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Novel Methodology for
Characterizing Regional
Variations in the Material
Properties of Murine Aortas
Many vascular disorders, including aortic aneurysms and dissections, are characterized
by localized changes in wall composition and structure. Notwithstanding the importance
of histopathologic changes that occur at the microstructural level, macroscopic manifes-
tations ultimately dictate the mechanical functionality and structural integrity of the aor-
tic wall. Understanding structure–function relationships locally is thus critical for
gaining increased insight into conditions that render a vessel susceptible to disease or
failure. Given the scarcity of human data, mouse models are increasingly useful in this
regard. In this paper, we present a novel inverse characterization of regional, nonlinear,
anisotropic properties of the murine aorta. Full-field biaxial data are collected using a
panoramic-digital image correlation (p-DIC) system. An inverse method, based on the
principle of virtual power (PVP), is used to estimate values of material parameters
regionally for a microstructurally motivated constitutive relation. We validate our
experimental–computational approach by comparing results to those from standard biax-
ial testing. The results for the nondiseased suprarenal abdominal aorta from
apolipoprotein-E null mice reveal material heterogeneities, with significant differences
between dorsal and ventral as well as between proximal and distal locations, which may
arise in part due to differential perivascular support and localized branches. Overall
results were validated for both a membrane and a thick-wall model that delineated
medial and adventitial properties. Whereas full-field characterization can be useful in the
study of normal arteries, we submit that it will be particularly useful for studying complex
lesions such as aneurysms, which can now be pursued with confidence given the present
validation. [DOI: 10.1115/1.4033674]

Keywords: digital image correlation, constitutive relations, anisotropy, aorta,
structure–function

Introduction

Aortic aneurysms and dissections are biologically and mechani-
cally complex vascular pathologies that are responsible for signifi-
cant death and disability in industrialized nations. They are
characterized geometrically by complex fusiform dilatations and
histopathologically by a nonuniform fragmentation of elastic
fibers, loss of smooth muscle cell functionality, and remodeling of
fibrillar collagen [1,2]. The ultimate fate of the aortic wall is dic-
tated by the resulting structural integrity, for dissection and rup-
ture occur when the local wall stress exceeds local wall strength.
This vulnerable situation can arise when the degradation of
extracellular matrix outpaces deposition. Improvements in medi-
cal imaging and computational methods have enabled the devel-
opment of patient-specific fluid–solid interaction models of aortic
aneurysm and dissection biomechanics [3–5], but these models
are often based on assumptions of homogeneous material proper-
ties and uniform wall thicknesses, both of which can render pre-
dictions of intramural stresses inaccurate.

Histopathological changes that occur at the microstructural
level manifest at the macroscopic level as altered mechanical
functionality and structural integrity. Correlations between local
wall composition and mechanical properties can thus provide
increased insight into conditions that render a vessel susceptible

to failure or disease. Whereas regional variations in microstruc-
ture are quantified easily using standard histological and immuno-
histochemical methods, there is yet a pressing need for methods
suitable for quantifying spatial heterogeneities in the material and
structural properties of aneurysmal and dissected lesions and to
correlate these heterogeneities with the underlying microstructure
in order to gain increased insight into the mechanics of complex
vascular pathologies.

Toward this end, we develop and apply a novel inverse method,
based on the PVP, which can determine locally varying values of
the constitutive parameters from full-field data acquired using a
biaxial p-DIC method. By focusing first on normal vessels, the
associated results can be compared with those obtained via stand-
ard biaxial extension–inflation testing and constitutive modeling
[6]. Whereas both the p-DIC and the biaxial extension–inflation
techniques have been separately presented and validated in previ-
ous papers [7–11], the scope of the current study is the develop-
ment of a novel combination of the inverse and p-DIC methods
and its validation as a combined mechanical testing procedure
designed for local material characterization. Toward this end, we
first detail the proposed combined method and then present illus-
trative results for the suprarenal abdominal aorta from two young,
nondiseased, apolipoprotein-E null (ApoE-/-) mice. Mean behav-
iors correspond well with those from standard testing and analysis
but, in addition, regional heterogeneities in the material properties
are successfully reconstructed. We submit that this novel
experimental–computational approach represents another impor-
tant step toward improving our ability to study complex vascular
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lesions as it will enable one to correlate, for the first time, regional
distributions of material properties with the underlying
microstructure.

Materials and Methods

Animal Model. All the animal protocols were approved by the
Yale University Institutional Animal Care and Use Committee
and followed methods detailed previously [6,7]. Nondiseased con-
trol samples, as opposed to dissecting aneurysm samples, were
used given the goal of validating the new inverse methodology.
Briefly, two male ApoE-/- mice were euthanized at �20 weeks of
age (Table S1 is available under the “Supplemental Materials” tab
for this paper on the ASME Digital Collection) using an
intraperitoneal injection of Beuthanasia-D, and the abdominal
aorta was excised en bloc. The suprarenal segment (from the final
pair of intercostal branches to the right renal artery) was prepared
for mechanical testing by removing excess perivascular tissue and
ligating all the side branches using a single strand from braided
7-0 nylon suture.

Standard Biaxial Mechanical Testing. The excised samples
(sample A for mouse 1 and sample B for mouse 2) were cannu-
lated with custom drawn glass pipets, secured using 6-0 silk
sutures, and placed within a validated computer-controlled test-
ing system that allowed now standard biaxial inflation–extension
testing [8]. Preconditioning consisted of four cycles of pressur-
ization from 10 to 140 mmHg at the estimated in vivo length, fol-
lowing previous reports [6,7]. Next, samples were subjected to
three cyclic pressure–diameter (P–d) tests consisting of pressur-
ization from 10 to 140 mmHg at fixed axial stretches of 0.95k0,
k0, and 1.05k0, where k0 is the estimated in vivo axial stretch,
and four cyclic axial force–length (f–l) tests consisting of loading
from 0 to 35 mN at fixed pressures of 10, 60, 100, and
140 mmHg. Note that, similar to previous reports [6,12], the esti-
mated in vivo axial stretch, k0, was defined as the value that
minimized variations in transducer measured axial load upon
pressurization. Tests were performed at room temperature in a
Hanks-buffered physiologic solution (HBSS), which yields a pas-
sive mechanical behavior [9]. As previously demonstrated [13],
there are no discernible differences in the measured passive
properties between room temperature (19–21 �C) and physiologic
temperature (37 �C).

p-DIC System. Following biaxial inflation–extension tests, the
samples were placed in a custom p-DIC system [10] to monitor
full-field surface deformations at multiple states of pressurization
and axial stretch using a 45 deg concave conical mirror and known
calibration target (Figs. 1(a) and 1(b)). The samples were recannu-
lated proximally and distally on a single through-the-lumen blunt-
ended needle composite with one fixed and one sliding end to
allow both pressurization and axial stretch (Fig. 1(c)). The speci-
mens were air-brushed to generate a random speckle pattern of
black and white India ink, submerged in HBSS at room tempera-
ture, and placed coaxially within the conical mirror to visualize
the entire lateral surface when viewed from a single vertically
mounted digital camera (DALSA Falcon 4M30, cf. Fig. 1(b)).
Eight rotationally symmetric images about the central axis of the
conical mirror were acquired at each quasi-statically loaded con-
figuration according to the loading protocol shown in Fig. 1(d),
then analyzed using custom MATLAB scripts to perform the cross-
correlations between unwrapped images needed to compute full-
field surface deformations [11].

