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Abstract

We present a framework for robustly estimating registration between a 3D volume image and a 2D 

projection image and evaluate its precision and robustness in spine interventions for vertebral 

localization in the presence of anatomical deformation. The framework employs a normalized 

gradient information similarity metric and multi-start covariance matrix adaptation evolution 

strategy optimization with local-restarts, which provided improved robustness against deformation 

and content mismatch. The parallelized implementation allowed orders-of-magnitude acceleration 

in computation time and improved the robustness of registration via multi-start global 

optimization. Experiments involved a cadaver specimen and two CT datasets (supine and prone) 

and 36 C-arm fluoroscopy images acquired with the specimen in four positions (supine, prone, 

supine with lordosis, prone with kyphosis), three regions (thoracic, abdominal, and lumbar), and 

three levels of geometric magnification (1.7, 2.0, 2.4). Registration accuracy was evaluated in 

terms of projection distance error (PDE) between the estimated and true target points in the 

projection image, including 14 400 random trials (200 trials on the 72 registration scenarios) with 

initialization error up to ±200 mm and ±10°. The resulting median PDE was better than 0.1 mm in 

all cases, depending somewhat on the resolution of input CT and fluoroscopy images. The cadaver 

experiments illustrated the tradeoff between robustness and computation time, yielding a success 

rate of 99.993% in vertebral labeling (with `success' defined as PDE <5 mm) using 1,718 664 ± 96 

582 function evaluations computed in 54.0 ± 3.5 s on a mid-range GPU (nVidia, GeForce 

GTX690). Parameters yielding a faster search (e.g., fewer multi-starts) reduced robustness under 

conditions of large deformation and poor initialization (99.535% success for the same data 

registered in 13.1 s), but given good initialization (e.g., ±5 mm, assuming a robust initial run) the 

same registration could be solved with 99 993% success in 6.3 s. The ability to register CT to 

fluoroscopy in a manner robust to patient deformation could be valuable in applications such as 
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radiation therapy, interventional radiology, and an assistant to target localization (e.g., vertebral 

labeling) in image-guided spine surgery.

 1. Introduction

3D–2D image registration computes the transformation between a 3D volume and a 2D 

projection image. In image-guided intervention, it has been used to incorporate prior 

information (e.g., preoperative CT-based planning data) into intraoperative x-ray 

fluoroscopy. Applications of 3D–2D registration include improving target localization 

accuracy in radiation therapy (Gendrin et al 2012), real-time kinematic analysis of skeletal 

movements using fluoroscopy (Xin et al 2013, Zhu et al 2012, Jerbi et al 2012), guidance of 

various surgical interventions such as cardiac surgery (Rivest-Henault et al 2012), and 

transrectal ultrasound guided surgery (De Silva et al 2013). Recent application includes 

spine surgery (Otake et al 2012c) where automatic labeling of vertebral levels in 

intraoperative fluoroscopy was used to localize the target vertebrae and help prevent wrong-

site surgery (Palumbo et al 2013). The lack of uniquely identifiable features and the periodic 

appearance of spine levels in projection images makes level localization especially 

challenging and even more so in minimally invasive surgery where the surgeon operates 

thorough a small incision. The reported incidence of wrong-level error is estimated to be 1 in 

every 3,110 spine surgeries (Mody et al 2008), with an approximate financial cost of $55 

000 per case according to The Joint Commission. Initial implementation of the `LevelCheck' 

method (Otake et al 2012c) involved a single-image 3D–2D registration applied to spine 

interventions and validated its performance to automatically label spine levels in fluoroscopy 

images using simulation and rigid physical phantom studies.

3D–2D registration has been extensively investigated in various technical aspects including 

image modalities, methods for achieving dimensional correspondence, similarity metrics, 

and registration basis (e.g., extrinsic, feature-based, intensity-based and gradient-based 

methods) (Markelj et al 2012). Intensity-based approaches utilize all the intensity 

information contained in the 2D and 3D images, as opposed to the feature-based approach 

where, image features extracted from 2D and 3D images are used for the registration, and 

the gradient-based approach which utilizes the fact that rays connecting the x-ray source and 

edges in the projection image are tangent to surfaces of distinct anatomical structures, and 

have demonstrated higher accuracy and reliability (McLaughlin et al 2005, Mitrovic et al 
2013). An intensity-based 3D–2D registration can be formulated as a numerical 

optimization, which solves for the transformation parameters (i.e., six degree-of-freedom 

(DOF) transformation in a rigid case) that maximize the similarity metric (objective 

function) between the 2D projection image and a digitally reconstructed radiograph (DRR) 

of the 3D volume generated based on the transformation.

Evaluation of the objective function is computationally expensive due to the projection 

operation in DRR generation, and improvements in computational efficiency have been an 

active area of research with proposed solutions including various software-based approaches 

(Birkfellner et al 2005, Russakoff et al 2005) that improved computation speed at the 

expense of slight degradation of image quality and hardware-based acceleration approaches 
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using GPU (Tornai et al 2012, Spoerk et al 2012). The latter approach with a relatively 

straightforward software implementation was employed in this study. The proliferation of 

GPU or alternative parallel computation environments (CPU/GPU clusters etc) and the fact 

that simplifying and scaling down the core kernel of the implementation generally improves 

parallelization efficiency offered a better load balancing which improves occupancy of 

processors.

