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Multivariate pattern recognition approaches have recently facilitated the search for reliable neuroimaging-based biomarkers in psychiatric

disorders such as schizophrenia. By taking into account the multivariate nature of brain functional and structural changes as well as their

distributed localization across the whole brain, they overcome drawbacks of traditional univariate approaches. To evaluate the overall

reliability of neuroimaging-based biomarkers, we conducted a comprehensive literature search to identify all studies that used multivariate

pattern recognition to identify patterns of brain alterations that differentiate patients with schizophrenia from healthy controls. A bivariate

random-effects meta-analytic model was implemented to investigate the sensitivity and specificity across studies as well as to assess the

robustness to potentially confounding variables. In the total sample of n¼ 38 studies (1602 patients and 1637 healthy controls), patients

were differentiated from controls with a sensitivity of 80.3% (95% CI: 76.7–83.5%) and a specificity of 80.3% (95% CI: 76.9–83.3%).

Analysis of neuroimaging modality indicated higher sensitivity (84.46%, 95% CI: 79.9–88.2%) and similar specificity (76.9%, 95% CI: 71.3–

81.6%) of rsfMRI studies as compared with structural MRI studies (sensitivity: 76.4%, 95% CI: 71.9–80.4%, specificity of 79.0%, 95% CI:

74.6–82.8%). Moderator analysis identified significant effects of age (p¼ 0.029), imaging modality (p¼ 0.019), and disease stage

(p¼ 0.025) on sensitivity as well as of positive-to-negative symptom ratio (p¼ 0.022) and antipsychotic medication (p¼ 0.016) on

specificity. Our results underline the utility of multivariate pattern recognition approaches for the identification of reliable neuroimaging-

based biomarkers. Despite the clinical heterogeneity of the schizophrenia phenotype, brain functional and structural alterations

differentiate schizophrenic patients from healthy controls with 80% sensitivity and specificity.
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INTRODUCTION

Schizophrenia shows a lifetime prevalence of 0.30–0.66% in
the general population(McGrath et al, 2008) making it one
of the leading factors of global disease burden (‘WHO, 2004
Global Burden of Disease—Update,’ n.d.). After more than
a century of research into the neurobiology of the disorder,
its pathophysiological underpinnings still remain unknown.
Over the past 15 years, considerable research efforts
elucidated a vast array of functional (Howes et al, 2012;
Minzenberg et al, 2009) and structural brain abnormalities
(Chan et al, 2009; Fornito et al, 2009; Honea et al, 2005) that
may constitute the ‘organic surrogate’ of the illness. Even
though these results indicate significant differences in, eg,
brain structure between healthy controls (HC) and patients

at the group level—a substantial overlap is usually observed
between groups, which disallow the use of these differences
for the individualized diagnosis of the disorder. Therefore,
alterations in brain structure and function have so far not
been successfully integrated into the diagnostic process as
disease biomarkers operating on the single-subject level
(Borgwardt et al, 2012; Borgwardt and Fusar-Poli, 2012;
Kapur et al, 2012). The main reason for this gap between
research and its potential diagnostic application lies in
traditional univariate statistical approaches, which neglect
the heavily interconnected nature of the functional and
structural brain data (Davatzikos, 2004).

To overcome these methodological drawbacks, an in-
creasing number of studies have applied novel multivariate
statistical approaches to the analysis of brain alterations in
patients with schizophrenia (eg, (Davatzikos et al, 2005;
Fu and Costafreda, 2013; McIntosh and Lobaugh, 2004;
Zarogianni et al, 2013)). These results indicate that patterns
of subtle structural and functional changes can be highly
distinctive of schizophrenia-related brain alterations, even
though each individual component within these patterns
might be not. Most importantly, the classification perfor-
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mance of neuroimaging biomarkers based on multivariate
statistical methods is typically assessed by using cross-
validation strategies that allow estimating the predictive
models’ generalizability to unseen test individuals. In this
regard, the majority of studies using multivariate machine
learning algorithms reported good generalization perfor-
mances, which might open up the possibility of neuroima-
ging to become part of the routine diagnostic process in the
future. For instance, support-vector machines (Davatzikos
et al, 2005), partial least squares analysis (Kawasaki et al,
2007; McIntosh and Lobaugh, 2004), random forests
(Anderson et al, 2010; Greenstein et al, 2012) and artificial
neural networks (Bose et al, 2008; Josin and Liddle, 2001;
Rathi et al, 2010) have shown to differentiate patients from
HC with diagnostic accuracies of 60–100% using neuroima-
ging data.

