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. Carboxyl terminus of Hsp70-interacting protein (CHIP) is a critical ubiquitin ligase/cochaperone

. toreduce cardiac oxidative stress, inflammation, cardiomyocyte apoptosis and autophage etc.

. However, itis unclear whether overexpression of CHIP in the heart would exert protective effects

. against DOX-induced cardiomyopathy. Cardiac-specific CHIP transgenic (CHIP-TG) mice and the wild-

: type (WT) littermates were treated with DOX or saline. DOX-induced cardiac atrophy, dysfunction,

. inflammation, oxidative stress and cardiomyocyte apoptosis were significantly attenuated in CHIP-TG
mice. CHIP-TG mice also showed higher survival rate than that of WT mice (40% versus 10%) after
10-day administration of DOX. In contrast, knockdown of CHIP by siRNA in vitro further enhanced
DOX-induced cardiotoxic effects. Global gene microarray assay revealed that after DOX-treatment,
differentially expressed genes between WT and CHIP-TG mice were mainly involved in apoptosis,
atrophy, immune/inflammation and oxidative stress. Mechanistically, CHIP directly promotes ubiquitin-

. mediated degradation of p53 and SHP-1, which results in activation of ERK1/2 and STAT3 pathways

. thereby ameliorating DOX-induced cardiac toxicity.

Chronic heart failure is a consequence of cardiac remodeling processes that can be induced by various types
of heart diseases such as myocardial infarction, chronic hypertension, or toxic agents. The anthracycline dox-
. orubicin (DOX) is widely used as an effective anti-tumour drug, but its clinical use is limited by cardiotoxicity
© leading to congestive heart failure'. Although a variety of approaches to protect the heart against DOX-induced
. cardio-toxicity have been attempted, treatment to prevent short and long term DOX-induced cardiac damage
remains limited®. Several lines of evidence support a critical role for molecular chaperones in the homeostasis
of the cardiovascular system. Heat shock proteins are abundantly expressed within myocardial cells, and the
inducible heat shock protein Hsp70 is upregulated after ischemic injury to the heart, and deletion of Hsp70
. might induce cardiac dysfunction and development of cardiac hypertrophy*. Moreover, Hsp20 interacting with
. phosphorylated AKT reduces endotoxin- or DOX-induced oxidative stress and cardiotoxicity™®. Importantly,
© in vitro screening for tetratricopeptide repeat (TPR)-containing proteins has identified carboxyl terminus of
Hsp70-interacting protein (CHIP) as a novel TPR-containing proteins in the human heart. CHIP interacts with
Hsp70/Hsp90 and regulates chaperone activity and protein quality control at multiple levels’.
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CHIP is known to be a dual-function cochaperone/ubiquitin ligase that is highly expressed in the heart and
other tissue cells. CHIP has ubiquitin ligase activity and targets chaperone-bound client proteins such as p53, tau,
ErbB2, Askl, Foxol, and myocardin for the ubiquitin-mediated degradations’m. Recently, CHIP was reported to
play a critical role in cardioprotection during oxidative stress'*. CHIP deficient mice result in markedly increased
apoptosis in cardiomyocytes and endothelial cells after infarction injury'. In contrast, overexpression of CHIP
inhibits ASK1- and p53-mediated apoptosis in cardiomyocytes and other cells'®!®1”. However, the physiological
in vivo role of CHIP overexpression in DOX-induced cardiac injury has not yet been investigated.

On the basis of previous findings, we therefore postulated that increased CHIP levels would ameliorate
DOX-induced cardiotoxicity. To test this hypothesis, wild-type (WT) and CHIP transgenic mice (CHIP-TG)
were administered with a single dose of DOX (20 mg/kg; i.p.) for 5 or 10 days. Cardiac function, histologic
aspects, cytokine production, apoptosis, oxidative stress and survival were examined. Here we showed that
cardiac-specific CHIP expression significantly improved cardiac function and prolonged survival in vivo by
blocking DOX-induced apoptosis, inflammation and oxidative stress. The cardioprotective effects of CHIP
against DOX toxicity were associated with ubiquitin-mediated degradation of p53, SHP-1 and preserved activa-
tion of ERK1/2 and STAT3 signaling pathways. These results suggest that CHIP may be a potential therapeutic
target for the treatment of DOX-induced heart failure.

Results

DOX downregulates the expression of CHIP in neonatal rat cardiomyocytes and in the mouse
heart. To determine the functional role of cardiac CHIP in response to DOX treatment, we first examined the
expression of CHIP, HSP70 and HSP90 in neonatal rat cardiomyocytes with different doses of DOX as indicated.
Western blot analysis showed that DOX treatment markedly decreased CHIP expression in a dose-dependent man-
ner, whereas no significant change in HSP70 and Hsp90 expression was observed (see Supplementary Fig. Sla).
Moreover, injection of DOX (20 mg/kg; i.p.) in mice significantly decreased CHIP expression compared with
control mice (see Supplementary Fig. S1b,c). These results indicate that CHIP expression is reduced in cardiomy-
ocytes in response to DOX.