Various types of similarity metrics have been proposed in the literature, and may be grouped 

according to the correspondence of global intensity such as mutual information (Maes et al 
1997), normalized cross-correlation (Penney et al 1998), and metrics based on local intensity 

such as pattern intensity (Penney et al 1998), gradient difference (Penney et al 1998), 

gradient correlation (Hipwell et al 2003) and/or gradient information (GI) (Pluim et al 
2000). Although the best performing similarity metric is application-dependent, comparative 

studies (Birkfellner et al 2009, Russakoff et al 2003) suggest that local metrics tend to 

demonstrate better performance. In this study, we normalized the conventional GI metric to a 

range of [0.0, 1.0] with 1.0 meaning the two images are identical. This normalized GI (NGI) 

provided an absolute measure of correspondence of edges between two images. The GI 

metric was previously shown to be robust against content mismatch between two images 

(Otake et al 2012c). However, regardless of the similarity metric used, it is inevitable that a 

particular transformation—different from the true registration—may happen to yield a local 

optimum, for example, in the case where the image contains symmetric or periodic 

structures (such as vertebrae) or when there is anatomical deformation. As a result, the 

objective function becomes noisy (i.e., a large number of false local optima), and the 

optimization algorithm must be able to localize the global optimum from a noisy objective 

function. In this paper, we use the term robustness to refer to the degree to which the 

registration algorithm can contend with a difficult and noisy optimization—including local 

optima—and converge upon the true transformation.

Both derivative-based optimization methods (e.g., gradient descent (McLaughlin et al 2005)) 

and derivative-free optimization (Powell 1964), downhill simplex (Nelder and Mead 1965), 

and the covariance matrix adaptation evolution strategy (CMA-ES) (Hansen and Kern 2004) 

have been used in solving 3D–2D registration. In comparison to the derivative-based 

approach and the classic derivative-free approaches, an evolutionary strategy such as CMA-

ES tends to be more robust against local optima while requiring a larger number of function 

evaluations, such that robustness generally improves by tuning its optimization parameters to 

perform more function evaluations (e.g., increasing the population size).

Since evaluation of the objective function can be costly in 3D–2D registration, computation 

time and robustness of the registration form a tradeoff. Several recent studies focusing on 

fast implementation of 3D–2D registration reported computation speed in terms of the 

number of function evaluations per second (eval s−1). For example: Otake et al (2012c) 

reported ~500 eval s−1, Fisher et al (2013) reported ~400 eval s−1 (DRR rendering speed), 

Dorgham et al (2012) reported ~167 eval s−1, Varnavas et al (2013) reported ~21.5 eval s−1, 

Steininger et al (2012) reported ~13.3 eval s−1, and Spoerk et al (2012) ~9–22 eval s−1. A 

fair comparison of computational performance is difficult, since image resolution, the 

approach to DRR generation, and similarity metric significantly vary in each method. Most 
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reported approaches required ~50–2000 function evaluations in one optimization, and 

ongoing improvements in both GPU speed and the form a particular 3D–2D registration 

implementation suggest the capability for near-real-time 3D–2D registration. For example, 

in the work reported below, we report an implementation offering >22 000 eval s−1 and 

registration in <6.3 s in cases involving a constrained search space. However, the robustness 

of the optimization is still a major factor that hinders routine clinical use of intraoperative 

3D–2D registration.

The challenge in 3D–2D registration in a clinical scenario featuring anatomical deformation 

is illustrated in figure 1, causing the optimization to become ill-posed due to a reduction in 

the peak magnitude of the objective function, the emergence of local optima, and 

insensitivity to pertinent DOFs (e.g., out-of-plane translation and/or rotation about 

rotationally symmetric structures). A further complexity that can challenge intraoperative 

3D–2D registration is mismatch in image content (e.g., surgical instrumentation in the 

intraoperative image but not in the preoperative CT). Previous work (Otake et al 2012c) 

demonstrated the LevelCheck algorithm to be reasonably robust in each of the requisite 

DOFs by virtue of invariance against coordinate-wise scaling in CMA-ES, and robustness to 

image content mismatch is in part achieved in that the GI similarity metric does not weigh 

inconsistent gradients (i.e., disregards gradients evident in only one of the images).

In this paper, we extend the previously reported method as follows. (1) To further improve 

robustness against initialization errors and anatomical deformation, a global multi-start 

strategy is implemented in the optimization which was facilitated by orders-of-magnitude 

acceleration in computation time compared to the original implementation. (2) We evaluate 

the method in cadaver experiments in the presence of gross anatomical deformation 

approximating that in spine surgery (viz, prone versus supine, kyphosis, lordosis, and motion 

of internal soft-tissue and air-filled structures).

 2. Methods

 2.1. 3D–2D registration method

 2.1.1. Implementation strategy—The 3D–2D registration process is summarized in 

figure 2. As detailed below, the DRR and similarity metric were computed on GPU, while 

the CMA-ES optimization was implemented on CPU since computation of the covariance 

matrix update and generation of random samples are inherently sequential. To minimize 

CPU–GPU memory copies, no image was transferred during the optimization iteration. Only 

the transformation T (a single-precision, 6-element vector, 6 × 4 = 24 bytes) was transferred 

from CPU to GPU in each function evaluation, and the computed similarity metric (a single-

precision scalar, 4 bytes) was copied back from GPU to CPU.