However, these studies differ with respect to multiple
aspects such as the demographic characteristics of the
investigated populations, the clinical symptoms of the
patient samples, the imaging modalities employed,
the preprocessing of neuroimaging data prior to analysis,
the statistical models, as well as the evaluation scheme of the
models’ performance. As a result, the sensitivity and
specificity of the reported predictive models differ widely,
making it difficult to compare the classification performance
of neuroimaging-based biomarkers across studies. Further-
more, little is known about which factors contribute to the
success of MRI-based predictive modeling as authors may
typically test a range of analysis pipelines and finally report
only the analysis scheme achieving the highest test
performance (Pers et al, 2009). Only a few studies have
systematically compared two or more algorithms (Bose et al,
2008; Castellani et al, 2012; Rathi et al, 2010). However, a
systematic investigation of different imaging modalities or
multivariate methods is still missing. Finally, to the best of
our knowledge, no comparative reports exist to date on the
relationship between clinical variables of the tested samples
and diagnostic accuracies of neuroimaging-based diagnostic
models. Age, gender, psychiatric symptoms, or current
medication represent potentially confounding variables,
which might affect the diagnostic success of such models.

Thus, we conducted a meta-analysis of multivariate
pattern recognition studies to evaluate the performance of
neuroimaging phenotypes in distinguishing patients with
schizophrenia from HC. Within this framework, we also
assessed the potentially moderating impact of different
clinical variables on these neurodiagnostic signatures.

MATERIALS AND METHODS

Search and Selection Strategy

The entire electronic PubMed database was searched from 1
January 1950 up to 31 May 2013. Initially, studies were
screened by using a comprehensive search term ((‘support
vector’ OR ‘SVM’ OR ‘classification’ OR ‘categorization’)
AND (‘MRI’ OR ‘fMRI’ OR ‘magnetic resonance’ OR
‘imaging’ OR ‘gray matter’ OR ‘gray matter’ OR ‘white
matter’ OR ‘DTI’ OR ‘diffusion tensor imaging’ OR ‘PET’
OR ‘positron emission tomography’ OR ‘SPECT’ OR ‘single
photon emission tomography’) AND (‘schizophrenia’
OR ‘psychosis’ OR ‘psychotic’ OR ‘schizophreniform’)).

Subsequently, all studies were screened according to the
following criteria: To be included in the meta-analysis a
paper needed to report results of a neuroimaging-based
multivariate classification model separating patients with
schizophrenia from HC. We included all available multi-
variate approaches such as support-vector machines, ran-
dom forests, discriminant analysis, logistic regression,
neural networks, as well as combinations thereof. Studies
were included if the following measures of classification
performance were available or if data allowed for the
calculation of the following parameters: true positives (TP),
true negatives (TN), false positives (FP), and false negatives
(FN). In case insufficient data was reported, authors were
contacted via email to provide additional information
regarding their published reports. Furthermore, in multi-
variate classification it is of utmost importance to apply
some form of cross-validation while estimating model
parameters to avoid overfitting, which is associated with
low generalizability. Thus, only studies that applied cross-
validation (eg, leave-one-out, n-fold, and bootstrapping)
were included in the analysis. In some cases, multiple studies
were published based on the same sample or with large
overlap between samples. We verified sample overlap by
contacting the corresponding authors. In order to avoid bias
we excluded samples with large overlap (shared n420%).
The results of the literature search are presented in a flow-
chart following the PRISMA guidelines (Moher et al, 2009)
(see Supplementary Figure 1).