Overexpression of CHIP improves DOX-induced cardiac dysfunction and mortality of mice. To
evaluate whether increased CHIP expression protects against DOX-induced cardiac dysfunction, CHIP-TG mice
were injected with a single dose of DOX (20 mg/kg) for one time. Five days after DOX injection, cardiac func-
tion was evaluated by echocardiography. Figure 1a showed representative echocardiograms after vehicle or DOX
administration in WT and CHIP-TG mice (Fig. 1a). WT mice were found to exhibit a significant decrease of
left ventricular posterior wall thickness at end-diastole (LVPWD) and left ventricular posterior wall thickness
at end-systole (LVPWS), a markedly increase of the left ventricular end diastolic dimensions (LVEDD) and left
ventricular end systolic dimensions (LVESD), whereas these alterations were markedly restored in CHIP-TG
mice (Fig. 1b-e). Moreover, DOX treatment caused a pronounced reduction in cardiac contractility reflected by
fractional shortening (FS%) and ejection fraction (EF%) in WT mice, and this effect was significantly attenuated
in CHIP-TG mice (Fig. 1f,g). In addition, the survival rate was significantly higher in CHIP-TG than in WT
mice after DOX treatment (40% versus 10%) (Fig. 1h). No death was observed in saline-treated groups (Fig. 1h).
Together, these results indicate that overexpression of CHIP ameliorates cardiac functional deterioration and
survival of mice in response to DOX.

Cardiac CHIP overexpression protects DOX-induced cardiac injury, apoptosis, atrophy, inflam-
mation and oxidative stress in mice. To test whether CHIP overexpression inhibits DOX-induced
cardiac injury and apoptosis in vivo, we first examined heart section with H&E staining and TUNEL assay.
DOX-treated WT mice exhibited marked focal cytoplasmic vacuolization (~31.7%), a hallmark of cardiomyocyte
injury, which is consistent with previous reports'®, whereas this effect was significantly reduced in CHIP-TG
mice (~11.7%) (Fig. 2a). TUNEL-positive cardiomyocytes were barely detectable in the heart of mice with saline
injection. DOX injection significantly increased the number of TUNEL-positive cardiomyocytes in WT mice
(~20.9%). Conversely, this change was markedly attenuated in CHIP-TG mice (~11.4%) (Fig. 2b). In addition,
DOX treatment resulted in a significant increase in Bax/Bcl-2 ratio in WT mice but not in CHIP-TG mice
(Fig. 2¢). Furthermore, we found that DOX injection significantly reduced the wall thickness and increase the
diameter of ventricular. The ratio of heart weight/body weight (HW/BW) and cross-sectional area of cardiomyo-
cytes were also decreased compared with saline group, indicating a ventricular dilation after DOX treatment. In
contrast, these changes were reversed in CHIP-TG mice (Fig. 3a,b). Five days after DOX injection, the number
of Mac-2-positive macrophages and the expression levels of IL-103, IL-6 and TNF-o mRNA were significantly
decreased in CHIP-TG hearts compared with WT hearts (Fig. 3¢,d). In addition, malondialdehyde (MDA) level
was significantly decreased but glutathione peroxidase (GPx) activity was markedly increased in CHIP-TG mice
compared with WT mice (Fig. 3e,f). There was no difference in the number of infiltrated macrophages, the levels
of the cytokines, the MDA level and GPx activity between two group hearts after saline injection (Fig. 3c-f).

Knockdown of CHIP by siRNA increases DOX-induced apoptosis, inflammatory response and
oxidative stress in neonatal rat cardiomyocytes. To further confirm the role of CHIP knockdown in
DOX-triggered cardiac injury, the expression of endogenous CHIP was reduced in neonatal rat cardiomyocytes
by infection of adenovirus siRNA-CHIP or siRNA-control. The infection efficiency reached more than 95% after
24hours. Cardiomyocyte viability was significantly lower and the number of TUNEL-positive cell was higher in
siRNA-CHIP-infected group than siRNA-control (Fig. 4a,b). gPCR analysis revealed that DOX treatment resulted
in an increase in the Bax/Bcl-2 ratio, the expression of pro-inflammatory cytokines (IL-183, IL-6 and TNF-«)
and the MDA level and a decreased in the GPx activity in siRNA-control than that in untreated group, and these
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Figure 1. Cardiac specific overexpression of CHIP improves DOX-induced cardiac dysfunction and
mortality of mice. (a) Representative M-mode echocardiograms of WT and CHIP-TG mice treated with saline
or DOX. Quantitative group data for echocardiographic measurements: (b) LVPWD; (c) LVPWS; (d) LVEDD;
(e) LVESD; (f) FS% and (g) EF% (n=10 per group). (h) Ten-day survival for WT and CHIP-TG mice treated
with a single dose of DOX (20 mg/kg). Survival was analyzed by the Kaplan-Meier approach and the log-rank
test (n =20 per group). *P < 0.05 versus WT + saline group, *P < 0.05 versus WT + DOX group. LVPWD: left
ventricular posterior wall thickness at end-diastole; LVPWS: left ventricular posterior wall thickness at end-
systole; LVEDD: left ventricular end diastolic dimensions; LVESD: left ventricular end systolic dimensions;

FS: fractional shortening; EF: ejection fraction.

effects were further enhanced in siRNA-CHIP-infected cells in response to DOX (Fig. 4c-f). No difference in
these alteration was observed under the basal condition (Fig. 4).