 2.1.2. Multi-resolution pyramid—A multi-resolution pyramid (Munbodh et al 2009) 

was employed in the optimization to improve the convergence rate and help avoid local 

optima; however, we also found that downsampling the image can suppress certain image 

features and make other non-corresponding features more similar, thus creating false local 

optima in the objective function. We analyzed various 2D projection-domain downsampling 

schedules of 8 (962 pixels, 3.12 mm2 pixel−1), 4 (1922 pixels, 1.32 mm2 pixel−1) and 2 (3842 

Otake et al. Page 4

Phys Med Biol. Author manuscript; available in PMC 2016 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pixels, 0.782 mm2 pixel−1), referred to as DS8, DS4, DS2 respectively. The volume was 

downsampled accordingly, resulting in the volume-domain pyramid: 1283 voxels, 2.73 mm3 

voxel−1 (DS8); 2563 voxels, 1.33 mm3 voxel−1 (DS4); and 5123 voxels, 0.683 mm3 voxel−1 

(DS2), respectively.

 2.1.3. DRR generation—A traditional grid-interpolation ray-tracing algorithm (Cabral 

et al 1994) was employed for DRR generation. Each ray was computed on a single CUDA 

thread and traced the volume at a certain interval (step length). The intensity at each sample 

point was computed by interpolation of eight neighboring grid points accumulated to obtain 

a line integral along the ray. The volume image and the projection matrices resided on 

texture memory to benefit acceleration by the cache mechanism on GPU. Multiple DRRs 

were generated simultaneously using a 3-dimensional CUDA block. Since the projection 

views in neighboring iterations were close to each other in 3D–2D registration, concurrent 

ray-tracing of pixels at the same location in neighboring projections improves the cache hit 

rate, and thus is advantageous especially when multiple DRRs were generated concurrently 

in parallel function evaluations. The step length was chosen as 2.0 voxels to achieve faster 

computation while not degrading accuracy, since previous work (Otake et al 2012a) showed 

that registration accuracy was nearly constant up to a step length of ~3.0 voxels.

 2.1.4. Similarity metric—We implemented a normalized version of GI (Pluim et al 
2000) as follows:

(1)

Where the numerators is the usual GI between the fixed image and the moving image, and 

the denominator is the GI between the fixed image and itself. In each case, GI was defined 

as:

(2a)

(2b)

(2c)

The range of NGI is therefore 0 – 1 and the case NGI = 1.0 means that the moving image 

gradients are identical to those in the fixed image.
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All computations, except the image gradient (∇p) and the summation (Σ), were 

implemented as pixel-wise operations where each pixel was assigned to a single CUDA 

thread, providing a highly efficient parallelization (i.e., a large number of small, 

concurrently executable computations). The image gradient (∇p) along each axis was 

implemented as the kernel-based Gaussian derivative filter (Florack et al 1994) with σ = 1.0. 

The kernel convolution was implemented as a product of the Fourier transforms of the kernel 

and the target image. The Fourier transform of multiple target images was computed in 

parallel using the batch execution in the CUFFT library. Summation (Σ) of the pixel values 

over each image was implemented as a matrix-vector multiplication using cublasSgemv() in 

the CUBLAS library to achieve further speed-up (i.e., M × u2 matrix times u2 × 1 vector, 

where u2 is the total number of pixels in one image and M is the number of images).

A spatial weighting mask, m(i, j), could be optionally applied either to more heavily weigh 

NGI within a region of interest in which the target anatomy is clearly distinguishable or 

known a priori (e.g., the region containing the spine, typically occupying the central region 

of the image in AP fluoroscopy) and/or to diminish contributions to NGI from regions 

believed to present major mismatch in content or deformation (e.g., the skinline or a gas 

bubble). For spine images as in the application below, a weighting mask with a higher value 

along the center line of the spine and falling off at the edges of the image was optionally 

employed. The mask was taken as a Gaussian nominally centered on the projection with 

variable width (ranging 10–25% of the image width) tailing off laterally (x) and constant 

longitudinally (z). Turning off the weighting mask amounts simply to m(i, j) = 1.0 ∀ i, j. The 

mask was implemented as a simple pixel-wise multiplication and therefore had almost no 

effect on computation speed.

The effect of the weighting mask on the objective function space was analyzed in a cadaver 

study in which deformation of a large, internal air-filled structure (gas pocket) shifted the 

global optimum from the true transformation (Ttrue) to a false local optimum (Tfalse).

 2.1.5. Optimization—The 3D–2D rigid registration optimization is formulated as 

follows:

(3)

where T represents the six DOF transformation parameters, including translation along the 

x, y, z axes (tx, ty, tz) and rotation around the x, y, z axes (θx, θy, θz), and ST is the space of 

allowable transformations. We addressed this optimization problem using a derivative-free 

global optimization approach.