Data Extraction

The main outcome measure was the diagnostic test
performance of the different multivariate approaches
for separating schizophrenic patients from HC as mea-
sured by sensitivity (¼TP/(TPþ FN)) and specificity
(¼TN/(TNþ FP)). The following additional information
was extracted from all studies: names of the authors; year of
publication; population characteristics of HC and patient
groups (group size, age, gender, antipsychotic use, diag-
nosis, and symptom ratings); type of neuroimaging data
(magnetic resonance imaging ‘MRI’, functional MRI ‘fMRI’,
resting-state fMRI ‘rsfMRI’, positron emission tomography
‘PET’, single photon emission computed tomography
‘SPECT’, diffusion tensor imaging ‘DTI’, scanner type, and
resolution), characteristics of the employed preprocessing
methodology, characteristics of the classification method
(eg, linear discriminant analysis and support-vector ma-
chine) and characteristics of the cross-validation procedure.
Data extraction was performed by two authors separately
(LKI, JK) to ensure accuracy and disagreements were
discussed in a consensus conference. The QUADAS-2
guidelines were used to assess study quality of all
publication included in the present meta-analysis (see
Supplementary Figure 2) (Whiting et al, 2011).

Data Analysis

In studies of diagnostic test accuracy sensitivity and speci-
ficity are often negatively correlated and therefore pooling
them in the context of a meta-analysis might lead to biased
results (Gatsonis and Paliwal, 2006). Instead a bivariate
approach(Reitsma et al, 2005) and a strategy based on a
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hierarchical summary ROC model (HSROC (Rutter and
Gatsonis, 2001)) have been suggested to estimate sensitivity
and specificity across studies. However, in most situations
both approaches lead to identical results (Harbord et al,
2007). In the present analysis we implemented the
strategy introduced by Reitsma et al (2005). In this bivariate
approach, log-transformed sensitivity and specificity
are combined in one bivariate regression model while
explicitly accounting for their correlation. It is assumed
that sensitivity and specificity vary across studies because
of differences in study populations, sampling errors,
and differences in implicit thresholds applied to the data
to separate patients from HC. Thus a random-effects
model is applied in order to account for between-study
heterogeneity. As larger samples are associated with smaller
sampling error and thus with more precise effect size
estimates, the studies included in the meta-analysis are
weighted according to their sample size. Meta-analysis
results are presented in forest plots separately for sensitivity
and specificity. Summary estimates for sensitivity and
specificity are provided separately for MRI, for
rsfMRI studies as well as for all studies combined. We
considered n¼ 5 to be the minimum number of studies to
justify a separate meta-analysis (Ioannidis and Lau, 2001).
The robustness of the results as well as the effect of
potentially confounding variables (eg, age, gender ratio, and
year of publication) was investigated by adding moderator
variables to the bivariate regression model. In order to
investigate potential publication bias in meta-analyses of
diagnostic accuracies, it has been recommended to create
funnel plots by plotting log diagnostic odds ratios (logDOR)

for all studies against
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

q
with n1 and n2 representing

the sample sizes of the patient and the HC group. This
measure is proportional to the inverted square-root of the
effective sample size (ESS):. In case of a publication bias the
distribution of studies in the funnel plot is asymmetrical.
A statistical test for funnel plot asymmetry is provided by a
regression of logDOR with 1ffiffiffiffiffiffi

ESS
p weighted by ESS (Deeks

et al, 2005). All computations were performed using the R
statistical programming language version 2.10.13 (R Core
Team, 2013) with the package mada (Doebler, 2012).