CHIP overexpression attenuates DOX-induced cardiac injury by regulating multiple mecha-
nisms in the heart. To investigate the molecular events of cardiac contraction improvement in CHIP-TG
mice after DOX injection, we performed microarray assay to examine the effects of CHIP overexpression on the
global gene expression profile of hearts after saline and DOX injection. We found that cardiac CHIP overexpres-
sion resulted in significant regulation of 1938 genes compared with WT mice after DOX-treatment. Among them,
657 genes were significantly upregulated, and 1281 genes markedly downregulated. The hierarchical clustering
analysis showed differentially expressed genes in the four groups (Fig. 5a). We then analyzed the functional bias
of these differentially expressed genes according to Gene Ontology (GO) classifications. A total of 511 GO items
associated with up-regulated genes and 477 GO items associated with down-regulated genes were significantly
altered between CHIP-TG and WT mice after DOX injection. Moreover, the majority of enriched GO terms
among the differentially expressed genes were associated with apoptosis, immune/inflammation, cell growth
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Figure 2. CHIP overexpression attenuates DOX-induced cardiac injury and cardiomyocyte apoptosis.

(a) Representative H&E staining of heart sections on day 5 after saline or DOX treatment (n =6 per group).
Arrows indicate representative vacuolization. Quantitative results of cardiomyocyte vacuolization were shown
on the right panel (scale bar = 50um). (b) Representative photomicrographs of cardiomyocyte apoptosis

in myocardium examined by TUNEL assay (scale bar =50 um). Quantitative results of TUNEL-positive
cardiomyocytes from WT and CHIP-TG mice were shown on the right (n =6 per group). (c) qPCR analysis
of Bax and Bcl-2 mRNA expression in WT and CHIP-TG mice treated with saline or DOX (n=6 per group).
#%P < 0.01, ***P < 0.001 versus WT + saline mice; *P < 0.05, #P < 0.01 versus WT + DOX mice.

and oxidative stress (Fig. 5b, Table 1). Some of the significantly up-regulated genes such as Cyp2b10, Mthfd2,
Postn, Col3al, Btg2, Igfl, and down-regulated genes such as Cyr61 and Lcn2 were also verified by qPCR analysis
(Fig. 5¢,d). Furthermore, analysis of pathways of genes with significantly differences between CHIP-TG and WT
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Figure 3. CHIP overexpression inhibits DOX-induced cardiac atrophy, inflammation and oxidative stress.
(a) The representative H&E staining of heart sections on day 5 after saline or DOX treatment of each group
were shown above. The ratio of heart weight to body weight (HW/BW) in WT and CHIP-TG mice were shown
below (n=6 per group). (b) Heart sections were stained with wheat germ agglutinin-TRITC conjugate (red)
to determine the myocyte fiber diameter (top; scale bar = 50 pm). Quantitative results of cardiomyocyte cross-
sectional areas from the indicated groups (bottom, n=6 per group). (c) Representative immunohistochemical
staining with anti-Mac-2 antibody in the heart sections. (top, scale bar =50 pm). Quantitative analysis of
Mac-2-positive cells in each group (bottom, n=6 per group). (d) gPCR analysis of mRNA expression of
IL-103, IL-6 and TNF-o was performed (n= 6 per group). (e,f) Malondialdehyde (MDA) levels and glutathione
peroxidase (GPX) activities were measured to estimate the extent of lipid peroxidation and anti-oxidation in
heart homogenates from WT and CHIP-TG mice treated with saline or DOX (n = 6 per group). *P < 0.05
versus WT -+ saline mice; P < 0.05 versus DOX-treated WT mice.

SCIENTIFICREPORTS | 6:28399 | DOI: 10.1038/srep28399 5



www.nature.com/scientificreports/

5|RNA-ontroI siRNA-CHIP TUNEL DAPI Merge

saline | siRNA-control
+saline
S
0
Q
DOX % 351 @ siRNA-control
(uM) SIRNA-CHIP % 30{ m siRNA-CHIP #
' +saline 525
220
8 15
o
2 10
* " 8 5
:o‘ 80 siRNA-control 3 o
= o |
o5 . +DOX (1uM) g BOX
g 960 2
O« | d
L Z
o 40
g E siRNA-CHIP
\‘: 20 —&— siRNA-control +DOX (1uM)
& —m— SIRNA-CHIP
0 0.5 1 5
DOX (uM) o
()
c d 3
] #
£ 30 .
8 # £ OiL-1g
5§ 25
s 3 & HiL6 *
2 * <z 2 H TNF-a
[ e
g E 8 15
g 2o
X T g 10
g, 2d
£
: il (i
b
0 g i
siRNA-control 4 — + = siRNA-control + — + —
SiRNA-CHIP  — + — + SiRNA-CHIP _— + — +
saline DOX saline DOX
e f
30 25
— # 2
é 254 =201
k] €
S 20 * S
o -
& §_15 *
E15 = #
g 2107
£10 s
< X 54
a a
=5 ]
04
0 siRNA-control ~ + — + -
siRNA-control ~ + — 4 — SRNA-CHIP — + _ +
siRNA-CHIP  — + —_— + -
saline DOX

saline DOX

Figure 4. Knockdown of CHIP enhances DOX-induced cell apoptosis, pro-inflammatory cytokine
expression and oxidative stress in neonatal rat cardiomyocytes. (a) Cardiomyocytes were infected with
adenovirus siRNA-control or siRNA-CHIP and then treated with different doses of 0.5, 1 or 5pM DOX for