Global optimization approaches have been employed in 3D–2D registration in prior work, 

including the exhaustive search approach as in Birkfellner et al (2003), where the objective 

function is evaluated at a few (3–5) grid points in each of six directions with three resolution 

levels selecting the point with the highest function value as the solution. Alternatively, 

Mahfouz et al (2003), Dennis et al (2005), and Turgeon et al (2005) used a modified 
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downhill simplex optimization in which the optimization search is restarted after 

convergence or a randomly perturbed starting point is used. In Dey and Napel (2006), a 

Monte Carlo-based optimization used an initial estimate pose provided manually or based on 

prior knowledge. All of these approaches were shown to improve the global search 

performance over a conventional local search.

Otake et al (2012c) proposed an automatic initialization method based on an exhaustive 

search of 2D planar grid points at an (~20 mm) interval in-plane to the projection image, 

assuming rotation and out-of-plane translation to be zero (i.e., at the iso-center, with 

geometric magnification = 2.0). The objective function was evaluated at the ~200 grid 

points, and the point scoring the highest objective value was chosen as the initialization. 

While this simple initialization worked well in a rigid phantom, it was subject to false local 

optima in cases of anatomical deformation with a large number of local optima. The method 

proposed here extends the concept to multiple CMA-ES searches starting from a collection 

of 3D grid points.

The global optimization strategy consists of two stages: (1) a global multi-start; and (2) a 

local restart. The multi-start strategy is traditionally used in global optimization problems to 

broaden the capture range. Rinnooy Kan and Timmer (1987) theoretically proved that a 

stochastic optimization method converges to the global optimum with probability 1.0 when 

the number of function evaluations is increased infinitely. Analogously, the local restart 

strategy was employed in Auger and Hansen (2005b, 2005a), where application to CMA-ES 

demonstrated improved performance with the IEEE CEC 2005 benchmark functions 

(Suganthan et al 2005). In this study, the basic CMA-ES algorithm was implemented in 

MATLAB as in Hansen (2006), including three tuning parameters—population size (λ), 

upper/lower bounds of x, y, z translation (mm) and x, y, z rotation (deg) (ST in equation (3)), 

and the stopping criterion (chosen as the tolerance in the pose parameter space (mm or deg)). 

We stopped the iteration when the standard deviation of the sample distribution in one 

generation became smaller than the chosen threshold in each coordinate. The initial search 

distribution was set as 20% of the range of bounds (upper – lower bound) as suggested by 

Hansen (2006). The two-staged global optimization is detailed as follows.

(1) Global multi-start. The basic global multi-start strategy is a divide-and-conquer 
approach in which the entire 3D search space is partitioned into multiple subspaces 

(divide), and a separate CMA-ES search is run in each subspace (conquer). A 

variety of space-partitioning algorithms can be employed in the division step. In 

this study, we employed a standard kD-tree partitioning strategy (Bentley 1975) in 

3D, where the largest box (space) was recursively partitioned into two boxes at the 

middle of its longest edge until the number of boxes reaches a desired number, N 
(equal to the number of multi-starts). A larger value of N confines each local search 

to a smaller space, thus making each local search more robust, whereas it increases 

overall computation time in a manner proportional to N. A range N = 1 to 250 was 

chosen in the current implementation to limit computation time to a few seconds, 

compatible with intraoperative use. The center of each box (leaf of the kD-tree) was 

used as an initialization for each local search. Rotational elements of the 

initialization were determined separately from translation as uniformly distributed 
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random 3D vectors with specified upper and lower bounds, because the rotational 

search range was small in our application (±10° was generally sufficient as detailed 

in below) and a 6-dimensional kD-tree with a small number of leaf nodes (e.g., N = 

250) does not provide efficient partitioning of the space (e.g., 36 = 729 nodes 

required to partition a 6-dimensional space into three partitions in each dimension). 

The upper and lower bounds of translational elements in each local search were set 

to twice the extent of the box. This created an overlap of 26 adjacent search spaces, 

each of which was initialized with a random rotation, providing increased 

robustness since the random rotation increased the chances that one of the 26 

rotations is close to the true registration (i.e., good initialization). The N 
independent CMA-ES searches were performed in parallel by storing multiple 

covariance matrices and evolution paths throughout the optimization. This 

increased the number of parallelizable function evaluations significantly (λN 
parallel evaluations) compared to the conventional sequential CMA-ES (λ parallel 

evaluations), improving performance.

(2) Local restart. To improve the robustness of each local search (i.e., the conquer 
step), another CMA-ES search was performed using the converged point as the 

starting point (i.e., a restart) with the same optimization parameters as the previous 

step. Although a larger number of restarts would further improve robustness, we 

performed only one restart to limit computation time. Finally, the resulting local 

optimum scoring the best objective value was selected, and another search with a 

higher resolution level was performed.

 2.2. Experiments

 2.2.1. Cadaver setup and deformation scenarios—As illustrated in figure 3, a 

fresh (unfrozen, unfixed) cadaver was imaged with a prototype mobile C-arm (Siemens 

Healthcare, Erlangen, Germany) incorporating a flat-panel detector (FPD) and motorized 

rotation. Geometric calibration was performed with a previously described phantom (Navab 

et al 1998). The FPD (PaxScan 3030 CB, Varian Imaging Products, Palo Alto, CA, USA) 

provided distortion-free readout (302 cm2 FOV, 7682 pixel format, 0.3882 mm2 pixel−1) at 

3.3 frames per second, and the imaging technique was 100 kVp, 2.05 mAs per projection. A 

workstation with an Intel Xeon 2 processor (2.4 Gz) with Windows 7 64-bit and GTX690 

was used for the experiment.