RESULTS

The initial literature search identified 399 studies of interest.
After screening all studies and applying the inclusion
criteria, 361 studies were excluded. Fan et al (Fan et al,
2007) and Davatzikos et al (Davatzikos et al, 2005) used
overlapping samples. Only Fan et al (Fan et al, 2007) was
included in the main analysis as it is the most recent report
of this sample. For additional moderator analysis we
included Davatzikos et al as additional data was provided
(Davatzikos et al, 2005). Between Liu et al (Liu et al, 2012)
and Shen et al (Shen et al, 2010) there was an overlap of
only 4 out of 32 subjects. This was considered a minor
overlap and both samples were included in the analysis.
Two studies (Fekete et al, 2013; Hu et al, 2013) were based
on the same sample but were included in the meta-analysis
as they computed predictive models based on fundamen-
tally different features. In order to exclude the possibility

that this affected the results of our meta-analysis, the effect
of excluding each of these studies on overall sensitivity and
specificity was investigated. The final sample consisted of
n¼ 38 studies with of a total of n¼ 1602 SZ patients and
n¼ 1637 HC. Among the included studies were n¼ 20
studies using structural MRI, n¼ 11 studies using rsfMRI,
n¼ 4 studies using fMRI, n¼ 3 studies using PET, and n¼ 1
study using DTI to build predictive models (see
Supplementary Table 1 for an overview of the character-
istics of the included studies).

Across all studies, neuroimaging-based classifiers sepa-
rated SZ from HC with a sensitivity of 80.3% (95% CI: 76.7–
83.5%, see Figure 1) and a specificity of 80.3% (95% CI:
76.9–83.3%, see Figure 2). A summary ROC-curve of the
included studies along with the estimated summary is
presented in Figure 3. Visual inspection of funnel plots did
not show evidence for a publication bias (see Supplementary
Figure 3). Regression with year of publication did not show
any effect on sensitivity (p¼ 0.766) or specificity (p¼ 0.801).

No significant effects of sex, illness duration, PANSS
positive scores, PANSS negative scores, or analysis methods
(SVM/LDA) on sensitivity or specificity (all p40.1) were
observed (Table 1). We detected a significant effect of
patients’ age (p¼ 0.029) indicating higher sensitivity in older
subjects (see Figure 4). There was no evidence for an effect of
age on specificity (p¼ 0.095) and no age effect in the HC on
sensitivity (p¼ 0.168) or specificity (p¼ 0.380). We observed
a significant effect of positive-to-negative symptom ratio on
specificity (p¼ 0.022), indicating higher specificity in patients
with predominantly positive symptoms (see Figure 4). There
was no effect of positive-to-negative symptom ratio on
sensitivity (p¼ 0.500). Comparing studies investigating first-
episode patients (FEP) vs chronic patients (CSZ), we found a
significantly higher sensitivity in CSZ (p¼ 0.025, see Figure 4)
but no such effect on specificity (p¼ 0.202). A significant
effect of antipsychotic medication (converted to chlorproma-
zine equivalents, CPZ-eq) on specificity (p¼ 0.016) was
found, indicating higher specificity in subjects treated with
higher medication doses (see Figure 4). However, CPZ-eq did
not significantly affect sensitivity (p¼ 0.09).

When the structural MRI studies were separately analyzed
the meta-analysis showed a sensitivity of 76.4% (95% CI:
71.9–80.4%) and a specificity of 79.0% (95% CI: 74.6–
82.8%). The rsfMRI studies had a sensitivity of 84.46% (95%
CI: 79.9–88.2%) and a specificity of 76.9% (95% CI: 71.3–
81.6%). After excluding Hu et al (2013) or Fekete et al
(2013) there was no significant change in the sensivitiy
(84.7% with a 95% CI: 79.98–88.46% and 84.28% with a 95%
CI: 79.6–88.04%, respectively) or specificity (77.87% with a
95% CI: 83.3–71.29% and 76.5% with a 95% CI: 81.35–
70.84%). ‘Data source’ was added as a moderating variable
to the bivariate meta-analysis model to investigate signifi-
cant differences between different data sources (MRI,
rsfMRI). There was a significant difference (p¼ 0.010) bet-
ween the sensitivity of rsfMRI and structural MRI studies,
indicating higher sensitivity in rsfMRI studies (see
Figure 4). There was no significant difference in specificity
(see Figure 4). To investigate the potential effect of different
multivariate approaches, the data set was restricted to
studies that applied support-vector machines (n¼ 12) and
discriminant analysis (n¼ 13). The bivariate meta-analytic
model showed no significant difference between DA and
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SVM studies regarding sensitivity (p¼ 0.766) and specificity
(p¼ 0.801).