Wall Kinematics. A global coordinate system was defined by
an origin, located on the central axis at the base of the conical mir-
ror, and a Cartesian basis, defined by three vectors ðex; ey; ezÞ.
Vector ez was aligned along the long axis of the needle. A cylin-
drical coordinate system was also defined by three locally

orthogonal base vectors ðer; eh; ezÞ. The reference configuration
(Pðt ¼ 0Þ and kzðt ¼ 0Þ) was set at pressure P¼ 80 mmHg and
axial stretch kz¼ k0. For any material point represented by its
position vector X, the Cartesian coordinates in the reference con-
figuration were denoted both by the triplet ðX;Y;ZÞ and the cylin-
drical coordinates ðR;H;ZÞ. Hence, in a deformed configuration,
the coordinates for the current position xðtÞ of the same material
point were ðxðtÞ; yðtÞ; zðtÞÞ and ðrðtÞ; hðtÞ; zðtÞÞ; here, t denotes
subsequent configurations achieved quasi-statically, not a
dynamic process.

The outer wall surface of each artery So was meshed in the ref-
erence configuration with >5000 nodes for full-field deformation
measurements, but parametrically remeshed with 400 nodes for
parameter estimation within small local patches. The Z 2 ½0; L�
coordinate was divided into 20 segments (where L is the reference
length of the sample), and the H 2 ½0; 2p� coordinate was divided
into 20 angular sectors. For each node n defined in So, the Carte-
sian ðXo

n; Y
o
n ;Z

o
nÞ and/or cylindrical ðRo

n;H
o
n; Z

o
nÞ coordinates were

reconstructed using the calibration parameters of the p-DIC sys-
tem. Each material point in So was then tracked in all the
deformed configurations by applying a custom serial correlation
algorithm between neighboring configurations (i.e., all the pres-
sures PðtÞ and axial stretches kzðtÞ). For instance, while at k0, the
result of the correlation between images at 60 and 70 mmHg was
used to initiate the correlation between images at 70 and
80 mmHg, respectively. In other words, the resulting correlated
mesh was stored and taken as a reference to be correlated to
a neighboring deformed configuration (i.e., 80–90 mmHg,
60–50 mmHg, and so forth) until all the deformed configurations
had been processed. In this way, data were collected at each node
n of the reconstructed p-DIC point cloud: ðxo

nðtÞ; yo
nðtÞ; zo

nðtÞÞ and/
or ðro

nðtÞ; h
o
nðtÞ; zo

nðtÞÞ for every biaxially loaded configuration
(pressure PðtÞ ranging from 10 to 140 mmHg in increments of
10 mmHg at axial stretches of kzðtÞ¼ 0.95k0, k0, and 1.05k0).
Note, too, that the biaxial load at each configuration was held for
�2 min to allow image acquisition, which is in contrast to the
continuous cyclic loading of standard biaxial tests.

Unit vectors normal to the outer surface, denoted, respectively,
by nnðtÞ and Nn for each node n in the current and reference con-
figurations, were deduced from the geometrical reconstruction of
So based on p-DIC data. A local orthonormal basis (G1

n, G2
n;Nn)

was defined in the reference configuration, where G1
n and G2

n were
aligned with directions of maximum and minimum principal cur-
vatures of So at node n, respectively. We let (g1

nðtÞ, g2
nðtÞ;nnðtÞ)

denote the local orthonormal basis, j1
nðtÞ denote the maximum

curvature, and j2
nðtÞ denote the minimum curvature, for every

node n defined in each deformed configuration at time t.
Nodal positions across the wall ðxw

n ðt; nÞ; yw
n ðt; nÞ; zw

n ðt; nÞÞ were
defined as

ðxo
nðtÞ � xw

n ðt; nÞÞex þ ðyo
nðtÞ � yw

n ðt; nÞÞey þ ðzo
nðtÞ � zw

n ðt; nÞÞez

¼ ð1� nÞhðtÞnnðtÞ (1)

for every node n in each configuration at each time t, where n 2
½0; 1� indicates the through-the-thickness position between the
inner (n ¼ 0) and outer (n ¼ 1) radii. Assuming a constant wall
volume at each loaded configuration (tissue incompressibility), a
uniform thickness hðtÞ was deduced from the average thickness
measured in the unloaded configuration, denoted H. The average
thickness in the unloaded configuration was measured using an
optical coherence tomography system.

The deformation gradient tensor Fw
n ðt; nÞ at the surface was

written as follows (in 2D summation notation):

Fw
n t; nð Þ ¼ Fw

ij;n t; nð Þgi
n tð Þ � Gj

n þ
1

det Fw
n t; nð Þ

� �nn tð Þ � Nn (2)

where, at every node n and through-the-thickness position n in a
deformed configuration at time t, the components of the
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deformation gradient tensor Fw
11;nðt; nÞ, Fw

22;nðt; nÞ, Fw
12;nðt; nÞ, and

Fw
21;nðt; nÞ were deduced from the set of current coordinates
ðxw

n ðt; nÞ; yw
n ðt; nÞ; zw

n ðt; nÞÞ and reference coordinates ðXw
n ðt; nÞ;

Yw
n ðt; nÞ; Zw

n ðt; nÞÞ using a finite difference algorithm.

Constitutive Relations. Similar to the prior work [14], the aor-
tic wall was modeled as a hyperelastic material with a strain
energy function, defined per unit mass, of the form

Wnðt; nÞ ¼ /eðnÞWe
nðt; nÞ þ /mðnÞWm

n ðt; nÞ þ /cðnÞWc
nðt; nÞ

þ /aðnÞWa
nðt; nÞ (3)

where /eðnÞ is the mass fraction of elastin, /mðnÞ is the mass
fraction of circumferential collagen fibers and smooth muscle
cells, /cðnÞ is the mass fraction of diagonal collagen fibers, and
/aðnÞ is the mass fraction of axial collagen fibers. In particular,

following previous histological reports of wall composition in the
murine suprarenal abdominal aorta [15], we assigned the layer-
specific mass fractions for each constituent to be

/e nð Þ ¼ 0:49; /m nð Þ ¼ 0:49; /c nð Þ ¼ 0:01;

/a nð Þ ¼ 0:01; for 0 � n � hmedia tð Þ
h tð Þ mediað Þ

/e nð Þ ¼ 0:04; /m nð Þ ¼ 0:04; /c nð Þ ¼ 0:80;

/a nð Þ ¼ 0:12; for
hmedia tð Þ

h tð Þ � n � 1 adventitiað Þ

where hmediaðtÞ=hðtÞ ¼ 0:69 in the unloaded reference configura-
tion. The constitutive relations used to describe the stored energy
contribution of each constituent were (cf. [14])

Fig. 1 Overview of the p-DIC system. (a) Components include a syringe pump (1), pressure
monitor (2), pressure transducer (3), and tubing (4) for pressure control. A 45 deg conical mir-
ror (5) is located within a specimen bath (6) and mounted atop a small kinematic mount (7) that
is attached to a three-axis translational stage (8). An annular light source (9) is used for illumi-
nation. The digital camera (10) is mounted vertically above the sample on a rotational stage
(11) via a large kinematic mount (12) and custom translational stage (13). Images are acquired
and sent to the computer for analysis through a camera link cable (14), and the entire system
is placed on a precision optical bench (15). (b) Top-view of 45 deg conical mirror inside of the
specimen bath showing the speckle pattern on the measurement surface (1) and the calibra-
tion target (2) used for 3D reconstruction. (c) Schematic of the cannulation of a pressure-dis-
tended specimen showing different gauge needles, locations of fixed and sliding ends, and
methods to pressurize and axially stretch the specimen. (d) Loading protocol used for me-
chanical testing: for each axial stretch (bold solid line; right scale), the sample underwent two
cycles of preconditioning followed by a stepwise increase in pressure from 10 to 140 mmHg in
10 mmHg increments (thin solid line; left scale for pressure).
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We
n t; nð Þ ¼ ce

n

2
tr Ce

n t; nð Þ
� �

� 3
� �

(4)