Two preoperative CT images of the cadaver were acquired—one in supine position (referred 

to as `supine CT') and the other in prone position (`prone CT'). Details of the volumes are 

listed in table 1. A series of C-arm projection images were acquired, including three regions 

of interest (thoracic, abdominal, and lumbar), three geometric magnifications (m = 1.7, 2.0, 

2.4), and two positions (supine, denoted by the symbol `↑', and prone, denoted `↓'). In 

addition, two types of anatomical deformation were imparted using a form block (figure 

3(c))—lordosis in supine position (denoted `↑⋂') and kyphosis in prone position (denoted 

`↓⋂'). In total, 36 projection images were thus acquired, and 3D–2D registration was 

performed on each image using the two CT datasets, resulting in 72 CT-projection pairs, 

comprising the eight deformation scenarios summarized in table 1. For example: scenario #1 

involved supine CT (↑) to supine projection (↑), representing a case of minimal deformation; 
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conversely, scenario #8 involved prone CT (↓) to supine projection with kyphosis (↑⋂), 

representing a case with large anatomical deformation. The scenarios were numbered in 

increasing rank order approximating the magnitude of deformation.

We defined target points in each vertebra (19 vertebrae from C6 to L5) in each CT dataset. 

To consistently define the points relative to each vertebral structure in two CTs acquired in 

different positions, we segmented each vertebra separately (figures 3(d) and (e)) and the 

geometrical centroid of each segmented vertebra was used as the target point. Note that in a 

real clinical workflow, the target point can simply be a series of points identified in CT (e.g., 

a single point for each vertebra).

Movement of each vertebral joint between prone CT and supine CT was computed by rigid 

ICP registrations (Besl and McKay 1992) between each segmented vertebra. Larger 

deformations (±3°–5° at each joint) were observed in the lumbar region, while deformations 

in thoracic and abdominal regions were smaller (<2° at each joint) likely due to constraint by 

the rib cage.

 2.2.2. Definition of truth—Ground truth registration was defined by way of 

consistency analysis (Jenkinson et al 2002), in which multiple, independently performed 

registrations converged to the same result, and that result was judged sensible as assessed by 

a clinical expert. We note that consistency is a surrogate for truth and a necessary (but not 

sufficient) condition for truth definition appropriate to real data (cf, image simulation).

We performed two independent 3D–2D registrations between each projection image and 

supine CT and prone CT. For each projection, we considered the registration to be true when 

the two registrations showed consistent results in terms of: (1) visual verification by an 

expert operator; and (2) projection distance error (PDE) (in mm) as detailed in section 2.2.3. 

Visual verification was performed by checking the consistency of edges in the NGI images 

between the fixed image and DRR at the solution. Each registration for truth definition was 

manually initialized close to the true alignment and optimized with parameters tuned for 

robustness (i.e., a large number of multi-starts, requiring ~300–600 s) with a small search 

range (±30 mm, ±5°) and using a weighting mask (section 2.1.4). Under such conditions, all 

cases demonstrated PDE < 3 mm and were visually verified as correct alignment. Figure 4 

illustrates an example registration in such definition of truth.

 2.2.3. Analysis, precision and robustness—The registration accuracy was 

quantified in terms of PDE (Van De Kraats et al 2005), defined as follows to confine the 

target points to those appearing in the image:

(4)

where PDEi is PDE at the ith target point, and K is the number of target points appearing in 

the image. We defined the success criterion as PDE < 5.0 mm as in Otake et al (2012c), and 

the success rate as the percentage of successful registrations within a given trial.
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Precision was analyzed in terms of the reproducibility in the result, which for stochastic 

optimization algorithms, such as CMA-ES, is not guaranteed. 100 registration trials were 

performed on each projection-CT pair (100 trials × 72 pairs = 7200 registrations) with 

initialization including a perturbation to the true registration (±5 mm, ±2° uniformly random 

distribution). Parameters for the CMA-ES optimizer were: population size 20, stopping 

criterion 0.001 (mm or deg), upper/lower bounds of the search ±10 mm, ±4°. A 

(deterministic) downhill simplex optimization was also performed as a comparison, with the 

initial simplex size of ±10 mm in translation, ±4° in rotation and a stopping criterion of 

0.001 (mm or deg). For fair comparison, the number of function evaluations was fixed in the 

CMA-ES search (~3,000) and starting multiple simplex searches from eight randomly 

selected starting points.

In addition, the dispersion (Lunacek and Whitley 2006) of the objective function was 

computed to quantify reproducibility in computing the local optimum. We evaluated the 

objective function at 2 × 105 uniformly distributed random sample points within ±0.1 mm, 

±0.1° around the true registration and ranked the points according to the function value. 

Dispersion was defined as the mean pair-wise distance between M best points (with M 
varied from 6 – 25 000) as follows:

(5)

where d(a, b) is the L2-norm between vectors a and b. If the dispersion decreases as the 

sample is restricted to better regions (i.e., decreasing M), the function is considered to have 

low dispersion and suggests smooth convergence at the solution. On the other hand, if the 

dispersion is constant or increases (high dispersion), it suggests that local optima around the 

solution are broadly dispersed, implying a higher chance that the optimization algorithm will 

sporadically reach a false local optimum and reduce precision.