DISCUSSION

We present a meta-analysis of a total of n¼ 38 studies with of
a total of n¼ 1602 SZ patients and n¼ 1637 HC. Our results
suggest that a neuroimaging phenotypes of schizophrenia
separate patients from HC with an overall sensitivity and
specificity of B80%. Similar results were obtained when the
analysis was restricted to individual imaging modalities
(structural MRI or rsfMRI). This finding was robust against
the inclusion of potential confounding factors such as year of
publication and there was no evidence for a publication bias.

Effect of Age

Interestingly, older age was significantly associated with
higher sensitivity. Although illness duration itself did not
have a significant impact on sensitivity and specificity, there
was a higher sensitivity in patients in a chronic stage of
schizophrenia as compared with first-episode patients.
These findings might result from more pronounced brain
changes in older subjects with schizophrenia. In addition,
this finding may be caused by secondary disease effects,
which are not related to the underlying brain pathology, but
are rather due to environmental factors associated with a
more unfavorable illness course in this patient population.
In keeping with this hypothesis, numerous studies reported
progressive brain changes to be associated with short-term
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Figure 1 Forest plot of sensitivities for studies using MRI, fMRI, rsfMRI, rCBF-PET, F-DOPA-PET, and DTI to diagnose schizophrenia. Summary estimates
for sensitivity are computed using the approach described by Reitsma et al (2005).

Neuroimaging biomarkers of schizophrenia
J Kambeitz et al

1745

Neuropsychopharmacology



(Tost et al, 2010) and long-term (Navari and Dazzan, 2009)
antipsychotic treatment. Thus, pronounced brain changes
and higher sensitivity of neuroimaging-based diagnostic
models in older patients might additionally result from
long-standing antipsychotic treatment (Fusar-Poli et al,
2013; Ho et al, 2011; Smieskova et al, 2009). The
investigation of antipsychotic treatment as a moderator
in the present analysis indicated a potential effect of the
current antipsychotic dose. However, while older age was
associated with higher sensitivity, higher chlorpromazine
equivalents were associated with higher specificity. To
further disentangle possible effects of antipsychotic medica-
tion on diagnostic classification measures from the impact
of the disease process itself, future meta-analyses have to

cover a critical mass of patient samples having well-
documented prospective medication data (Ho et al, 2011).

Effect of Psychotic Symptoms

Another interesting finding of the present analysis is
the association between predominant positive symptoms
and higher specificity of the neuroimaging-based diagnostic
models. It has been reported that brain changes associated
with schizophrenia are related to the extent of psycho-
pathology as measured by psychotic symptom scales
(Modinos et al, 2013; Palaniyappan et al, 2012). Similarly,
there seem to be differences in brain alterations in
patients with predominant positive vs predominant negative
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Figure 2 Forest plot of specificities for studies using MRI, fMRI, rsfMRI, rCBF-PET, F-DOPA-PET, and DTI to diagnose schizophrenia. Summary estimates
for specificity are computed using the approach described by Reitsma et al (2005).
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symptoms (Koutsouleris et al, 2008; Nenadic et al, 2010).
This might seem counterintuitive as previous studies
indicate larger brain structural abnormalities in patients
with pronounced negative symptom symptoms
(Koutsouleris et al, 2008). However, it might be the case
that the pattern of gray matter alterations in patients with
mainly positive symptoms—even if it is subtle—is more
distinctive as compared with patients with negative
symptoms and thus facilitates higher classification perfor-
mances. It may be hypothesized that patients with
predominant positive symptoms also received higher
dosages of antipsychotic medication, which in turn may
impact on the brain as discussed above. Therefore, the
finding that positive symptoms are associated with speci-
ficity might be confounded by previous treatment. Another
potential interpretation of this association may relate to the
current, purely symptom-based diagnostic system, which
forms the ground truth for fully supervised neuroimaging-
based disease classification. In this regard, greater homo-
geneity between clinical raters can be expected when they
diagnose schizophrenia in patients with pronounced
positive symptoms as compared to patients with negative
symptoms, who are difficult to differentiate from patients
with major or psychotic depression. Thus, predominant
negative symptoms might be associated with higher
neurobiological variability compared with the phenotype

