55 according to mo-
lecular analyses (11). Isolate Af48 exhibited an AmpC-type cepha-
losporinase phenotype related to CMY-2. Interestingly, isolate
Af31 was resistant to florfenicol and possessed the floR gene that
we previously identified in another MCR-1-positive E. coli isolate
from Switzerland (12). It was noteworthy that all isolates were

resistant to sulfonamides, tetracyclines, and fluoroquinolones
(Table 1), which are antibiotics that are extensively prescribed in
veterinary medicine (13).

Mating-out assays were performed with all mcr-1-positive iso-
lates as donors and E. coli J53 (azide resistant) as the recipient as
described previously (14). Selection was performed on Trypti-
case-soy agar plates supplemented with colistin (2 �g/ml) and
sodium azide (100 �g/ml). Transconjugants were obtained for all
donors except for Af49. They exhibited colistin MIC values of 4 to
8 �g/ml (resistance cutoff being at 2 �g/ml) compared to 0.25
�g/ml for the E. coli J53 recipient strain. No additional resistance
marker was cotransferred along with the mcr-1 gene in any of the
E. coli transconjugants. PCR-based replicon typing (15) as well as
primers specific for plasmid types IncX4 (X4-Fw [5=-AGCAAAC
AGGGAAAGGAGAAGACT-3=] and X4-Rv [5=-TACCCAAATC
GTAACCTG-3=]) and IncI2 (I2-Fw [5=-TGCAGCTTGCTGTGA
TTAGC-3=] and I2-Rv [5=-TTCGCTGTTCATCATACGGC-3=])
identified different mcr-1-bearing plasmid backbones, including
IncI2, IncHI2, and IncX4, differing in sizes and structures (Table
1). Surprisingly, the two clonally related Af31 and Af48 isolates
harbored two different mcr-1-positive plasmid types correspond-
ing to the IncHI2- and IncX4-type scaffolds, respectively.

PCR mapping was performed by referring to the sequence of
the reference plasmid identified in China (pHNSHP45; GenBank
accession no. KP347127) (1) in order to characterize the genetic
environment of the mcr-1 gene among the different E. coli isolates.
Insertion sequence ISApl1 was identified upstream of mcr-1 in all
but one isolate (Af48). Downstream of mcr-1, the closely related
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genetic environment previously identified for plasmid pHN-
SHP45 was found in all isolates.

Considering that several plasmid types were identified, two of
them were entirely sequenced. Sequencing was performed by us-
ing Illumina technology (Fasteris, Plan-les-Ouates, Switzerland).
The mcr-1-positive pAf23 plasmid from isolate Af23 was retained
since it was an IncI2-type plasmid, as was plasmid pHNSHP45
from the pioneer study (1). The two plasmids were almost com-
pletely identical (99% identical at the nucleotide level), with pAf23
being 61.1 kb in size and pHNSHP45 being 64.1 kb, with an addi-
tional IS683 element (Fig. 1). No other resistance gene was iden-
tified on pAf23 (Table 1). Therefore, the occurrence of the mcr-1
gene in Af23 was related to the acquisition of a plasmid that may
be considered structurally related to the Chinese index plasmid.

The second sequenced mcr-1 plasmid, plasmid pAf48 from iso-
late Af48, was 31.8 kb in size and exhibited an IncX4-type scaffold
(Fig. 1). Again, no resistance gene other than the mcr-1 gene was
identified on that plasmid (Table 1). A similar (92.3% overall
identity at the nucleotide level) but mcr-1-negative plasmid back-
bone was identified in the United Kingdom, which was plasmid
pSAM7 from E. coli recovered from cattle and harboring the
blaCTX-M-14 ESBL gene (16).

In order to understand the process of acquisition of the mcr-1
gene in different plasmid backbones, a detailed comparison of the
different mcr-1-positive plasmid sequences was established. Iden-
tical 2,600-bp sequences that might be defined as representative of
a mcr-1 cassette were identified in plasmids pAf23 and pAf48 but
also in the pHNSHP45 IncI2-type plasmid from China (1) and the
pKH457-3 IncP-type plasmid from Belgium (17) through our in
silico analysis. The 5= extremity of that cassette started with CA
AAT, and the 3= extremity ended with AAGTT (Fig. 2). At those
extremities, no putative inverted repeat sequence was identified
that might have corresponded to features usually identified at in-
sertion sequence extremities or at the extremities of mobile inser-
tion cassette (mic) elements such as that containing the qnrS2
quinolone resistance gene (18). In addition, no putative target site
duplication was identified on both extremities of that cassette,
likely ruling out an in trans transposition process.