Wm
n t;nð Þ¼ cm

n

4km
n

e
km

n

�� km
n t;nð Þ

� �2�1
��2
þ �1

h ih

þam
n ekm

n

�� km
n t;nð Þ

� �2�1
��2
� �1

h ii (5)

Wc
n t; nð Þ ¼ cc

n

2kc
n

X2

i¼1

e
kc

n

�� kci
n t; nð Þ

� �2 � 1
��2
þ � 1

h i"

þac
n ekc

n

�� kci
n t; nð Þ

� �2 � 1
��2
� � 1

h ii (6)

Wa
n t; nð Þ ¼ ca

n

4ka
n

e
ka

n

�� ka
n t; nð Þ

� �2 � 1
��2
þ � 1

h ih

þ aa
n eka

n

�� ka
n t; nð Þ

� �2 � 1
��2
� � 1

h ii (7)

where ce
n; cm

n ; c
c
n; ca

n; k
m
n ; k

c
n; and ka

n are the material parameters,
and am

n ; a
c
n; and aa

n are the ratios that account for the differential
contribution of fibers in compression and tension. Thus, several
additional material parameters were defined as cj;c

n ¼ aj
n cj

n for
j ¼ m; c; a, with superscript c denoting compression. Here, the
notation

��•��þ indicates the contribution of fibers in tension,
whereas

��•��� indicates the contribution of (laterally supported)
fibers in compression.

Consistent with the concept that the arterial wall can be mod-
eled as a constrained mixture consisting of multiple constituents
that have different natural configurations and yet the same
motions [14,16], the right Cauchy–Green tensors and associated
fiber stretches for each constituent at node n assumed the follow-
ing forms. The right Cauchy–Green tensor for elastin is

Ce
nðt; nÞ ¼ ðFw

n ðt; nÞGe
nÞ

TFw
n ðt; nÞGe

n (8)

where Ge
n is the unique deposition stretch tensor for elastin,

namely,

Ge
n ¼ Ge1

n G1
n � G1

n þ Ge2
n G2

n � G2
n þ

1

Ge1
n Ge2

n

Nn � Nn (9)

Ge1
n is the deposition stretch of elastin in the circumferential direc-

tion, and Ge2
n is the deposition stretch of elastin in the axial direc-

tion. Similarly, the stretch of the smooth muscle cells and the
associated circumferentially oriented collagen fibers km

n ðt; nÞ is
defined as

km
n ðt; nÞ ¼ Gm

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cw

n ðt; nÞ : ðG1
n � G1

nÞ
q

(10)

where Gm
n is the deposition stretch of the smooth muscle cells/col-

lagen fibers and

Cw
n ðt; nÞ ¼ ðFw

n ðt; nÞÞ
TFw

n ðt; nÞ (11)

kci
n ðt; nÞ is the stretch for the two symmetric diagonal collagen

fiber families (i¼ 1, 2) defined as

kci
n ðt; nÞ ¼ Gc

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cw

n ðt; nÞ : ðAi
n � Ai

nÞ
q

(12)

where Gc
n is the deposition stretch of each diagonal collagen fiber

family, and Ai
n is the fiber direction in the reference configuration

which was defined as

Ai
n ¼ cos ðbc

nÞG1
n � ð�1Þi sin ðbc

nÞG2
n (13)

where 7bc
n represents an average angle toward the axial direction,

with circumferential fibers at bc
n¼ 0 deg and axial fibers at

bc
n¼ 90 deg. Finally, ka

nðt; nÞ is the average stretch of axial colla-
gen fibers, namely,

ka
nðtÞ ¼ Ga

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cw

n ðtÞ : ðG2
n � G2

nÞ
q

(14)

where Ga
n is the deposition stretch of the axially oriented collagen

fibers.

Computation of Intramural Stress. The Cauchy stress tensor
at every node n and through-the-thickness position n in a
deformed configuration at time t (pressure PðtÞ ranging from 10 to
140 mmHg at fixed axial stretches of kzðtÞ¼ 0.95k0, k0, and
1.05k0) was generalized as follows:

rw
n t; nð Þ ¼ �pw

n t; nð ÞI þ 2

det Fw
n t; nð Þ

� �Fw
n t; nð Þ @Wn t; nð Þ

@Cw
n tð Þ Fw

n t; nð ÞT

(15)

Using Eqs. (2), (3), and (11), the expression for the Cauchy stress
could be rewritten such that

rw
n ðt; nÞ ¼ � pw

n ðt; nÞI þ /eðnÞce
nBe

nðt; nÞ
þ /mðnÞcm

n Wm
n ðt; nÞðGm

n Þ
2g1

nðtÞ � g1
nðtÞ

þ/aðnÞca
n Wa

nðt; nÞðGa
nÞ

2g2
nðtÞ � g2

nðtÞ

þ
X2

i¼1

/cðnÞcc
nW

ci
n ðt; nÞðGc

nÞ
2ai

nðt; nÞ � ai
nðt; nÞ (16)

where the left Cauchy–Green tensor for elastin is written as

Be
nðt; nÞ ¼ Fw

n ðt; nÞGe
nðFw

n ðt; nÞGe
nÞ

T
(17)

and the Wn terms for each constituent in the constrained mixture
are

Wm
n t; nð Þ ¼

�� km
n t; nð Þ

� �2 � 1
��
þe

km
n

�� km
n t; nð Þ

� �2 � 1
��2
þ

þ am
n

�� km
n t; nð Þ

� �2 � 1
��
�ekm

n

�� km
n t; nð Þ

� �2 � 1
��2
� (18)

Wa
n t; nð Þ ¼

�� ka
n t; nð Þ

� �2 � 1
��
þ e

ka
n

�� ka
n t; nð Þ

� �2 � 1
��2
þ

þ aa
n

�� ka
n t; nð Þ

� �2 � 1
��
� eka

n

�� ka
n t; nð Þ

� �2 � 1
��2
� (19)

Wci
n t; nð Þ ¼

�� kci
n t; nð Þ

� �2 � 1
��
þ e

kc
n

�� kci
n t; nð Þ

� �2 � 1
��2
þ

þ ac
n

�� kci
n t; nð Þ

� �2 � 1
��
� ekc

n

�� kci
n t; nð Þ

� �2 � 1
��2
� (20)

whereas the collagen fiber directions in the current configuration
ai

n (for i¼ 1,2) are

ai
nðt; nÞ ¼ Fw

n ðt; nÞAi
n (21)

Note that pw
n ðt; nÞ is a scalar function that enforces the kinematic

constraint of no local changes of volume.
In summary, the list of the 16 unknown material parameters to

be identified was

� seven elastic coefficients in tension/compression:
ce

n; cm
n ; cc

n; ca
n; cm;c

n ; cc;c
n ; and ca;c

n
� three exponential coefficients: km

n ; kc
n; and ka

n
� five deposition stretch parameters: Ge1

n ;G
e2
n ; Gm

n ;G
c
n; and Ga

n
� the average angle of diagonal fibers: bc

n
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Fortunately, the values of many of these parameters are well
bounded (e.g., tension/compression ratios, deposition stretches,
and fiber angles), which favor the estimation process. Finally,
note that for all the tensor components, fiber stretches, and mate-
rial parameters, the subscript n indicates that they could take a dif-
ferent value at each node n due to the possible regional variations
of material properties.