24 hours. Cell viability was measured by trypan blue exclusion assay (top, scale bar =100 pm). Quantitative
analysis of viable cells (bottom). (b) Apoptosis was detected by TUNEL assay 24 hours after DOX (0.5 pM)
treatment (left, scale bar = 50 pm). Quantitative analysis of TUNEL-positive cells (right). (c) qPCR analysis

of Bax and Bcl-2 mRNA expression was performed, and Bax/Bcl-2 ratio was determined for each group.

(d) qPCR analysis of proinflammtory cytokines IL-13, IL-6, TNF-oe mRNA expression was performed.

(e,f) MDA levels and GPx activities were measured in cardiomyocytes homogenates from siRNA-control and
siRNA-CHIP infected groups. *P < 0.05 versus siRNA-control + saline. *P < 0.05 versus siRNA-control + DOX.

mice showed that 113 pathways were significantly up-regulated and 140 pathways were down-regulated, which
are mainly involved in regulating metabolic pathways, cytokine-receptor interaction, p53, insulin signaling,
mTOR, MAPKSs, and ubiquitin-mediated proteolysis, etc. (see Supplementary Fig. S3).

Effect of CHIP on the p53, ERK and STAT3 signaling pathways. To further determine which sign-
aling pathways were involved in the possible mechanism of CHIP cardioprotection against DOX, we selectively
assessed the activation of several major signaling pathways, including p53, IGFIR/AKT, MAPKs (ERK, JNK) and
gp130/STAT3, which play important roles in regulating cardiac hypertrophy, myocyte apoptosis, inflammation,
and oxidative stress'®. We found that DOX-treatment did not significantly reduce the protein levels of receptors
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Figure 5. Microarray assay in WT and CHIP-TG hearts after DOX treatment. (a) Hierarchical clustering
depicting expression profiles of differentially expressed genes in WT and CHIP-TG mice on day 5 after saline/
DOX treatment (n =3 per group). Gene expression levels are shown as color variations (red, high expression;
green, low expression). (b) The significant different GO of up-regulated (above) and down-regulated (below)
between WT and CHIP-TG mice-treated with DOX. (c¢) The primary microarray data showed fold change of the
selected genes expression in WT and CHIP-TG mice-treated with DOX. (n =6 per group). (d) qPCR validation
for the selected genes mRNA levels in WT and CHIP-TG mice-treated with DOX. (n=6 per group).

IGFIR and gp130, but markedly increased the levels of p53 and phosphorylated JNK1/2, decreased the levels of
phosphorylated AKT, ERK1/2, Jak and STAT3 in WT hearts compared with saline-treated group, whereas the
levels of p53 and phosphorylated ERK1/2, Jak and STAT3 rather than phosphorylated AKT and JNK1/2 were
significantly reversed in CHIP-TG mice (Fig. 6a and Supplemental Fig. S2a,b). In contrast, knockdown of CHIP
by siRNA markedly increased the level of p53 protein and decreased ERK1/2 and STAT3 phosphorylation in
neonatal rat cardio-myocytes compared with DOX-treated siRNA-control (see Supplementary Fig. S2¢). These
results suggest that the protective effect of CHIP on DOX-induced cardiotoxicity was partially mediated by p53,
ERK1/2 and STAT?3 signaling pathways.