A detailed analysis of the mcr-1 cassette showed that the mcr-1
start codon was identified at position 79 and that 791 bp separated
the stop codon of mcr-1 gene from the right end of the cassette
(Fig. 2). A putative promoter region (called P1-mcr-1) was identi-
fied within the first 79 bp of the cassette, corresponding to se-
quences �35 (TGGATT) and �10 (TATAAT) being separated by
a 16-bp sequence. Therefore, expression of mcr-1 may be driven
by a promoter which is part of the mobile cassette, thus making
this element autonomous in term of transcription. In addition, by
analysis of the sequences located upstream of the mcr-1 cassette in
plasmids pAf23 and pHNSHP45, the ISApl1 insertion sequence
element was identified, being located 9 bp upstream of the mcr-1
cassette. In order to confirm that P1-mcr-1 was indeed the correct
promoter leading to mcr-1 expression, and also to verify whether
the occurrence of ISApl1 could modify the �1 transcription start
of mcr-1, mapping of this transcription start site was performed by
5= rapid amplification of cDNA ends (5=-RACE), as described pre-
viously (19). Total RNA was isolated from the different strains
studied using an RNeasy Midi kit (Qiagen, Courtaboeuf, France)
and the manufacturer’s recommendations. 5=-RACE reactions
were performed using 5 �g of total RNA of each strain (Af23 and
Af48) and a 5=/3= RACE kit (2nd generation; Roche Diagnostics,
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Rotkreuz, Switzerland) following the manufacturer’s recommen-
dations and using primers SP1 (5=-AAAATAACTGGTCACCGC
GC-3=), SP2 (5=-ACAGGCTTTAGCACATAGCG-3=), and SP3
(5=-AAAGAGCACGACAGCGATCG-3=). Considering the �1
transcription site identified, results confirmed that P1-mcr-1 was
indeed the promoter of mcr-1 expression (Fig. 2). Also, the same
site was identified in both isolate Af23 and isolate Af48, thus indi-
cating that the occurrence of ISApl1 in Af23 did not modify the
promoter sequence of mcr-1 (data not shown).

Our report describes the first MCR-1-producing E. coli isolates
from South Africa, recovered from community and distantly lo-

cated hospitalized patients. We identified the same clone (ST624)
in both hospital- and community-acquired isolates, that clone
being identified as an avian pathogenic E. coli isolate causing coli-
bacillosis in poultry in Spain and China (20, 21), but also in iso-
lates from patients in France and Japan (22). This feature, together
with the identification of the floR gene associated with resistance
to florfenicol (that antibiotic being given only in veterinary med-
icine), further suggests the animal origin of that resistance trait
(23).

Overall, this study further showed the wide spread of the mcr-1
gene on different plasmid backbones and in different E. coli clonal

FIG 1 Schematic map of the mcr-1-bearing plasmids. pHNSHP45 is the reference plasmid from China (GenBank accession no. KP0347127) (1), the IncP-type
pKH457-3 is from Belgium (17), pAf23 is the IncI2-type plasmid recovered from isolate Af23 (GenBank accession no. KX032519) (pAf23), and pAf48 is the
IncX4-type plasmid from isolate Af48 (GenBank accession no. KX032520) (pAf48). Open reading frames are indicated by small and vertical rectangles. Colors
correspond to loci combining genes acting for the same function (e.g., pil-type genes for the pilus apparatus). The mcr-1 cassette is represented by a red box, and
the conserved mcr-1 cassette identified on the different plasmids is highlighted by red dashed lines. The sizes of the respective plasmids are indicated.

FIG 2 Sequence of the mcr-1 cassette. The 2,600-bp-long sequence is shown, with the start and stop codons of mcr-1 being in bold. The sense of transcription
of mcr-1 is indicated by an arrow. Amino acids of the MCR-1 sequence are indicated below the nucleotide sequence. The P1-mcr-1 promoter sequences are
indicated, with the corresponding �35 and �10 boxes being underlined, as well as the �1 transcription start.

Poirel et al.

4396 aac.asm.org July 2016 Volume 60 Number 7Antimicrobial Agents and Chemotherapy

http://aac.asm.org


backgrounds. A detailed genetic analysis identified an mcr-1-con-
taining cassette that could have been mobilized from its original
(and still unknown) reservoir to its host and that could be a source
of transferable polymyxin resistance. The mechanism of mobili-
zation of this mcr-1 cassette remains to be determined, since it
might correspond to an unknown genetic process.

Nucleotide sequence accession numbers. The nucleotide se-
quences reported in this work have been deposited in the GenBank
nucleotide database under accession no. KX032519 (pAf23) and
KX032520 (pAf48).
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