The robustness of the method against initialization error (e.g., operator variability) and local 

optima arising from anatomical deformation was evaluated with 200 random registration 

trials on each projection-CT pair (200 × 72 pairs = 14 400 registrations) with a variable 

number of multi-starts (N = 1 to 250). The range of random perturbation to the initialization 

was chosen to emulate realistic operator variability in C-arm positioning for AP fluoroscopy 

similar to Otake et al (2012c). We considered two scenarios for the use of 3D–2D 

registration in clinical workflow: (1) when registration is performed for the first time in a 

case, a large search space around the initialization is allowed, referred to as the `large search' 

scenario; and (2) in subsequent registration, the search space is reduced, since the previous 

result can be used as an initialization, referred to as the `small search' scenario. Penney et al 
reported that patient rotation between CT and fluoroscopy position was 3°–4° on average 

(max 8°) based on 23 patient studies (Penney et al 2011). Hence, we allowed a rotational 

range with σ of 5° (where σ is the standard deviation in the normal distribution) for the large 

search and ±3° for the small search. The translational uncertainty allowed a σ = ±15 mm in 

right–left direction, ±50 mm out-of-plane, and ±100 mm in the superior–inferior direction 
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for the large search scenario, whereas each was set to ±15 mm for the small search. The 

distribution was clamped at ±2σ to avoid extrema. The two-level multi-resolution pyramid 

(DS8 and DS4) was used with the population size of 200, stopping criteria of 3.0 (mm or 

deg) for DS8, 0.1 (mm or deg) for DS4.

 3. Results

 3.1. Effect of the NGI weighting mask

Figure 5 shows the effect of the weighting mask on the optimization space with large 

deformation (scenario #8 in table 1) including a large air pocket moving in the abdomen. 

The edges of the deformed air-filled structure present a strong gradient that incorrectly 

aligns the DRR when the weighting mask is not applied (figure 5(b)), but as shown in figure 

5(c), a weighting mask centered on the fluoroscopy image (i.e., assuming the gradients of 

interest—namely, the spine—to be in the center of the projection) reduces the contribution 

of the air pocket to NGI and yields correct registration of the vertebrae. Figure 5(d) shows 

the objective function landscape along one line in the 6-dimensional space connecting the 

two poses, where the intermediate pose was computed by linear interpolation, resulting in a 

one-dimensional pose surrogate T(α) defined as T (α) = Tfalse + α(Ttrue − Tfalse). The 

weighting mask is seen to improve the optimization landscape by elevating the global 

optimum. Dependency of the registration results on the lateral displacement of the weighting 

mask is shown in figure 5(e). TRE significantly increased when the mask included regions 

with large deformation (air-filled structure in the right side of the image), whereas stayed 

less than 5 mm for displacement to the left when the weighted structure was rigid.

Alternative functions (e.g., normalized pointwise mutual information (Rogelj et al 2003)) 

could be employed in the weighting mask, but a simple pointwise scalar was easily 

implemented in the parallelized computation, whereas a histogram-based method could be 

difficult to efficiently parallelize.

 3.2. Analysis of precision

The objective function landscape around the true registration is illustrated in figure 6 for an 

example trial: fluoroscopic image acquired with the cadaver prone with kyphosis; thoracic 

region; magnification = 2.4; registered to prone CT. The registration was performed with 

hierarchical downsampling DS8, DS4, and DS2 with two in-plane translations (X and Z). 

Because the optimization landscape at DS8 (first inset in figure 6) exhibits numerous sharp 

local optima (spikes), the optimization does not follow the exact solution in repeated trials. 

The spikes are caused by discretization in 3D voxels in the volume and 2D pixels in the 

projection. For such large voxels, a small change in transformation parameter can yield large 

change in line integral and thus in NGI. The discontinuities are present even in the DS2 level 

at a very fine scale (final inset in figure 6) and present a potential source of imprecision for 

both the CMA-ES (which is intrinsically stochastic) and downhill simplex (which is 

otherwise deterministic).

The PDE and coordinate-wise error are shown as a function of the downsampling ratio in 

figure 7, and the dispersion about the true global optimum is plotted as a function of the 
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number of sample points (M in equation (5)). At DS8, median PDE was 0.101 mm for 

downhill simplex, compared to 0.050 mm for CMA-ES. The median out-of-plane 

translational error (Y-direction) was reduced with CMA-ES from 0.093 to 0.021 mm from 

DS8 to DS2. Moreover, the dispersion decreased and precision improved at successively 

finer levels of the multiresolution pyramid. Overall, CMA-ES achieved better precision than 

downhill simplex (despite its intrinsic stochasticity), suggesting a higher level of robustness 

against local optima and leading to more consistent convergence on the optimum. Even with 

a good initialization, downhill simplex showed lower precision than CMA-ES.