of acute psychosis, creating an area of diagnostic ambiguity
not only for clinical raters but also for any downstream
supervised classification methods relying on these raters. In
fact, this would create an upper bound on the sensitivity
and specificity that could be achieved by means of
supervised neuroimaging-based predictive models.

Effect of Neuroimaging Modality

Our results point to a significantly higher sensitivity
associated with rsfMRI data as compared with structural
MRI data whereas both neuroimaging modalities showed a
similar specificity. This suggests that more homogeneous
functional resting-state patterns in schizophrenia lead to a
tighter clustering of patients in the functional compared
with the structural feature space, and hence to an increased
capacity of rsfMRI-based classification algorithms to detect
the disease condition. This in turn suggests that disease
heterogeneity is greater in the neuroanatomical domain as
show in a recent study (Zhang et al, 2014). Future studies
may involve both structural and functional MRI data to
generate diagnostic classifiers with superior sensitivity and
specificity.

Differences between Multivariate Methods

We observed a substantial methodological heterogeneity
concerning the multivariate algorithms used to build the
predictive models. The most frequent approaches were
discriminant analysis and support-vector machines, which
were used by 26 out of 36 studies (72%). It is important to
note that support-vector machines typically show higher
classification performance when nonlinear relationships are
present in the data. Also—unlike linear discriminant
analysis—support-vector machines increase generalizability
by emphasizing samples that are located close to the
decision boundary in the feature space (Hastie et al, 2009).
As both approaches showed almost identical sensitivity and
specificity in our analysis, these differences seem not to
have affected the classification performance. Three studies
(Bose et al, 2008; Josin and Liddle, 2001; Rathi et al, 2010)
applied an artificial neural network model to structural MRI
and PET data with slightly higher sensitivity (86–100%) and
a slightly higher specificity (85–100%). Two studies
(Anderson et al, 2010; Greenstein et al, 2012) applied a
random-forest approach to fMRI and MRI data. These
studies report a slightly lower sensitivity (64 and 73%) and
slightly lower specificity (83 and 74%) compared with other
studies. However, it is noteworthy that the comparison of
different classification methods in the context of the present
meta-analysis might be confounded by the characteristics of
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Figure 3 SROC curve of the Reitsma model with the summary
sensitivity and false positive rate indicated in black as well as color-coded
the sensitivity and false positive rate of the invidivual studies of different
imaging modalities.

Table 1 Results from Bivariate Meta-analyses Applying the Approach by Reitsma et al (2005)

Data N of controls N of patients Sensitivity Specificity Positive LR Negative LR Diagnostic OR

MRI 1030 988 76.42 (71.87–80.44) 79.01 (74.63–82.81) 3.67 (2.88–4.61) 0.3 (0.24–0.37) 12.5 (7.88–18.9)

rsfMRI 275 315 84.46 (79.86–88.17) 76.85 (71.28–81.63) 3.67 (2.92–4.61) 0.204 (0.153–0.265) 18.5 (11.8–27.7)

All combined 1602 1637 80.34 (76.71–83.52) 80.3 (76.92–83.29) 4.1 (3.37–4.93) 0.246 (0.2–0.298) 17 (11.5–24.2)

Positive LR, negative LR, and DOR are estimated via MCMC (Zwinderman and Bossuyt, 2008).
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the investigated samples such as age, medication, symp-
toms, and disease stage. To the best of our knowledge, a
systematic investigation of different classification algo-
rithms for the MRI-based diagnosis of schizophrenia in
large representative patient populations is missing.

