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A total of 7,272 unique patient clinical isolates were collected from 71 U.S. medical centers from patients with urinary tract infections in
2012 to 2014 and tested for susceptibility to ceftazidime-avibactam and comparators by broth microdilution methods. Ceftazidime-
avibactam inhibited >99.9% of all Enterobacteriaceae at the susceptible breakpoint of<8 �g/ml (there were only three nonsuscep-
tible strains). Ceftazidime-avibactam was also active against Pseudomonas aeruginosa isolates (MIC50, 2 �g/ml; MIC90, 4 �g/ml;
97.7% susceptible), including many isolates not susceptible to meropenem, ceftazidime, and/or piperacillin-tazobactam.

Urinary tract infections (UTIs) are among the most frequent
health care-associated (HA) infections and represent a major

source of Gram-negative bacteremia. Escherichia coli is the most
common pathogen causing community-associated as well as HA
UTIs. Other Enterobacteriaceae species, such as Proteus mirabilis,
Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and
Serratia marcescens, also represent important causes of UTIs. In
recurrent UTIs, especially in the presence of structural abnormal-
ities of the urinary tract, the relative frequencies increase for Kleb-
siella spp., Proteus spp., Enterobacter spp., and Pseudomonas
aeruginosa. Since instrumentation and repeat courses of antimi-
crobial therapy are common in these patients with complicated
UTIs, antimicrobial-resistant isolates might be expected (1).

Antimicrobial-resistant strains that produce extended-spec-
trum �-lactamases (ESBLs), such as the CTX-M and SHV en-
zymes and/or K. pneumoniae carbapenemase (KPC), have
emerged among Enterobacteriaceae, predominantly among E. coli
and K. pneumoniae strains, and have become endemic in hospitals
at various levels of intensity (2, 3). Systemic infections caused by
organisms with additional resistances to other antimicrobial
classes have become a great therapeutic challenge. P. aeruginosa
also represents a major cause of UTIs and often demonstrates
decreased susceptibility to various antimicrobial agents (1).

Ceftazidime-avibactam is a combination agent consisting of
the non-�-lactam �-lactamase inhibitor avibactam and the
broad-spectrum cephalosporin ceftazidime (4). Avibactam (for-
merly NXL-104) is a member of a novel class of �-lactamase in-
hibitors, the diazabicyclooctanes (DBOs) (5). Compared with
current inhibitors available for clinical use, DBOs are more po-
tent, have a broader spectrum of enzyme inhibition, and have a
different mechanism of action. Avibactam protects �-lactams from
hydrolysis by a wide variety of clinically relevant enzymes (6).

The ceftazidime-avibactam combination has been approved
by the U.S. Food and Drug Administration (FDA) for treatment of
complicated intra-abdominal infections (IAIs) and complicated
UTIs, including pyelonephritis, in patients with limited or no al-
ternative treatment options (4, 7). Ceftazidime-avibactam is also
under clinical development for treatment of nosocomial pneumo-
nia (ClinicalTrials.gov registration number NCT01808092). In
this investigation, the activity of ceftazidime combined with
avibactam was evaluated against a large collection of contempo-

rary Gram-negative organisms isolated from patients with UTIs in
U.S. hospitals.

A total of 7,272 unique patient organisms were collected from
patients with UTIs in 71 U.S. medical centers in 2012 to 2014 as
part of the International Network for Optimal Resistance Moni-
toring (INFORM) program. Only one isolate per patient episode
was included in the surveillance study. Species identification was
performed at the participating medical center and was confirmed
at the monitoring laboratory (JMI Laboratories, North Liberty,
IA, USA) using matrix-assisted laser desorption–ionization time
of flight (MALDI-TOF) analysis (Bruker Daltonics, Billerica, MA,
USA), as necessary. A strain was defined as having an ESBL screen-
positive phenotype when the MIC of ceftazidime, ceftriaxone,
and/or aztreonam for it was �2 �g/ml (8).