CHIP promotes ubiquitin-mediated degradation of SHP-1.  Previous study have proved that CHIP
was responsible for p53 degradation in the heart®. To investigated how CHIP mediates activation of Jak/STAT3
and ERK1/2, we first assessed whether CHIP affected the tyrosine phosphatase SHP-1 that was known to suppress
Jak/STAT3 and ERK1/2 pathways in H9¢2 cells*"?2. Our co-immunoprecipitation assays revealed that SHP-1
were precipitated by antibody against CHIP, but not by control rabbit IgG (Fig. 6b), indicating that CHIP directly
interacted with SHP-1 in cardiomyocytes. We then sought to determine whether CHIP downregulates SHP-1 in
heart tissues, and found that the SHP-1 protein level was significantly increased in DOX-treated wild-type mice,
whereas this effect was abrogated in CHIP-Tg hearts (Fig. 6a). To establish whether CHIP mediated SHP-1 ubiq-
uitylation, we immuneprecipitated SHP-1 from Ad-GFP- or Ad-CHIP-infected H9¢2 cells and immunoblotted
for ubiquitylated species. We found that increased expression of CHIP significantly increased SHP-1 ubiquityla-
tion compared with Ad-GFP control (Fig. 6¢). To further determine whether CHIP promotes SHP-1 degradation
through proteasomes, we used proteasome inhibitor MG132 to treat H9c2 cells. Consistent with the results from
animal experiments, overexpression of CHIP also significantly decreased the protein levels of SHP-1 compared
with Ad-GFP control (Fig. 6d, lane 2 vs 1), and this effect was markedly reversed MG132 (Fig. 6d, lane 4 vs 2),
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Btg2 (2.67) Len2 (2.27)
Phlda3 (2.52) Hmox1 (2.04)
Dnase2a (2.11) Plscrl (1.72)
Asns (2.09) Micall (1.72)
Mmp2 (2.08) Nr4al (1.67)
Cxcl12 (2.05) Zfp110 (1.61)
Sh3kbpl (1.99) Maltl (1.56)
Igf1 (1.85) Bcl2l1 (1.54)
Slit2 (1.78) Mknk2 (1.54)
Chacl (1.75) Ntnl (1.54)
Pla2g4a (1.73) Casp9 (1.52)
Aen (1.72) Dapkl (1.52)
Bcl2 (1.62) Xree5 (1.52)
Sfrpl (1.62) Bik (1.52)
Ccngl (1.60)

Grk5 (1.59)

Ptgfr (1.58)

Fhi2 (1.57)

Atf5 (1.57)

Pf4 (1.56)

Cycs (1.55)

Extracellular matrix and/or genes associated with fibrosis
Postn (3.17) Cyr61 (3.57)
Col3al (2.76) Ctgf (1.96)
Olfml2b (2.62) Spock2 (1.52)
Lgals3 (2.55)

Sulf2 (1.79)

Colla2 (1.73)

Smoc2 (1.69)

Col5a2 (1.67)

Egflam (1.64)

Colla2 (1.64)

Collal (1.53)

Crispld2 (1.50)

Col5al (1.50)

Ndufs4 (1.50)

Cell growth/proliferation

Cxcl12 (2.05) Tacc2 (1.72)
Nppa (1.87) Bcl211 (1.54)
Slit2 (1.78) Xree5 (1.52)

Pla2g4a (1.73)
Myocd (1.63)
Sfrpl (1.62)
Bcl2 (1.62)
Fanca (1.62)
Atf5 (1.57)
Empl (1.53)
Serpine2 (1.52)
Nf2 (1.52)
Cgrrfl (1.50)

Heart development/embryonic skeletal system development/actin
cytoskeleton organization/multicellular organismal development

Wifl (2.47) Sorbsl (1.82)
Dnase2a (2.11) Enah (1.67)
Eda2r (2.04) Dmd (1.61)
Continued
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Pdlim?7 (1.89) Vamp5 (1.59)

Sulf2 (1.79) Flnb (1.56)
Slit2 (1.78)
Sema3c (1.74)
Myocd (1.63)
Sfrpl (1.62)
Bves (1.61)
Ptpla (1.60)
Capl (1.54)
Sema3b (1.54)
Collal (1.53)
Nf2 (1.52)
Serpine2 (1.52)

Hypertrophy

Igfl (1.85) Lmcd1 (1.67)

Immune/inflammatory response

Clec4n (2.14) Plscrl (1.89)

Cxcl12 (2.05) Cblb (1.61)

Ccl8 (1.93)

Slit2 (1.78)

Ccll2(1.71)

Ly96 (1.67)

C3arl (1.58)

Ccl6 (1.57)

Pf4 (1.56)

Ccl9 (1.5)

Oxidation-reduction process

Cyp2b10 (4.00) Cp (2.17)

Mthfd2 (3.13) Fmo2 (1.92)

Pam (1.90) Fdftl (1.82)

Aldh112 (1.74) Micall (1.72)

Asph (1.73) D2hgdh (1.67)

LoxI2 (1.69) Cyp2d22 (1.64)

Loxl1 (1.67) P4htm (1.64)

Aldh18al (1.60) Dmd (1.61)

Mecr (1.59) Gpdl (1.61)

Nqo2 (1.54) Vamp5 (1.59)

Hsd17b7 (1.52) Hsd17b10 (1.59)

Ndufs4 (1.50) Bckdhb (1.56)
Glrx3 (1.56)

Cat (1.54)

Fmo5 (1.52)
Tet2 (1.52)

Table 1. Genes Dys-regulated in TG Mice vs WT Controls Five Days After DOX-treatment.

indicating that CHIP targets SHP-1 protein for proteasome degradation. To further study the crucial role of CHIP
in regulating SHP-1 degradation and activation of Jak/STAT3 and ERK1/2 pathways, H9c2 cells were transfected
with siRNA-CHIP, siRNA-SHP-1 or siRNA control. We found that knockdown of CHIP significantly upregulated
SPHI protein level but decreased the phosphorylation of Jak, STAT3 and ERK1/2 (Fig. 6e, lane 2 vs 1), whereas
depletion of SHP-1 markedly reversed this effect (Fig. 6e, lane 3 vs 2), indicating that CHIP promotes Jak/STAT3
and ERK1/2 activation through degradation of SHP-1.