Limitations of the Presented Study

It is of note that B20% of patients were misclassified as HC
by the applied multivariate models. This misclassification
rate may be due to either (1) the existence of a different
pattern of brain abnormalities in this subgroup compared
with the majority of patients, or (2) to the absence of a
homogenous discriminative pattern in this patient sub-
group compared to the HC group, or (3) to the rater-based
‘noise’ in the diagnostic labels provided to supervised
classification algorithms. The aggregated data analysis
performed in our study does not allow us to clarify these
alternative possibilities. Hence, future studies employing
semi- and unsupervised machine learning methods in
well-controlled representative study populations are needed
to potentially elucidate the neurobiological heterogeneity

of the disorder and in turn use this information to
generate high-performing neuroimaging-based classifiers
of schizophrenia.

In this context, it needs to be noted that most of the
published studies on neuroimaging-based diagnostic
models largely focus on methodological details of the
applied machine learning algorithms. This results
from the fact that multivariate prediction of psychiatric
diagnosis is a young research topic. Thus, most studies aim
at ‘proof of concept’ approaches, showing that multivariate
models are principally able to infer distinctive brain
patterns at the single-subject level. Another reason might
be the availability of numerous competing algorithms. Most
studies so far have tried to compare new techniques
to previous ones while paying little attention to the
systematic investigation of methodological factors within
the same sample.

On the other hand, most studies provide only limited
information regarding the investigated patients samples
and their clinical characteristics. As pointed out by Deville
et al (Devillé et al, 2002), a detailed description of the
patients’ disease status, symptoms, length and course of
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illness, current medication, or comorbidities is crucial for
evaluating the potential of such models to enter
clinical practice in the future. The results of our
meta-analysis fully agree with this requirement as they
showed that clinical factors such as age or symptoms affect
sensitivity and specificity, while methodological factors did
not. As such some patient samples might be more suitable for
the application of neuroimaging-based predictive models
than others. This also has implications for the interpretation
of neuroimaging-based predictive models. There are
multiple confounding factors that are illness-related, but
not causative, that might result in neurobiological
differentiation. Thus, to move from a theoretical field of
research toward a clinical application of these diagnostic
methods, future studies should provide detailed clinical and
sociodemographic information about the investigated patient
and HC samples. This clinical information is the ‘conditio
sine qua non’ for evaluating the applicability of multivariate
methods to various patient samples, subsamples or disease
states.

It must be noted that the studies included in the present
analysis identified schizophrenia-distinctive brain patterns
as compared to healthy volunteers. To date, only few studies
have investigated patterns of brain abnormalities that
differentiate between different psychiatric disorders. For
the differentiation between schizophrenic and bipolar
patients diagnostic accuracies of 92% for schizophrenia
and 79% for bipolar disorder based on fMRI (Costafreda
et al, 2011) and an overall classification accuracy of 88%
(Schnack et al, 2014) or 100% (Bansal et al, 2012) based on
sMRI have been reported. This research direction is critical
as there is considerable doubt whether the current
nosological constructs are subserved by distinct neurobio-
logical signatures, or alternatively whether there exists a
significant pathophysiological overlap between disease
entities. A promising strategy to address this issue might
be the delineation of more homogenous patient subgroups
within and across disease boundaries (Insel et al, 2010) by
means of unsupervised and semisupervised analysis meth-
ods (Filipovych et al, 2011, 2012). Also, future studies need
to address the question of how well neuroimaging-based
biomarkers generalize, eg, across different sites. In the
studies included in the present analysis most of the data
have been acquired on one site using the same scanners and
scanning sequences. However a recent study indicates that
diagnostic models are not site specific but that similar
sensitivity and specificity can be achieved for data acquired
from different sites (Nieuwenhuis et al, 2012). Although the
present analysis indicates a discriminative pattern of brain
alterations associated with schizophrenia, our results
underline the importance of an exhaustive assessment of
clinical characteristics during the investigation of such
biomarkers.
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