Broth microdilution tests conducted according to the methods
of the Clinical and Laboratory Standards Institute (CLSI) were
performed to determine the antimicrobial susceptibilities of cef-
tazidime-avibactam (an inhibitor tested at a fixed concentration
of 4 �g/ml) and comparator agents (7–11). Validated MIC panels
were manufactured by Thermo Fisher Scientific Inc. (Cleveland,
OH, USA). Ceftazidime-avibactam breakpoints approved by the
U.S. FDA and CLSI (�8/4 �g/ml for ceftazidime/avibactam for
susceptibility and �16/4 �g/ml for ceftazidime/avibactam for re-
sistance) were applied for all Enterobacteriaceae species and P.
aeruginosa (7, 8). Susceptibility interpretations for comparator
agents were those found in CLSI document M100-S26 (8),
EUCAST breakpoint documentation (10), and/or a U.S. FDA
package insert (11). Concurrent quality control (QC) testing was
performed on the following strains: E. coli ATCC 25922 and
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ATCC 35218, K. pneumoniae ATCC 700603 and BAA 1705, and P.
aeruginosa ATCC 27853. All QC results were within published
ranges.

Enterobacteriaceae isolates showing an ESBL phenotype, as well
as those strains for which ceftazidime-avibactam MIC values were
�8 �g/ml, were tested for �-lactamase-encoding genes using the
microarray-based assay Check-MDR CT101 kit (Check-Points,
Wageningen, Netherlands). The assay was performed according
to the manufacturer’s instructions as previously described (3).
This kit has the abilities to detect CTX-M groups 1, 2, 8 plus 25,
and 9, wild-type (WT) TEM and ESBL, WT SHV and ESBL, ACC,
ACT/MIR, CMYII, DHA, FOX, KPC, and NDM-1.

Ceftazidime-avibactam inhibited �99.9% of all Enterobacteri-
aceae isolates (including all E. coli isolates [MIC50, 0.06 �g/ml;
MIC90, 0.12 �g/ml], all P. mirabilis isolates [MIC50, 0.03 �g/ml;
MIC90, 0.06 �g/ml], and 99.93% of Klebsiella species isolates
[MIC50, 0.12 �g/ml; MIC90, 0.25 �g/ml]) at the susceptibility
breakpoint of �8 �g/ml (Table 1). Overall, only 3 of 6,773 Enter-
obacteriaceae isolates (0.04%) were nonsusceptible to ceftazidime-
avibactam (MIC, �16 �g/ml): (i) one K. pneumoniae isolate from
New York, NY, with VIM-4, KPC-2, and CMY-2 and a ceftazi-
dime-avibactam MIC of �32 �g/ml; (ii) one Enterobacter cloacae
isolate also isolated in New York City but at a different medical
center, for which the ceftazidime-avibactam MIC was 32 �g/ml
and results for all �-lactamases tested were negative; and (iii) one
Providencia stuartii isolate from Winston-Salem, NC, for which
the ceftazidime-avibactam MIC was 16 �g/ml and results for all
�-lactamases tested were negative. Meropenem (MIC50, �0.06
�g/ml; MIC90, �0.06 �g/ml; 98.6% susceptible) was also highly
active against Enterobacteriaceae (Table 2). An ESBL phenotype
was observed among 11.5% of E. coli isolates, 13.9% of Klebsiella
species isolates, and 4.7% of P. mirabilis isolates tested (Tables 1
and 2).

A total of 2,876 E. coli isolates were processed, and the most-
active compounds tested against these organisms were ceftazi-
dime-avibactam (MIC50, 0.06 �g/ml; MIC90, 0.12 �g/ml; 100.0%
susceptible), meropenem (MIC50, �0.06 �g/ml; MIC90, �0.06
�g/ml; 99.7% susceptible), colistin (MIC50, 0.05 �g/ml; MIC90,
0.5 �g/ml; 99.4% susceptible [EUCAST]), and piperacillin-tazo-
bactam (MIC50, 2 �g/ml; MIC90, 8 �g/ml; 96.9% susceptible) (Ta-
ble 2).

Ceftazidime-avibactam was also active against Klebsiella spp.
(n � 1,484; MIC50, 0.12 �g/ml; MIC90, 0.25 �g/ml; 99.9% suscep-
tible), including those with an ESBL phenotype (n � 207; MIC50,
0.25 �g/ml; MIC90, 1 �g/ml; 99.5% susceptible) and non-mero-
penem-susceptible K. pneumoniae isolates (n � 74; MIC50, 0.5
�g/ml; MIC90, 2 �g/ml; 98.6% susceptible) (Tables 1 and 2). Only
ceftazidime-avibactam showed good activity against ESBL pheno-
type Klebsiella spp. and non-meropenem-susceptible K. pneu-
moniae isolates (Table 2). Meropenem was active against only
63.3% of ESBL phenotype Klebsiella species isolates, and colistin
inhibited only 68.0% of non-meropenem-susceptible K. pneu-
moniae isolates at the EUCAST susceptibility breakpoint of �2
�g/ml (Table 2).