Discussion

CHIP, as a chaperone and ubiquitin E3 ligase, has been widely explored in protection against ischemic injury
and other stress stimuli”!*13-1>1718 However, its possible protective effects on DOX-induced cardio-toxicity and
underlying mechanisms are not well defined. In this report, we provide the first evidence that CHIP in vivo and
in vitro protects against DOX-induced cardiac apoptosis, atrophy, inflammatory and oxidative stress resulting in
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Figure 6. CHIP degrades SHP-1 through ubiquitin-proteasome system and activates STAT3 and ERK1/2
signaling pathway. (a) Western blot analysis of protein levels of p53, SHP-1, p-STAT3/STAT?3 and p-ERK1/2/
ERK1/2 in WT and CHIP-TG hearts (left). Quantitative analysis of relative protein levels (right). *P < 0.05,
#+#P < 0.01 versus WT mice + saline; *P < 0.05 versus WT mice + DOX. (b) The interactions of SHP-1 with
CHIP were detected with co-immunoprecipitation in H9¢2 cells. H9¢2 cells lysates were immune-precipitated
with anti-CHIP antibody or control IgG, and the immune-precipitates were subjected to sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotted with anti-SHP-1 antibody.

(c) Equal amounts of lysates from Ad-GFP/Ad-CHIP adenovirus H9¢2 cells were immune-precipitated with
SHP-1 antibody and analyzed by immunoblotted with anti-ubiquitin antibody to detect ubiquitylated forms of
SHP-1 in vitro. (d) Western blot analysis of protein levels of SHP-1, p-STAT3/STAT3 and p-ERK1/2/ERK1/2 in
H9c¢2 cells after transfected with GFP/CHIP adenovirus and treated with or without MG 132 (left). Quantitative
analysis of relative protein levels (right). (e) Western blot analysis of protein levels of SHP-1, p-Jak/Jak,
p-STAT3/STAT3 and p-ERK1/2/ERK1/2 in H9¢2 cells after transfected with siRNA-control, siRNA-CHIP or
siRNA-SHP-1 (left). Quantitative analysis of relative protein levels (right). *P < 0.05, **P < 0.01, ***P < 0.001
versus Ad-GFP/siRNA-control; P < 0.05, **P < 0.001 versus Ad-GFP + MG132/siRNA-CHIP.

prevention of cardiac dysfunction and improvement of mouse survival. These effects were associated with alter-
ation of multiple signaling pathways, including decreased p53 and increased activation of ERK1/2 and STAT3
signaling pathways.

DOX is one of the most important anticancer agents. However, clinical use of DOX is limited by its car-
diotoxicity'~. Although the precise mechanisms whereby DOX induces myocardial injury have not been fully
elucidated, it is widely accepted that the DOX induces cardiac injury via several mechanisms, including activa-
tion of ubiquitin-proteasome system, sarcomere reorganization, induction of proinflammatory cytokines, free
radical generation and apoptotic cell death that are the typical changes in DOX-induced heart failure?. Several
recent findings indicate that cardiomyocyte apoptosis is a leading cause of cardiac dysfunction in DOX-induced
cardiomyopathy®. DOX evokes oxidative stress and expression of pro-apoptotic protein p53 and Bax, which
activates apoptotic signaling leading to cardiomyocyte apoptosis in the heart and in isolated cardiomyocytes®**2°,
Moreover, overexpression of antioxidant genes such as manganese superoxide dismutase and catalase in the heart
protects mice against DOX-induced heart failure?®*. CHIP can activate HSF1 and protect against apoptosis and
cellular stress'*. CHIP also promotes ASK1 degradation leading to inhibition of cell apoptosis'®. In contrast, CHIP
knockout aggregates ischemia/reperfusion-induced myocardial apoptosis and dysfunction'>*¢. To seek evidence
of the protective effect of CHIP in DOX-induced apoptosis, we conducted a series of TUNEL assays, analyses
of Bax and Bcl-2 expression and measurement of oxidative stress in vivo and in vitro. Our results demonstrated
that increased CHIP expression markedly preserved cardiac dysfunction and mouse survival (Fig. 1), effectively
decreased TUNEL-positive cardiomyocytes, Bax/Bcl-2 ratio, MDA level but enhanced the activity of antioxidant
enzyme GPx (Figs 2 and 3). These results suggest that CHIP may play a critical role in protecting cardiomyocyte
apoptosis evoked by DOX partially through inhibition of oxidative stress.
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Studies have demonstrated that DOX induces cardiac dysfunction, which was accompanied by marked
cardiac atrophy?®*? and infiltration of inflammatory cells®. It has been reported that DOX can lead to cardiac
atrophy>®*!, which was also confirmed in our study (Fig. 3a,b). Our new finding is that cardiac-specific overex-
pression of CHIP exerts an anti-atrophic effect on heart caused by DOX (Fig. 3a,b). Oxidative stress can directly
trigger cytokine expression, which was markedly increased in the early time and 5 days after DOX injection®.
Recently, our results indicate that CHIP is involved in Ang II-induced expression of pro-inflammatory cytokines
through inactivation of NF-kB in the mouse heart and neonatal rat cardiomyocytes'®. Consistent with these
observations, the present results showed that DOX-induced accumulation of macrophages and the expression
of pro-inflammatory cytokines such as IL-13, IL-6 and TNF-o were markedly suppressed in CHIP-TG mice
(Fig. 3¢,d). In contrast, knockdown of CHIP had opposite effect (Fig. 4).