The Inverse Method. Our objective was to identify values of
model parameters separately for each node n (i.e., localized
region). For this, we employed an inverse method where we first
defined a cost function J involving the computed stress (Eq. (16))
as well as the experimentally measured and theoretically predicted
pressures (P exp ðtÞ and PthðtÞ) and axial loads (f exp ðtÞ and f thðtÞ).
The parameters to be identified were continuously updated until
we found the minimum of the cost function J.

As the suprarenal abdominal aorta does not have a perfectly
cylindrical shape, equations of thick-walled cylinders relating the
theoretically predicted pressure PthðtÞ and the computed stresses
could not be used directly. A more general equation was obtained
using the virtual fields method (VFM) [17–19], namely,

Pth tð Þ ¼ h tð Þ
ð1

0

rw
11;n t; nð Þ � rw

33;n t; nð Þ
1=j1

n tð Þ � 1� nð Þh tð Þ þ
rw

22;n t; nð Þ � rw
33;n t; nð Þ

1=j2
n tð Þ � 1� nð Þh tð Þ dn

(22)

where

rw
11;nðt; nÞ ¼ rw

n ðt; nÞ : ðg1
nðtÞ � g1

nðtÞÞ (23)

rw
22;nðt; nÞ ¼ rw

n ðt; nÞ : ðg2
nðtÞ � g2

nðtÞÞ (24)

rw
33;nðt; nÞ ¼ rw

n ðt; nÞ : ðnnðtÞ � nnðtÞÞ (25)

The details of the derivation of Eq. (22) are given in the Appen-
dix, Proof 1. It is an extension of the traditional equations for
thick-walled cylinders, where both the local circumferential and
axial curvatures of the artery are accounted for to ensure equilib-
rium. This difference is particularly important for mouse aortas as
they may be curved in their traction-free configuration and may
show axial bending effects during inflation–extension testing.

A second equation involving the axial load was necessary to
close the system. Again using the VFM (Appendix, Proof 2), the
theoretically predicted axial load f thðtÞ could be related to the
computed stresses using the following equation:

f thðtÞ ¼ phðtÞ
ð1

0

½2rw
zz;nðt; nÞ � rw

xx;nðt; nÞ � rw
yy;nðt; nÞ�

½roðtÞ � ð1� nÞhðtÞ�dn

(26)

where roðtÞ is the outer radius and

rw
xx;nðt; nÞ ¼ rw

n ðt; nÞ : ðex � exÞ (27)

rw
yy;nðt; nÞ ¼ rw

n ðt; nÞ : ðey � eyÞ (28)

rw
zz;nðt; nÞ ¼ rw

n ðt; nÞ : ðez � ezÞ (29)

Finally, using Eqs. (22) and (26), we defined the following cost
function at each node n:

Jn ¼
XK

k¼1

P exp ðtkÞ � PthðtkÞ
�P

exp ðtkÞ

 !2

þ f exp ðtkÞ � f thðtkÞ
�f

exp ðtkÞ

 !2

(30)

where K is the total number of experimentally measured configu-
rations k, and the overbar notation denotes an average over all the

data points (e.g., �P
exp ðtkÞ ¼

PK
k¼1 P exp ðtkÞ=K). It is important to

note that, for the p-DIC data sets, pressure was measured directly
in the device as it was varied incrementally in steps of 10 mmHg
at each of three different axial stretches. In contrast, the associated
axial force, for each prescribed pressure and axial stretch, was
assumed to be the same as that measured in the standard biaxial
test, which is why the same axial stretches were used. Hence, the
standard biaxial tests not only provided an important comparative
approach for parameter estimation but they also provided axial
force data for the p-DIC data sets.

Thin-Wall Assumption. Following many prior reports on the
mechanical properties of murine aortas (cf. Ref. [7]), as a first
approximation the wall may be modeled mechanically as a mem-
brane (i.e., transmurally homogenized) under physiologic loads.
Such an approach is particularly useful for fluid–solid interaction
implementations (cf. Ref. [20]) where it is the structural, not mate-
rial, stiffness that is of most importance. Toward this end, one can
replace Fw

n ðt; nÞ by its average over the thickness and deduce
FnðtÞ using a simpler kinematic description. The values of stress
rw

n ðt; nÞ in Eqs. (22) and (26) then become rnðtÞ (with no thick-
ness dependence). In this case, the expressions for the theoreti-
cally predicted pressure and axial load can be reduced to

Pth;	 tð Þ ¼ h tð Þ
r11;n tð Þ � r33;n tð Þ
� �

1=j1
n tð Þ � h tð Þ=2

þ
r22;n tð Þ � r33;n tð Þ
� �

1=j2
n tð Þ � h tð Þ=2

 !
(31)

f th;	ðtÞ ¼ phðtÞ½roðtÞ � hðtÞ=2�ð2rzz;nðtÞ � rxx;nðtÞ � ryy;nðtÞÞ
(32)

Thus, minimization of a modified cost function required

Jn ¼
XK

k¼1

ðP
exp ðtkÞ � PthðtkÞ

�P
exp ðtkÞ

Þ2 þ ðf
exp ðtkÞ � f thðtkÞ

�f
exp ðtkÞ

Þ2 (33)

Resolution of the Inverse Problem. The requisite minimiza-
tion and material parameter identification are achieved in two
steps, namely:

Step 1: Minimize Jn (or J	n) with respect to the material parame-
ters ðce

n; cm
n ; cc

n; ca
n; cm;c

n ; cc;c
n ; and ca;c

n Þ using a non-negative lin-
ear least squares algorithm.

Step 2: Minimize Jn (or J	n) with respect to the remaining pa-
rameters using a bounded genetic algorithm. The bounds that
were used for the minimization procedure are consistent with Ref.
[14] and are reported in Table 1.

The stopping criteria included both a time limit (30 s for each
node n) and a tolerance (10�6) for the improvement of the cost
function from one iteration to the next. After the resolution, a
coefficient of determination R2

n is computed using Eq. (22). In the
case of the thin-wall assumption, R2	

n is computed using Eq. (31)
and defined as

Table 1 Bounds used for the material parameter identification
procedure

Parameter Lower bound Upper bound

Gc
n;G

a
n;G

m
n 1.01 1.15

km
n ; kc

n; ka
n 0.001 10

Ge1
n 2 2.4

Ge2
n 1.6 2

bc
n 25 deg 70 deg
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R2	
n ¼ 1�

XK

k¼1

Pth;	 tkð Þ � P exp tkð Þ
� 	2

XK

k¼1

�P
exp

tkð Þ � P exp tkð Þ
� �2

(35)

Suprarenal Branch Locations. Because all the suprarenal
branches were ligated to enable pressurization during testing, sev-
eral major branch locations could be identified on the recon-
structed vessel surface as large deviations in local radius.
Potential regions of influence around these branch locations were
extracted using a modified branch splitting procedure in the open-
source Vascular Modeling Toolkit (VMTK2). Briefly, seed points
for centerline computations (vmtkcenterlines) were manually
placed near the maximum local radius of each branch location.
Branching centerline paths to each manually placed target were
computed using a maximum inscribed sphere radius algorithm
[21]. Additional VMTK subroutines were then used (vmtkbran-
chextractor and vmtkbranchclipper) to extract a region about each
branch based on the locations of centerline bifurcations. Finally,
the boundary of each clipped surface was extracted, converted
into a cylindrical coordinate system, and overlaid on 2D represen-
tations of the full-field data, which facilitated regional compari-
sons. For example, Fig. 2 shows three to four potential regions of
branch influence (dashed lines) located near (1) smaller suprarenal
branches, (2) the celiac artery, (3) the superior mesenteric artery,
and (4) the right renal artery. Following identification of several
major branch locations, each reconstructed surface was rotated
such that the average position of largest regions of branch influ-
ence (1 and 2) were aligned with an angle of 0 deg in cylindrical
coordinates (positive x-axis).