 3.3. Analysis of robustness

Successful registration (i.e., PDE < 5 mm) was achieved in >99.99% of all trials for all 

scenarios of anatomical site and degree of deformation, but there is an important tradeoff 

between robustness and computation time as illustrated in figures 8 and 9. For cases of 

minor deformation (scenarios #1 and #2), a success rate >99.99% was achieved in 0.5 s for 

the small search (N = 1 multi-start), and in 6.8 s for the large search (N = 20). For cases of 

strong deformation (scenarios #1 to #8), the small search scenario required 6.3 s and the 

large search 54.0 s to achieve >99.99% success. For N = 250, the overall success rate, 

including all deformation scenarios, was 99.993% (one failure in 14 400 trials). The median 

PDE at initialization was 129.65 mm, and that at the solution was 0.025 mm, suggesting a 

highly consistent registration result. To consider a different clinical application scenario such 

as pedicle screw placement, the PDE was also computed using target points defined on each 

pedicle (Tomazevic et al 2004), showing initial median PDE of 129.47 mm and the solution 

of 0.026 mm. The average edge length of the local search space (i.e., leafs of the kD-tree) 

was 106.7 mm for N = 5, and reduced to 26.9 mm for N = 250. The results suggest that the 

possibility to tune the single parameter N (the number of multi-starts) to control the 

robustness–time tradeoff. For example, in clinical use, the operator could adjust robustness 

according to the surgical scenario to achieve >99.99% confidence in the result, using a 

longer search (large N) in the first registration performed in the case (poor initialization) or 

situations where a strong deformation or content mismatch is suspected, and using a shorter 

search in subsequent registrations (good initialization and/or minor deformation from prior 

runs).

The most challenging scenarios were those in the region of the thorax (presenting a larger 

number of false local optima in periodic structures of the rib cage) under large deformation 

(diaphragm, mediastinum and air pocket) at higher magnification (smaller FOV and reduced 

overall NGI).

Still such registration was solved to better than 5 mm PDE in >99.99% cases given a 

sufficiently long search (N = 250) and a weighting mask about the center of the projection. 

Although registration with N = 250 showed a high rate of success, it is worth noting that a 

stochastic optimization approach such as CMA-ES entails a non-deterministic solution and 

is always subject to a finite probability of failure. However, the analysis of precision in 

comparison to downhill simplex in the previous section suggests that errors due to 

stochasticity are less than those associated with the image data themselves (e.g., 
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downsampling). Further experiments with an even larger number of trials are necessary to 

reveal the frequency of such stochastic failures.

Figure 10 shows the NGI at the true registration along with the median PDE and 95% 

confidence interval in PDE (all for the case N = 250). NGI was highest in scenarios of 

smaller deformation (deformation scenario #1–#4) and lower PDE, and it was reduced in 

cases of larger deformation (image index #7–#8 in deformation scenario #6–#8). The single 

failure case (PDE: 46.2 mm, NGI: 0.537) was associated with the lowest overall NGI, 

suggesting a possibility to be investigated more fully in future work that NGI could be used 

as a confidence metric or, at least, a measure of the difficulty of registration.

 4. Discussion

This paper advanced a robust intensity-based 3D–2D image registration using NGI as a 

similarity metric and a global optimization algorithm consisting of multi-start search and 

restart strategy. The multi-start strategy partitioned the search space into multiple subspaces 

and performed multiple independent searches confined to the small space that improved 

each local search. The strategy broadened the capture range to allow a fairly rough estimate 

of patient positioning with respect to the C-arm (e.g., tolerance was ~ ±200 mm in the 

superior–inferior direction). A cadaver experiment demonstrated the robustness of the 

method against realistic changes in patient position (i.e., supine, prone) and anatomical 

deformations (i.e., kyphosis, lordosis) between preoperative CT and intraoperative x-ray 

images. Analysis of the objective function landscape revealed that the challenging (spiky) 

landscape induced by spatial discretization in 2D projection (pixelization) and 3D volume 

(voxelization) caused degradation in registration precision, and the optimization algorithm 

proved robust against such false local minima. The multi-start method was facilitated by an 

orders-of-magnitude improvement in the number of function evaluations performed via GPU 

acceleration. The implementation maintained high occupancy in thousands of processor 

cores, suggesting that performance will further improve in proportion to future increase in 

the number of available cores (e.g., an increase of processor cores on GPU or in computation 

nodes in CPU/GPU cluster).

The main challenge in 3D–2D registration is twofold: the similarity metric and the 

optimization approach. If the similarity metric does not demonstrate a global optimum at the 

true registration (e.g., due to anatomical deformation), then the optimization algorithm will 

not converge on the true registration. The experiments detailed in this work showed that NGI 

yielded the correct global optimum in 93% of the cases examined (even with gross 

deformation) owing to local rigidity of the spine, and the remaining 7% of cases were 

absolved by application of an NGI weighting mask placing greater weight on the center of 

the projection image (i.e., the area occupied by the spine) to down-weight structures such as 

the skinline or soft tissues not associated with the task of vertebral localization.

Correlation between NGI at the solution and the degree of deformation suggested the 

potential use of NGI as a metric indicating the difficulty of the registration. In clinical 

translation, an interface can be envisioned that displays the registered target points and 

various planning structures along with this metric to intuitively convey the difficulty of 
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registration to the operator (e.g., points displayed in green when the NGI is high, and yellow 

if the NGI is low). In cases where the NGI is low, the operator would be free to, for example, 

increase the number of multi-starts (N) to assure a confident registration.