Cardiac injury including apoptosis, atrophy, inflammation and oxidative stress induced by DOX ultimately
leads to cardiomyopathy and congestive heart failure'. The mechanisms leading to DOX-induced myocardial
damage may involve multiple signaling pathways, including p53, IGF1R/AKT, NF-kB, MAPKs (ERK, JNK), and
gp130/Jak/STAT3?. For example, the p53 null mice show reduced cardiomyocyte apoptosis and concomitant
improvements in cardiac function®. Inhibition of AKT and ERK pathways is associated with DOX-induced car-
diotoxicity, which is prevented by the administration of cardio-protective reagents, such as oleylethanolamide,
dexrazoxane, granulocyte colony-stimulating factor (G-CSF) that increased ERK1/2 activity>'***. Moreover, sev-
eral studies have demonstrated that CHIP interacts with HSP90 and can regulate both ERK1/2 and Jak/STATSs
pathways in various cell types®-l. To further explore the protective mechanisms of CHIP in DOX-induced
cardiac injury, we first performed microarray assay, and identified several signaling pathways were associated
with cardiac injury, including ECM-receptor interaction, cytokine-receptor interaction, p53, insulin signaling,
MAPKSs, and ubiquitin-mediated proteolysis (Supplementary Fig. S3). Western blot further demonstrated that
CHIP did not affect IGF1R/AKT, JNK1/2, gp130 (Supplementary Fig. S2A,B), but can interacted with and pro-
moted SHP-1 degradation by proteasome thereby leading to activation of Jak/STAT3 and ERK1/2 (Fig. 6). A
study has demonstrated that CHIP plays a role in mediating p53 degradation in the ischemic heart®’. Gp130/
Jak/STATS3 signaling pathway also participates in cardiac injury. Overexpression of STAT3 in the heart protects
against DOX-induced cardiomyopathy, thus resulting in an improved survival rate by preventing progression of
heart failure*?. SHP-1 is known to serve as an important phosphatase of the Jak/STAT signaling pathway?"#>*,
Loss of SHP-1 enhances the stability of Jak3 and activates Jak3/STAT3 signaling?'. In addition, SHP-1 also inter-
acts with ERK1/2 and negatively regulated MAPK/ERK1/2 signaling pathway >, Together, above data indicate
that CHIP protects against DOX-induced cardiac injury at least in part through ubiquitin-mediated degradation
of p53 and SHP-1, and activation of Jak/STAT3 and ERK1/2 pathways.

In conclusion, this study demonstrates that cardiac-specific overexpression of CHIP ameliorated
DOX-induced cardiac injury and dysfunction. The mechanisms underlying its protection at least in part were
associated with the attenuation of DOX-triggered oxidative stress, the stability of p53 and SHP-1 proteins, and the
activation of ERK1/2 and Jak/STAT3 signaling pathways, leading to inhibition of DOX-induced cardiomyocyte
apoptosis, atrophy and inflammation. Consequently, left ventricular contractile function and mouse survival was
improved after DOX injury. Thus, increased CHIP expression might be a promising therapeutic target for the
treatment of DOX-triggered cardiac injury and heart failure.

Materials and Methods

Antibodies and reagents. Dulbecco’s modified Eagle’s medium, medium supplements, and fetal bovine
serum was purchased from Invitrogen (Carlsbad, CA). Doxorubicin (DOX) was obtained from Sigma-Aldrich.
Antibodies were purchased from Cell Signaling Technology (Beverly, MA) and (Abcam, Inc. (Cambridge, UK)
(Supplemental Materials and methods).

Cell culture and adenoviral constructs. Neonatal rat cardiomyocytes were isolated by enzymatic dis-
association of 1-day-old Sprague Dawley rats with a mixture of 80 mg/kg ketamine and 30 mg/kg xylazine
as described?’. H9c2 cells were obtained from American Type Culture Collection (ATCC, Rockville, MD,
USA). Recombinant adenoviruses expressing GFP alone (Ad-GFP), CHIP (Ad-CHIP), scrambled siRNA
(siRNA-control, 5'-GTGCGTTGCTAGTACCAAC-3’; siRNA-CHIP, 5'-TGAGGCCAAGCACGATAAA-3/;
siRNA-SHP-1, 5-CCGCUACAAGAACAUUCUUTT-3’) driven by the cytomegalovirus promoter were gener-
ated with the Ad-Easy system*”. Twenty-four hours after plating, cells were infected with Ad-GFP, Ad-CHIP,
siRNA-control and siRNA-CHIP for 24 hours and then treated with 0.5 uM DOX for the indicated time points.