Statistical Analysis. Notwithstanding the utility of computing
quantities of interest in many different regions, 400 in our case,
for purposes of illustration and statistical ease, distributions of
identified material parameters, stored energy, and linearized stiff-
ness were also divided into four larger regions for comparison:
ventral-top, dorsal-top, ventral-bottom, and dorsal-bottom, with
n¼ 100 observations per region. Regional differences were
assessed both within and between samples A and B. Namely, val-
ues on the dorsal and ventral halves at the same top or bottom
position and for the top and bottom halves on the same dorsal or
ventral side within the same sample were compared using a one-
way ANOVA followed by a post-hoc Bonferroni correction. The
values from the same region for different samples were compared
using a standard Student’s t-test. For all the comparisons, a value
of P< 0.05 was considered significant. Table S2, which is avail-
able under the “Supplemental Materials” tab for this paper on the
ASME Digital Collection, summarizes all the identified values by
region, with values expressed as mean 6 SEM and statistical sig-
nificance indicated when appropriate.

Results

Morphometric information for the two mice and their respective
aortic samples is given in Table S1, which is available under the
“Supplemental Materials” tab for this paper on the ASME Digital
Collection. Figure 2 shows regional distributions (at 400 possible
locations) of the coefficients of determination for the inverse esti-
mation for both samples based on the thin-walled assumption.
Associated distributions of representative best-fit parameters (ce

n,
cm

n , cc
n, and bc

n) are shown in Figs. S1 and S2, which are available
under the “Supplemental Materials” tab for this paper on the
ASME Digital Collection, with mean values for the four larger
regions (ventral-top, etc.) listed in Table S2, which is available

under the “Supplemental Materials” tab for this paper on the
ASME Digital Collection. In particular, note that Fig. 2 and Figs.
S1 and S2, which are available under the “Supplemental Materi-
als” tab for this paper on the ASME Digital Collection, show val-
ues of either R2	 or the identified model parameters on both a
reconstructed 3D surface of the aorta in its reference configuration
of 80 mmHg at k0 (left) and a 2D representation in a parameter-
ized ðh; zÞ space (right). All the distributions suggest regional het-
erogeneities, albeit to varying degrees. As revealed further by Fig.
2, however, not all the locations yielded reliable inverse estima-
tions; regions with R2	 < 0:90 are indicated with (transparent)
white patches. Specifically, for sample A, only 89% of all the
patches had a coefficient of determination above the threshold,
with more than 72% of accepted patches having a value larger
than 0.95. In contrast, results for sample B revealed a larger pro-
portion of patches above threshold with 95% of all the patches
accepted and 83% of accepted patches having R2	 < 0:95; in this
case, discarded patches were often close to the cannulation liga-
tures at the top and bottom of the sample, which may be a result
of “end effects.”

There are two primary regions on the surface of sample A (cen-
tered at z¼ 4 mm and h¼690 deg) that can be identified with
low coefficients of determination (Fig. 2(a)). These areas of low

Fig. 2 Spatial distribution of the coefficients of determination.
Goodness-of-fit for (a) specimen A and (b) specimen B. Both
panels show outputs from a modified branch splitting algorithm
to highlight regions of influence due to specimen branches
(1–4). The results are shown in both a 3D (left) and 2D (right)
representation over the entire surface of each sample. Bounda-
ries of both low mean curvature (solid enclosed regions) and
regions of branch influence (dashed ellipses) are overlaid in the
2D representation to show localization with regions of low R2	

n .

2www.vmtk.org
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R2	 tended to localize on the lateral sides of the regions of branch
influence, in particular branch locations 1 and 2. Indeed, it
appeared that areas of low mean curvature (Fig. 2, solid lines)
tended to colocalize with regions of low R2	, suggesting that the
local curvature of the reconstructed sample has a significant
impact on the ability of the thin-walled model to fit data, as evi-
denced by the explicit dependence of Pth;	ðtÞ on the principal cur-
vatures j1

n and j2
n (cf. Eq. (31)). Although regions of low mean

curvature may arise as a local effect of branch ligation, the ability
of the p-DIC analysis to capture modes of bending upon pressur-
ization at a fixed axial stretch may also contribute to regions of
low R2	.

Gross regional variations in material properties were analyzed
by comparing distributions (which excluded nonidentified
patches) for the four nonoverlapping regions: ventral-top, dorsal-
top, ventral-bottom, and dorsal-bottom. Following alignment of

major branch locations with the 0 deg circumferential coordinate,
a straightforward definition of the ventral and dorsal halves of the
sample was given by the ranges hv 2 � p

2
; p

2

� �
and hd 2 p

2
; 3p

2

� �
,

respectively; top (proximal) and bottom (distal) halves were
defined as all nodes above and below Z ¼ L=2. Illustrative results
for several identified parameters from both samples are shown in
Fig. 3 using a histogram representation: black bars for sample A
and white bars for sample B, with overlapping values indicated by
gray shading. Note that patches containing a branch ostium are
included in the histogram representation but we have verified that
this does not adversely affect the results and statistical comparison
between regions.

Significant differences in identified parameter values were
found between regions on each sample. Specifically, for sample A
the elastin parameter ce

n was significantly lower on the dorsal side
independent of axial position (proximal to distal), whereas for

Fig. 3 Histogram distributions of identified material parameters. The results from the identification procedure are shown
for ce

n (first row), cm
n (second row), cc

n (third row), ca
n (fourth row), and bc

n (fifth row) for both sample A (S-A, black bars) and
sample B (S-B, white bars). All the identified parameters are spatially varying. The results are also shown by region: ventral-
top (first column), dorsal-top (second column), ventral-bottom (third column), and dorsal-bottom (fourth column). The gray
bars indicate overlapping results for the two samples.
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sample B the lowest values were found in the ventral-bottom
quadrant. The circumferential collagen parameter cm

n and the diag-
onal collagen parameter cc

n were significantly higher on the bot-
tom half of each sample, independent of the dorsal-ventral sides;
the dorsal-top quadrant showed opposite trends in cc

n between
samples. The identified spatial distribution of the axial collagen
parameter ca

n was opposite across samples. Namely, ca
n was high-

est on the bottom half of sample A and on the top half of sample
B. Finally, for both samples, the fiber angle bc

n was highest in the
ventral-bottom quadrant. Despite several similar trends in signifi-
cance, all the identified elastic coefficients were found to be sig-
nificantly larger in magnitude on sample B as compared to sample
A, highlighting the utility of the inverse method in identifying dis-
tributions of sample specific properties. Although there are statis-
tically significant differences in material parameters by region, the
dispersions are wider than the average difference between the
means; this is especially the case for cm

n , cc
n, and ca

n, which may
have been induced by a smaller sensitivity of the cost function to
these parameters or the existence of intercorrelations between pa-
rameters. Indeed, the number of parameters for the material model
is relatively large (16 total) and we note that full-field information
was collected only on the outer (adventitial) surface.