All P. mirabilis strains were susceptible to ceftazidime-avibac-
tam (MIC50, 0.03 �g/ml; MIC90, 0.06 �g/ml) and meropenem
(MIC50, �0.06 �g/ml; MIC90, 0.12 �g/ml), and �99.6% were
susceptible to ceftazidime (MIC50, 0.06 �g/ml; MIC90, 0.12 �g/
ml) and piperacillin-tazobactam (MIC50, �0.5 �g/ml; MIC90, 1
�g/ml) according to the CLSI breakpoint criteria (Table 2).

Among E. cloacae isolates (ceftazidime-avibactam MIC50, 0.25 �g/
ml; MIC90, 0.5 �g/ml; 23.3% were not ceftazidime susceptible),
99.7% of them, including 98.8% of non-ceftazidime-susceptible
strains (MIC50, 0.5 �g/ml; MIC90, 1 �g/ml), were susceptible to
ceftazidime-avibactam (Table 1). Meropenem (98.6% suscepti-
ble) was also highly active against E. cloacae (Table 2).

Ceftazidime-avibactam was also very active against P. aerugi-
nosa isolates (MIC50, 2 �g/ml; MIC90, 4 �g/ml; 97.7% suscepti-
ble), including the majority of isolates not susceptible to mero-
penem (90.5% susceptible to ceftazidime-avibactam), ceftazidime
(82.7% susceptible), or piperacillin-tazobactam (89.3% suscepti-
ble) (Table 2). Further, ceftazidime-avibactam inhibited 77.8%
(21/27) of isolates at �8 �g/ml that were nonsusceptible to mero-
penem, ceftazidime, and piperacillin-tazobactam (Table 1).
Among P. aeruginosa isolates, the rate of susceptibility to ceftazi-
dime-avibactam (MIC50, 2 �g/ml; MIC90, 4 �g/ml) was 9.5%
higher (97.7 versus 88.2%) than that to ceftazidime tested alone
(MIC50, 2 �g/ml; MIC90, 16 �g/ml). Cefepime (MIC50, 2 �g/ml;
MIC90, 16 �g/ml), meropenem (MIC50, 0.5 �g/ml; MIC90, 8 �g/
ml), and piperacillin-tazobactam (MIC50, 8 �g/ml; MIC90, 32 �g/
ml) were active against 87.1, 80.9, and 83.0% of P. aeruginosa
strains, respectively (Table 2). Acinetobacter spp. (57 isolates),
which comprised only 0.8% of the UTI organism collection, ex-
hibited decreased susceptibility to ceftazidime-avibactam (MIC50,
16 �g/ml; MIC90, �32 �g/ml) and all other �-lactam compounds
tested (Table 2).

Treatment of UTIs has been the subject of many studies as rates
of antimicrobial resistance have evolved (2, 12, 13). When dealing
with complicated UTIs, common measures include obtaining a
urine culture, starting broad-spectrum antimicrobial coverage,
and then refining the drug selection after receipt of susceptibility
testing results. The major challenge for clinicians is to combine
local susceptibility patterns with the agents that are most likely
to be effective. Variability in the antimicrobial susceptibility
profiles between institutions can be substantial, but suscepti-
bility test results from a large, well-monitored surveillance net-
work can provide very useful data by highlighting prevalences
and trends of clinically relevant antimicrobial resistance phe-
notypes (14–16).

Ceftazidime-avibactam has demonstrated clinical efficacy sim-
ilar to that of carbapenem therapy in phase II studies of compli-
cated IAIs and complicated UTIs, including acute pyelonephritis,
and it was approved by the U.S. FDA in late 2014 for treatment of
these infections in patients with limited or no alternative treat-
ment options (4, 7). The addition of avibactam restores the ac-
tivity of ceftazidime against Gram-negative bacilli that achieve
�-lactam resistance through production of the Ambler class A
ESBLs, chromosomal or mobile class C �-lactamases, serine
carbapenemases (such as KPC), and some class D �-lactamases
(5, 17). Production of metallo-�-lactamases (MBLs) represents
the most common mechanism of resistance to ceftazidime-
avibactam observed among Enterobacteriaceae, but the MBL-
producing strains remain very uncommon in U.S. hospitals (6,
18). Furthermore, selection of ceftazidime-avibactam resistance
among Gram-negative organisms, including P. aeruginosa, is lim-
ited when this combination is used as the selecting agent (19, 20).