Animals and treatments. Cardiac-specific CHIP transgenic mice were created as described previously's.
CHIP transgenic (TG) mice (male, C57BL/6, 10-12-week-old) and the wild-type (WT) littermates and were ran-
domly assigned to either the control group or the DOX-treated group. DOX was dissolved in saline and adminis-
tered by intra-peritoneal injection (i.p) at a single dose of 20 mg/kg for one time*. Five days after DOX injection,
we sacrificed mice and performed additional experiments. Control mice received injections of saline of compa-
rable volume. Hearts were removed from mice anesthetized with a mixture of 80 mg/kg ketamine and 30 mg/kg
xylazine intra-peritoneally. All procedures were approved by the Institutional Animal Care and Use Committee of
Dalian Medical University. The investigation conforms to the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health (NIH Publication No. 85-23, revised 2011).

Echocardiography. Echocardiographic measurement was performed with a Vevo 770 ultrasound system
(Visual Sonics Inc.) equipped with a 30-MHz transducer as described*®. (Supplemental Materials and methods).
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Histological and immunohistochemical analysis. Histological analyses of hearts from WT and
CHIP-TG mice were performed according to standard protocols. Heart sections were stained with hematoxylin
and eosin (H&E), Masson’s trichrome and wheat germ agglutinin-TRITC conjugate as described previously*:.
Macrophage populations in the heart sections were detected by with anti-Mac-2 antibody or isotype control.

Cell viability and TUNEL assay. Cell viability was determined by Trypan blue exclusion assay as
described*$-°. Cardiomyocte apoptosis was evaluated by the Dead End™ Fluorometric TUNEL System
(Promega) according to manufacturer’s instructions®’. In the heart sections, cardiomyocytes were identified with
a-actinin immunostaining, and nuclei were counterstained with DAPI. The percentage of TUNEL-positive cardi-
omyocytes was determined by counting 10 random fields per section under a microscope (magnification, x400).

RNA analysis. Hearts from WT and CHIP-TG mice were excised, rinsed in PBS, frozen in liquid nitrogen.
Total RNA was extracted by the Trizol reagent method (Invitrogen). The levels of Bax, Bcl-2, interleukin 1 (3
(IL-18), IL-6, tumor necrosis factor o (TNF-a), and other selected gene mRNA expression were measured by
quantitative real-time PCR (qPCR) with an iCyclerIQ system (Bio-Rad, USA)'. (Supplemental Materials and
methods, Table 1).

Measurement of maleic dialdehyde and glutathione peroxidase. Maleic dialdehyde (MDA) as
indicator of lipid peroxidation®* was measured using the commercially available colorimetric assay kit (Nanjing
Jiancheng Bioengineering Institute, China). Antioxidant enzyme was measured by Glutathione Peroxidase (GPx)
Assay Kit (Calbiochem). Detailed operation procedure according to manufacturer’s instructions as described
previously*.

Microarray gene expression analysis. Total RNA was extracted with Trizol reagent (Invitrogen) from
the hearts of saline and DOX-treated WT and CHIP TG mice (n=3 per group) at day 5 after injection. The
microarray assay was performed as described previously®*>*4. The bioinformatics of Gene Ontology (GO)
and Pathway analysis were performed by using the Capital Bio Molecule Annotation System plate analysis as
described before®. The gene expression data are available at the Gene Expression Omnibus (GEO) website: http://
www.ncbi.nlm.nih.gov/geo/ (accession number GSE59672) (Supplemental Materials and methods).

Western blot analysis. Protein samples were extracted from neonatal rat cardiomyocytes, or heart tissues
which are collected on the fifth day after DOX injection. Western blot analyses were performed using indicated
primary antibodies as described previously®. (Supplemental Materials and methods).

Immunoprecipitation. Immunoprecipitations were performed as described before?”. Briefly, H9c2 cells
were maintained in 10% DMEM complete medium. Cell lysates were immunoprecipitated with anti-CHIP or
anti-IgG antibody for 2h at 4°C, then beads were washed and analyzed by immunoblotting with anti-SHP-1 and
anti-CHIP antibodies.

Ubiquitination Assays. H9c2 cells were transfected with Ad-GFP and Ad-CHIP adenovirus for 24h in
serum-free medium. Then treated with 0.5 M DOX/saline for 24h in 10% DMEM complete medium. Cell lysates
were immunoprecipitated with anti-SHP-1 antibody, and analyzed by immunoblotting using anti-ubiquitin,
anti-SHP-1 and anti-CHIP antibodies as previously described*’.

Statistical analysis. Data are presented as means & SEM. Differences between WT and CHIP-TG mice were
evaluated for statistical significance using Student’s t test or by two-way ANOVA. Survival curves after DOX injec-
tion (20 mg/kg; i.p.) were created in WT (n = 20) and CHIP-TG (n=20) mice by the Kaplan-Meier method and
the log-rank test. The two-side Fisher’s exact test and x* test were used to classify the GO and Pathway category,
and FDR was calculated to correct the P-value. A P < 0.05 was regarded as significant.
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