Although individual material parameters are important, it is
their collective contribution for modeling the material properties
that is most important. Among the properties of most importance
are the stored energy density Wn and the circumferential and axial
material stiffness [6,22]. Regional distributions (at up to 400 loca-
tions) of stored energy density were computed for two different
loaded configurations for both samples (Figs. 4(a)– 4(d): pressures
of PðtÞ¼ 80 mmHg (left) and 140 mmHg (right), at individual val-
ues of the in vivo axial stretch kzðtÞ¼ k0). It is seen that, in
contrast to distributions of individual material parameters, the
regional distributions in strain energy density are relatively
smooth. In addition, the dorsal halves of the samples store signifi-
cantly less energy than the ventral halves upon pressurization to
140 mmHg (sample A: 107.7 6 2.2 kPa versus 116.05 6 2.2 kPa
and sample B: 99.3 6 1.3 kPa versus 122.3 6 2.3 kPa; P< 0.05).
The removal of perivascular support needed to enable in vitro
mechanical testing, in particular the dorsal support of the spine,
likely contributed to the measured differences in dorsal versus ven-
tral energy storage capability under the action of a uniform distend-
ing pressure. Similar to ce

n, the stored energy also tended to be higher
in the central region (i.e., z¼ 1.5–5.5 mm), independent of pressure.
The distribution of Wn corresponding to the distribution of ce

n is con-
sistent with the elastic fibers being the main contributor to energy
storage, the primary function of large arteries, such as the aorta.

Figure 5 shows the regional distributions (at up to 400 loca-
tions) of the circumferential (C1111, left) and axial (C2222, right)
components of the linearized material stiffness for samples A and
B computed at a loaded configuration of PðtÞ¼ 100 mmHg and
individual value of kzðtÞ¼ k0. Histograms are shown for the four
larger regions. Circumferential stiffness was significantly lower in
the dorsal-top quadrants of both samples as compared to the other
quadrants in their respective dorsal or top halves. Axial stiffness,
on the other hand, was significantly different on both the ventral
and bottom halves of each sample. Specifically, the ventral half
had higher stiffness than the dorsal half independent of top or bot-
tom location (sample A: 1.32 6 0.03 MPa versus 1.15 6 0.02 MPa
and sample B: 1.67 6 0.04 MPa versus 1.49 6 0.02 MPa;
P< 0.05), and the bottom half had higher stiffness than the top
independent of the dorsal-ventral side (sample A: 1.35 6 0.03 MPa
versus 1.10 6 0.02 MPa and sample B: 1.61 6 0.04 MPa versus
1.55 6 0.03 MPa; P< 0.05). One main structural difference
between the four quadrants, of course, is the location of the major
suprarenal branches. Comparison of stiffness distributions with
branch sites for samples A and B (dashed lines, Figs. 5(a)–5(d))
suggests that higher values of biaxial stiffness tend to colocalize
with regions of branch influence. Specifically, circumferential
stiffness tends to be higher at the boundaries whereas axial stiffness
is higher over the entire branch area.

In standard biaxial inflation–extension tests, one typically
measures on-line both the outer diameter and the axial force in
response to changes in pressure and axial stretch. Such data were
collected for both samples prior to the biaxial p-DIC testing,
and values of the constitutive parameters were estimated using
traditional nonlinear regression [6]. Representative values of
the estimated material parameters (ce, cm, cc, and bc) and the
associated scalar metrics of goodness-of-fit or material behavior
(R2; W; C1111, and C2222) are reported in Table 2. The best-fit pa-
rameter values are generally in good agreement with the local dis-
tributions that were obtained using the p-DIC data.

Finally, as a qualitative comparison of approaches, we com-
puted local pressure–radius curves and local circumferential
stress–stretch curves for every node at which material parameters
were identified (Fig. 6). Data from the standard (global) biaxial
inflation–extension approach (single strings of black circles) were
compared to the reconstructed pressure–radius (left) and
stress–stretch (right) curves for samples A and B. Although simi-
lar curves can be generated for all the tested axial stretch values,
data are shown only at kzðtÞ¼ k0, for clarity. The many sets of
gray curves represent the reconstructed behavior of the inverse
method based on the locally identified material parameters from
all the patches above a given R2	 value. Namely, the light-gray
and dark-gray sets of curves show the behavior for all the
patches with R2	 > 0:95 and R2	 > 0:99, respectively. For sam-
ple A, the light-gray curves represent 72% of all the identified
patches (257/356 patches) and the dark-gray curves represent
6.5% of all the identified patches (23/356 patches). Similarly, for
the better fitting sample B, the light-gray curves represent 83%
of all the identified patches (316/380 patches) and the dark-gray
curves represent 2.9% of all the identified patches (11/380
patches). Overall, there is a very good agreement between the
standard and new p-DIC based approaches. In particular, the
mean global responses fall well within the expected dispersion
of the identified local responses. This overall agreement high-
lights both the general utility and added advantage of local meas-
urements even in healthy aortic tissue.

Discussion

Relevance of Inverse Methods. Advances in medical imaging
and computational biomechanics have enabled investigators to
study patient-specific models of hemodynamics, wall stress, and
even fluid–solid interactions. The utility of such models depends,
however, on the goodness of the specified material properties and
boundary conditions. With regard to the former, increasing atten-
tion is appropriately being directed toward in vivo estimations of
arterial [23,24] and aneurysmal [25,26] properties. Such attempts
are nevertheless complicated by the limited information that is
available via in vivo measurements as well as by the existence of
regional variations in properties both along the normal arterial
tree and within diseased segments [15,27–30]. Indeed, because of
the complexity of the constitutive behavior of the aorta in health
and disease, it is inconceivable that in vivo data alone could ena-
ble both the identification of appropriate functional forms of the
constitutive relations and the calculation of best-fit values of the
associated material parameters. Complementary in vitro tests are
essential. For example, in vitro biaxial tests on planar or cylindri-
cal specimens allow one to perform the multiple protocols that are
necessary to generate the overdetermined systems of equations
that ensure robust parameter estimation. Such tests enable much
more, however. They also allow a more careful evaluation of the
appropriateness of specific functional forms of the constitutive
relations and identification of ranges for the values of the material
parameters, which provides important constraints on the estima-
tions [31,32]; they similarly allow equal quantification of circum-
ferential and axial behaviors and their coupling (e.g., see Ref. [33]
and [34]), even if directional deformations are not equal in vivo.
Given such information from in vitro tests, one can then focus
in vivo on parameter estimation alone.
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Notwithstanding the advantages of standard biaxial testing,
there is yet a need for more advanced in vitro methods, including
ones that can both delineate possible regional variations in cases
of disease and better correlate such variations with the underlying
microscopic composition and structure. For this reason, we

developed a novel approach that combines in vitro biaxial p-DIC
based mechanical testing with a nonlinear inverse material charac-
terization method. The former has been described in detail previ-
ously [10,35,36]. The latter can be accomplished in multiple
ways, but we employed a VFM that has proven useful in different

Fig. 4 Spatial distribution of strain energy. The strain energy density was computed (Eq. (3)) using the identified material
properties over the surface of ((a) and (b)) sample A and ((c) and (d)) sample B. The results are shown for two loaded configu-
rations: ((a) and (c)) P(t) 5 80 mmHg at kz(t) 5 k0 and ((b) and (d)) PðtÞ5 140 mmHg at kz(t) 5 k0. (e) Histograms show the spa-
tial distributions in each quadrant for both samples (cf. Fig. 3).
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applications [17,19]. This approach allows one to derive relatively
simple extensions of traditional relations for thick-walled cylindri-
cal geometries [37,38] that yet allow one to account for added
complexities, including axial bending during testing and associ-
ated changes in local curvatures.