In the present study, we evaluated a large collection (7,272) of
contemporary UTI Gram-negative organisms from U.S. medical
centers, and ceftazidime-avibactam was active (MIC, �8 �g/ml)
against 99.3% of these organisms overall. Interestingly, Acineto-
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TABLE 2 Activities of ceftazidime-avibactam and comparator
antimicrobial agents tested against Gram-negative organisms isolated
from patients with UTIs from U.S. hospitals in 2012 to 2014

Organism(s) (no. of isolates),
phenotype, or antimicrobial MIC50 MIC90 %Sa %Ra

Enterobacteriaceae (6,773)
Ceftazidime-avibactam 0.06 0.25 �99.9 �0.1b

Ceftazidime 0.12 4 90.3 8.3
Ceftriaxone �0.06 8 87.2 11.8
Ampicillin-sulbactam 8 �32 59.0 23.8
Piperacillin-tazobactam 2 8 94.2 3.3
Meropenem �0.06 �0.06 98.6 1.3
Levofloxacin �0.12 �4 80.8 17.0
Gentamicin �1 8 89.9 8.7
Colistinb 0.5 �8 75.4 24.6

Escherichia coli (2,876)
Ceftazidime-avibactam 0.06 0.12 100.0 0.0b

Ceftazidime 0.12 2 91.9 6.4
Ceftriaxone �0.06 �8 89.3 10.6
Ampicillin-sulbactam 8 32 56.4 24.0
Piperacillin-tazobactam 2 8 96.9 1.2
Meropenem �0.06 �0.06 99.7 0.2
Levofloxacin �0.12 �4 74.5 24.8
Gentamicin �1 �8 88.2 11.4
Colistinb 0.5 0.5 99.4 0.6

With ESBL phenotype (330)
Ceftazidime-avibactam 0.12 0.25 100.0 0.0b

Ceftazidime 16 �32 29.7 55.5
Ceftriaxone �8 �8 6.7 92.4
Ampicillin-sulbactam 32 �32 15.5 67.3
Piperacillin-tazobactam 4 32 83.6 6.7
Meropenem �0.06 �0.06 97.0 2.1
Levofloxacin �4 �4 20.9 76.4
Gentamicin 2 �8 57.9 42.1
Colistinb 0.5 0.5 100.0 0.0

Klebsiella spp. (1,484)c

Ceftazidime-avibactam 0.12 0.25 99.9 0.1b

Ceftazidime 0.12 16 88.5 10.6
Ceftriaxone �0.06 �8 87.0 12.7
Ampicillin-sulbactam 8 �32 75.9 16.6
Piperacillin-tazobactam 2 32 89.6 8.6
Meropenem �0.06 �0.06 94.9 5.0
Levofloxacin �0.12 4 88.6 9.7
Gentamicin �1 2 91.9 6.9
Colistinb 0.5 0.5 97.4 2.6

With ESBL phenotype (207)
Ceftazidime-avibactam 0.25 1 99.5 0.5b

Ceftazidime �32 �32 17.4 75.8
Ceftriaxone �8 �8 6.8 91.3
Ampicillin-sulbactam �32 �32 2.4 89.9
Piperacillin-tazobactam �64 �64 31.4 58.9
Meropenem �0.06 �8 63.3 35.7
Levofloxacin �4 �4 28.5 63.3
Gentamicin 8 �8 45.9 45.9
Colistinb 0.5 4 88.6 11.4

Non-meropenem susceptible (74)
Ceftazidime-avibactam 0.5 2 98.6 1.4b

Ceftazidime �32 �32 0.0 98.6
Ceftriaxone �8 �8 0.0 100.0
Ampicillin-sulbactam �32 �32 0.0 100.0
Piperacillin-tazobactam �64 �64 0.0 98.6

TABLE 2 (Continued)