Choice of Material Model. We used a four-fiber family model
that has proven reliable in describing murine arterial behavior in
multiple studies [6,7,9,14,15,20]. Although motivated by micro-
structural information, this model was developed primarily to cap-
ture phenomenologically the anisotropic response of blood vessels

Fig. 5 Spatial distribution of biaxial material stiffness. The biaxial material stiffness was computed using the identified ma-
terial parameters over the surface of ((a) and (b)) sample A and ((c) and (d)) sample B. The results are shown for ((a) and (c))
circumferential (C1111) and ((b) and (d)) axial (C2222) stiffness evaluated at a loaded configuration of P(t) 5 100 mmHg and
kz(t) 5 k0. Regions of influence due to branches (dashed lines) are overlaid to show localization near regions of high stiff-
ness. (e) Histograms show spatial distributions in each quadrant for both samples (cf. Fig. 3).
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subjected to extension–inflation tests, which ultimately depends
on constituent fractions, fiber orientations, cross-linking, physical
entanglements, and so forth. The four-fiber model is thought to
allow complexities beyond just fiber orientations and has been
shown (in comparison to two- and six-) to represent a good com-
promise between model complexity and goodness-of-fit when
applied to seven independent pressure–diameter (P–d) and axial
load–axial stretch (f–l) protocols obtained during standard biaxial
extension–inflation testing [6]. In particular, all of the parameters
of the four-fiber family model contribute to the fitting of the data;
uncertainty in the best-fit values was estimated using a nonpara-
metric bootstrap approach, and no fundamental problem of identi-
fiability was found [6]. When using a reduced number of
protocols in the material parameter identification (e.g., only the
three P–d protocols, with force measurement as in the current
study, as opposed to the three P–d and four f–l protocols), the pri-
mary effect was a modest change in the identified fiber angle that
tended to increase the biaxial linearized stiffness.

One recent addition to the four-fiber family model is the incor-
poration of deposition stretches, which permits convenient predic-
tions of residual stresses while using an in vivo reference

configuration [14]. We showed that deposition stretch values
should remain within a narrow range to ensure reasonable model
predictions. Hence, although their inclusion adds to the number of
parameters, they are well bounded and do not compromise the
identification of the standard parameters. This overall previous
experience with extension–inflation tests of excised arteries sup-
ports the use of the present model to simultaneously fit P–d–f data
at different extensions. Whereas all the previous analyses on this
model (i.e., traditional analyses) were based on the assumption of
a perfectly cylindrical geometry, herein we extended this
approach to local analyses, for each position on the reconstructed
surface of the blood vessel, based on full-field measurements for
every applied pressure and every applied axial stretch that yield
the local surface deformation gradient.

The PVP allows the model to locally adjust to data at every
position instead of global adjustment based only on the measured
(P–d) and (f–l) curves. For every position, the identification is
based on 14
 3
 2¼ 84 independent data points (14 pressur-
es
 3 axial stretches
 2 independent equations). Therefore, simi-
lar to the traditional approach, at every position defined on the
surface of the sample, the number of reconstructed data points is

Table 2 Best-fit model parameters and associated scalar metrics estimated using nonlinear regression of standard biaxial experi-
mental data for samples A and B

Sample ce (kPa) cm (kPa) cc (kPa) bc W (kPa) at 80 mmHg W (kPa) at 140 mmHg C1111 (MPa) C2222 (MPa) R2	

A 71 385 959 51 deg 70 93 1.78 1.18 0.98
B 65 128 1470 46 deg 61 79 1.74 0.96 0.99

Fig. 6 Comparison of p-DIC and standard biaxial results. The reconstructed pressure–radius
(left) and circumferential stress–stretch (right) behaviors for (a) sample A and (b) sample B
were compared to standard biaxial testing results (black circles). Local responses are com-
pared for locations with an R2	 value above 0.95 (light-gray) and 0.99 (dark-gray). Comparison
is shown only for data collected at kz(t) 5 k0, for clarity.
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sufficient to ensure the overdetermined number of equations
needed to identify the parameters in the model. As in traditional anal-
yses, however, we note that one disadvantage of Fung-type exponen-
tial models is that there are intrinsic correlations among the
parameters ci

n and ki
n (cf. Eqs. (5)–(7)). Hence, the cost function can

often be minimized equally well using different combinations of the
ci

n and ki
n parameters. This is one reason why we should focus more

on the predicted material properties, such as energy storage or mate-
rial stiffness, rather than individual material parameters.

Uncertainty of the Inverse Method. The question of uncer-
tainty for each material parameter holds in all the nonlinear mod-
els and associated testing. To evaluate this point, we repeated the
identification after adding noise to the experimental data. White
noise with a standard deviation of 0.05 was added to each compo-
nent of the deformation gradient. This standard deviation was cho-
sen to be larger than the measurement uncertainty (which was less
than 0.01 for the deformation gradient) to amplify its effects on
the identification. After the new identification, similar distribu-
tions of material parameters were reconstructed. Changes on the
R2	 criterion were negligible, thus suggesting that the goodness-
of-fit depends more on the ability of the model to fit the data than
on random noise in the data. Similarly, we tested the sensitivity of
the identification procedure to the initial set of parameter values
used in the nonlinear optimization. The identification was per-
formed several times with different sets of initial values that were
drawn randomly from within the defined bounds (cf. Table 1).
Independent of initialization, the results again showed similar val-
ues of the material parameters and R2	 distributions, and espe-
cially the derived material properties, thus suggesting that the
observed heterogeneities are deterministic.

The results are also sensitive to other inevitable experimental
uncertainties, which further complicate parameter estimation.
Among the many causes of uncertainly, consistent experimental
definition of a reference configuration, often taken to be the
traction-free state, is challenging. Potential effects of these errors
can be assessed by repeating the estimations for different values
that define the reference configuration [38]. Our approach, using a
near in vivo reference configuration, naturally reduces the uncer-
tainly in comparison with measurements of traction-free configura-
tions because of the extreme compliance of arteries at low loads.

Regional Variations in Material Properties. Notwithstanding
possible uncertainties in our characterizations, heterogeneities
appeared to manifest both locally (based on nodal values) and
regionally (based on the four regions so defined). In particular,
steep variations appeared for some parameters, such as those
meant to model the collagen fibers, whereas mild variations arose
for other parameters, including those meant to model the elastic
fibers. Considering the phenomenological nature of the model,
however, one should not try to overinterpret the underlying rea-
sons for these variations in parameter values, with or without
knowledge of the underlying histological structure. Rather, it is
best to focus on metrics such as energy storage and material stiff-
ness (Figs. 4 and 5) when comparing material behaviors either
regionally or from specimen-to-specimen. Additionally, to distin-
guish between uncertainty and true regional variations in material
properties, regions should be defined with a significant number of
data points (for local estimates) or patches (for regional estimates)
to have appropriate statistical power and anatomical relevance
(for instance, dorsal, ventral, top, and bottom halves).

The suprarenal aorta has significant perivascular support
in vivo, namely, the spine and dorsal musculature. Interestingly,
the energy stored upon pressurization in vitro was significantly
lower on the dorsal than the ventral side for both tested samples.
It thus seems that the capability of the dorsal side of the aorta to
store energy, ultimately to be used to work on the blood during di-
astole, is potentially reduced throughout development due to this
increased perivascular support. The values of circumferential and
axial material stiffness tended to be higher near the axial

boundaries and on the ventral side of the sample. Higher stiffness
near the top (proximal) and bottom (distal) edge is likely an end-
effect due to cannulation and pressurization of the sample at a
fixed axial stretch; in contrast, the increased ventral stiffness tends
to colocalize with regions of branch influence. The increased stiff-
ness near branch locations could similarly result from the ligatures
that are needed to enable mechanical testing. In particular, cir-
cumferential stiffness is often increased on the lateral sides of the
branch region, consistent with the ligation at the branch ostium
potentially playing a role upon pressurization. Increased axial
stiffness at branch locations is likely compounded by the fact that
axial stretch is influenced by the distance between the cannulation
sutures. This effect can necessarily vary over the surface of the
sample and lead to a reduced relative stretch at the branch loca-
tions and ultimately contribute to increasing the stiffness.