Organism(s) (no. of isolates),
phenotype, or antimicrobial MIC50 MIC90 %Sa %Ra

Meropenem �8 �8 0.0 97.3
Levofloxacin �4 �4 2.7 93.2
Gentamicin 4 �8 51.4 41.9
Colistinb 0.5 �8 68.0 32.0

Proteus mirabilis (493)
Ceftazidime-avibactam 0.03 0.06 100.0 0.0b

Ceftazidime 0.06 0.12 99.6 0.0
Ceftriaxone �0.06 �0.06 96.1 3.0
Ampicillin-sulbactam 1 8 91.1 3.0
Piperacillin-tazobactam �0.5 1 99.8 0.0
Meropenem �0.06 0.12 100.0 0.0
Levofloxacin �0.12 �4 76.9 18.5
Gentamicin �1 4 91.0 6.1
Colistinb �8 �8 0.0 100.0

Enterobacter cloacae (356)
Ceftazidime-avibactam 0.25 0.5 99.7 0.3b

Ceftazidime 0.5 �32 76.7 22.8
Ceftriaxone 0.25 �8 69.3 27.3
Ampicillin-sulbactam 32 �32 30.5 50.6
Piperacillin-tazobactam 2 64 83.1 7.9
Meropenem �0.06 �0.06 98.6 1.4
Levofloxacin �0.12 1 91.3 7.3
Gentamicin �1 �1 92.1 7.0
Colistinb 0.5 �8 84.6 15.4

Non-ceftazidime susceptible (83)
Ceftazidime-avibactam 0.5 1 98.8 1.2b

Piperacillin-tazobactam 64 �64 29.3 32.9
Meropenem �0.06 0.12 95.2 4.8
Levofloxacin 0.5 �4 71.1 24.1
Gentamicin �1 �8 72.3 24.1
Colistinc 0.5 �8 78.8 21.2

Pseudomonas aeruginosa (442)
Ceftazidime-avibactam 2 4 97.7 2.3b

Ceftazidime 2 16 88.2 8.1
Cefepime 2 16 87.1 4.3
Piperacillin-tazobactam 8 32 83.0 6.3
Meropenem 0.5 8 80.9 13.6
Levofloxacin 0.5 �4 69.0 26.9
Gentamicin �1 8 89.4 8.4
Amikacin 2 8 98.9 0.5
Colistin 1 2 100.0 0.0

Non-ceftazidime susceptible (52)
Ceftazidime-avibactam 4 16 82.7 17.3b

Cefepime 16 �16 26.9 26.9
Piperacillin-tazobactam 64 �64 13.5 38.5
Meropenem 8 �8 36.5 57.7
Levofloxacin �4 �4 25.0 69.2
Gentamicin 4 �8 75.0 23.1
Amikacin 4 8 98.1 0.0

Non-meropenem susceptible (84)
Ceftazidime-avibactam 4 8 90.5 9.5b

Ceftazidime 8 �32 60.7 29.8
Cefepime 8 �16 56.0 17.9
Piperacillin-tazobactam 16 �64 50.0 25.0
Levofloxacin �4 �4 19.0 75.0
Gentamicin 4 �8 60.7 33.3
Amikacin 4 8 95.2 2.4

(Continued on following page)
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bacter spp. represented only 0.8% of all isolates collected from
patients with UTIs (52 of 7,272) but 75.0% (39 of 52) of non-
ceftazidime-avibactam-susceptible isolates. Ceftazidime-avibac-
tam coverage against this large collection of UTI organisms from
the United States was greater than that observed for meropenem
(97.2% susceptible) and piperacillin-tazobactam (93.2% suscep-
tible). Furthermore, ceftazidime-avibactam demonstrated potent
activity against ESBL-producing and carbapenem-resistant Enter-
obacteriaceae (CRE) and also inhibited the vast majority of P.
aeruginosa strains nonsusceptible to ceftazidime, meropenem,
and/or piperacillin-tazobactam.

The main limitation of the study is the lack of clinical and
epidemiologic information about the patient population. Analy-
ses of the susceptibility results according to epidemiologic traits,
such as HA versus community-acquired infections, recurrent in-
fection versus the first episode, and previous exposure to antimi-
crobial agents, for example, would provide important additional
data. Despite these study limitations, the results presented here
provide valuable information on the contemporary antimicrobial
susceptibility patterns of Gram-negative pathogens causing UTIs
in U.S. medical centers.
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