Coefficients of Determination. Another fundamental question
relates to the origin of regional variations for the R2	< 0.90 crite-
rion, especially in sample A. This goodness-of-fit is related to the
ability/inability of the model to capture the experimental response
locally. Mismatches between model and data could be a source of
bias for the identified parameters, hence we discarded patches
where R2	 is lower than 0.90. Discrepancies often localized close
to cannulation ligatures or near branches (Fig. 2). Additionally,
large central regions of discrepancy for sample A likely resulted,
in part, from bending instabilities and associated changes in local
mean curvature that occur in an inflated vessel maintained at a
constant axial stretch [39]. Bending was even triggered at low
pressures, for the suprarenal aorta is curved slightly upon exci-
sion. For this reason, the suprarenal abdominal aorta is probably
one of the most challenging case studies for our novel identifica-
tion method. Nevertheless, despite difficulties related to bending
and the presence of branches, there was very good agreement
between the myriad identified local behaviors and the global
response of the same sample (Fig. 6). Moreover, strain energy and
stiffness estimated from the standard biaxial tests (Table 2) were
consistent with the center value of the regional distributions.

Recall that the biaxial loading was maintained for several
minutes at each state to allow p-DIC image acquisition. Hence, in
contrast to the continuous cyclic loading of the standard biaxial
tests, the loading was incremental in the p-DIC tests. Direct com-
parisons between continuous and incremental loading protocols in
separate standard biaxial tests on the same sample (not shown)
revealed no difference in the measured pressure–diameter behav-
ior, hence the difference in loading protocol did not appear to be a
concern. We also checked whether a thick-wall model that delin-
eates medial and adventitial properties would improve the coeffi-
cients of determination when compared to a membrane model.
Again, however, this did not have a significant effect on the
results (not shown). This finding is somewhat consistent with the
wall thickness being at least 1 order of magnitude lower than
radius upon pressurization (e.g., radius of 0.65 mm and thickness
of 0.04 mm, on average), but also because both methods rely on
measuring deformations or diameters at the outer surface and
invoking incompressibility of the wall.

Conclusions

We submit that the present experimental–computational
method for local arterial characterization represents another im-
portant step toward the ultimate goal of understanding better the
structure–property relationships that underlie regional variations
in material properties along the arterial tree and especially within
many arterial lesions, including aortic aneurysms. Combining
such findings with advances in growth and remodeling simula-
tions (e.g., Refs. [40,41]) promises to improve our ability to pre-
dict subsequent mechano-adaptations or disease progression.
Many challenges yet remain, however. Highly localized defects in
wall structure, as, for example, localized deposits of calcium or
pools of mucoid material, may play significant roles in initiating
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local failure processes including those that initiate intramural
delamination [42,43]. Such defects could be difficult to identify
even with sophisticated methods such as p-DIC and will likely
require additional transmural imaging and layer-specific inverse
methods. The present validation study provides a firm foundation
upon which to build, however.
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Appendix

The PVP is an integral expression of the equilibrium equations
across a solid, which may be written quasi-statically as

�
ð

xðtÞ
r : ð$� n	Þdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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þ
þ
@xðtÞ

T:n	ds|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
P	ext

¼ 0 (A1)

where n	 is a virtual velocity field defined across the volume of
the solid (denoted xðtÞ), and $� n	 is the gradient of n	. T are
the tractions across the boundary (surface denoted @xðtÞ), P	int is
the virtual power of internal forces, and P	ext is the virtual power
of external forces.

The PVP has been used for the identification of material proper-
ties since 1990 through the VFM, which is an inverse method based
on the use of full-field deformation data [17,18]. The VFM was
recently applied to the identification of uniform material properties
in arterial walls [19] and will be extended herein to consider
regional variations of the material properties. Hence, let us consider
two virtual fields u	 and v	 defined across a given patch n

u	 nð Þ ¼ 1=j1
n � h

� �
1=j2

n � h
� �
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n � 1� nð Þh
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" #
nn (A2)

v	 ¼ � x

2
ex �

y

2
ey þ z ez (A3)

where j1
n and j2

n are the average maximum and minimum princi-
pal curvatures, respectively. Therefore, 1=j1

n is the radius of cur-
vature on the outer surface along the direction of the maximum
principal curvature, and 1=j2

n is the radius of curvature on the
outer surface along the direction of the minimum principal curva-
ture. The radii of curvature at any position n between the inner
(n ¼ 0) and outer (n ¼ 1) surfaces for the inner surface are then
1=j1

n � ð1� nÞh and 1=j2
n � ð1� nÞh.

In this Appendix, we prove that Eq. (A1) written with u	 yields
Eq. (22) (Proof 1) and similarly Eq. (A1) written with v	 yields
Eq. (26) (Proof 2).

Proof 1.The gradient of u	 may be written as follows:
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Substituting in and evaluating the integral expression for P	int (cf.
Eq. (A1))
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where Anðt; nÞ is the area of patch n at radial position n and may
be written as

Anðt; nÞ ¼ ð1=j1
nðtÞ � ð1� nÞhðtÞÞð1=j2

nðtÞ

� ð1� nÞhðtÞÞH1
nðtÞH2

nðtÞ

where H1
n and H2

n are the two angles defining the angular sector of
patch n along the directions of the maximum and minimum princi-
pal curvatures, respectively. Introducing the expression of Anðt; nÞ
into Eq. (A5), we obtain
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Regarding the virtual work on the boundaries, shear stresses are
null so only the virtual work of the internal pressure needs to be
considered

P	extðtÞ ¼ PðtÞð1=j1
nðtÞ � hðtÞÞð1=j2

nðtÞ
� hðtÞÞH1

nðtÞH2
nðtÞð1=j1
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n ðtÞ � 2hðtÞÞ (A7)

So, using Eq. (A1), we have
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Proof 2. A second virtual field is required here. Indeed, even if the
artery shape is not a perfect cylinder, j2

n is globally the curvature
along the axis of the artery and may take very small values at
most of the patches. The result is that rw

zz;n has little influence in
Eq. (22), leading to almost no sensitivity to a material parameter
such as ca

n. To address this issue, a second virtual field involving
rw

zz;n even in the patches where j2
n ffi 0 is proposed and will

involve the measured axial load f ðtÞ. The simplest virtual field
both satisfying these requirements and zeroing the virtual work of
the hydrostatic pressure is given by v	 (cf. Eq. (A3)). The gradient
may be written as

$� v	 ¼ � 1

2
ex � ex �

1

2
ey � ey þ ez � ez (A8)

We assume here that the same internal virtual work is shared
along the circumferential direction

P	int tð Þ¼�
ð

x tð Þ
r : $�v	ð Þdx¼� 1

K

ð
whole circumference

r : $�v	ð Þdx

where K is the number of patches along the circumferential
direction.
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Then, we have
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where ro is the average radius of the cross section of the consid-
ered patch, and b is the length of the patch in the z direction.

Regarding the virtual work across the boundaries, shear stresses
are again neglected and we have only to consider the virtual work
of the internal pressure on the inner surface and the virtual work
of the axial stress. We assume that the external virtual work is
also shared along the circumferential direction, yielding

P	ext tð Þ ¼
þ
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Then, we have
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We recognize in the bracket of Eq. (A10) the formula of the axial
load [37,38] and we eventually obtain

P	ext tð Þ ¼ b tð Þ
K

f tð Þ (A11)

Thus, using Eq. (A1), we have
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