Other research reported in the literature employs 3D–2D registration incorporating a non-

rigid transformation. For example, the transformation can be parameterized using prior 

information such as the principal components and eigen-values of motion derived from a 

training dataset (Wang et al 2013) or properties of length preservation of vessels (Groher et 
al 2009). Similarly, finite element modeling could drive such a non-rigid transform (Hopp et 
al 2012). Alternatively, deformation vectors could be derived according to the centerline of 

vessels (Rivest-Henault et al 2012) or control points in a free-form deformation (Qi et al 
2008). While the registration framework proposed in the work reported here can also be 

applied to such parameterizations by modifying the representation of the transformation and 

increasing the number of optimization variables, we focused in the current study on rigid 

transformation including only six parameters to yield a more stable optimization and reduce 

computational cost. As demonstrated in the experiments, the rigid transformation approach 

was still able to find the locally rigid structures (vertebrae) in both images and utilize 

consistent features to robustly solve the registration even in the presence of strong 

anatomical deformation and within a clinically realistic computation time.

The current analysis focused on registration in the AP projection view as common in 

minimally invasive spine surgery (either single plane or biplane). Future work will extend 

experimentation and analysis to the lateral projection view. Other preliminary simulation 

studies (Otake et al 2012b) demonstrated that the LevelCheck registration was accurate in 

the lateral projection view, but further investigation is required to confirm robustness against 

deformation. While the method is intrinsically robust to image content mismatch (e.g., 

surgical tools in the fluoroscopy image but not in the preoperative CT), future work will 

include experiments and analysis in such scenarios in anticipation of a typical clinical 

workflow where an x-ray opaque tool is included in the fluoroscopy image together with the 

patient to correlate the image to externally visible landmarks.

Parameters employed in the optimization could also be extended to include intrinsic 

parameters of the x-ray projection geometry, namely source-to-detector distance and image 

center. This extension would be essentially useful in images acquired with an unconstrained 

geometry, such as a mobile x-ray device with a wireless x-ray detector (Otake et al 2013). 

The optimization framework is being extended to accommodate the additional DoFs (i.e., 6 

DOF transformation + 3 DOF intrinsic parameters) for registration in mobile radiographs. 

Finally, the system is being translated to use with C-arms featuring x-ray imaging 

intensifiers, potentially involving a distortion correction as described in Yan et al (2011) and 

extended to clinical pilot studies.
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Figure 1. 
Illustration of the 3D–2D registration objective function landscape. (a) Illustration of the 

projection geometry. (b) and (c) Objective function value plotted as a function of two 

variables (Y, out-of-plane, and Z, in-plane, translations; the complete registration involves 

six variables of translation and rotation) illustrating the challenge of anatomical deformation. 

In (b) without deformation, the objective function exhibits a clear global optimum. In (c) 

with deformation (spine lordosis), the optimization becomes poorly posed due to reduction 

in the peak value of the objective function and the emergence of multiple local optima.
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Figure 2. 
Flowchart for the 3D–2D registration framework.
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Figure 3. 
Experimental setup. (a) Photograph of the C-arm and cadaver. (b) Cadaver torso shown in 

the prone position, with kyphosis or lordosis simulated using (c) a foam block placed below 

the belly or back, respectively. (d) Segmentation of vertebrae in prone CT and (e) supine CT, 

illustrating the degree of overall deformation between the two CT datasets.
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Figure 4. 
An example registration for truth definition. (a) Real fluoroscopy (thoracic region) in prone 

position. (b) DRR of prone CT (vertebral labels in cyan). (c) DRR of supine CT (vertebral 

labels in yellow). Magenta overlays in (b) and (c) are the image gradients from (a), and the 

cyan and yellow vertebral labels are in turn overlaid in (a)—all suggesting accurate 

alignment at the `true' registration. (d) Sagittal slice of the prone CT. (e) Sagittal slice of the 

supine CT registered to (a). Note the rotation of the volume to align within the projection 

FOV. The three anatomical regions tested in the experiment are marked as thoracic (Sup), 

abdominal (Mid), and lumbar (Inf).
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Figure 5. 
Effect of a weighting mask. (a) Fluoroscopy image overlaid with the labels computed by the 

registration with a weighting mask (cyan) and without the weighting mask (yellow). NGI 

images are shown (b) without and (c) with a weighting mask. (d) Objective function 

landscape along a 1D line connecting the two poses. (e) Dependency of registration result on 

the lateral displacement of the weighting mask in the case of a very strong gradient 

introduced by a large bubble and/or the skinline. Each box plot represents result of 20 

random trials. The box marks first and third quartiles, and the whiskers mark the minimum 

and maximum values.
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Figure 6. 
Dependence of the objective function landscape on downsampling (DS) ratio: DS8 (3.12 

mm2 pixel−1, 2.73 mm3 voxel−1); DS4 (1.62 mm2 pixel−1, 1.33 mm3 voxel−1); and DS2 

(0.782 mm2 pixel−1, 0.683 mm3 voxel−1). Two in-plane translations (X and Z translations) in 

[−0.1, +0.1] mm around the true registration are plotted. The insets illustrate a zoomed-in 

region around one vertebra in each level of the multiresolution pyramid.
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Figure 7. 
Precision of 3D–2D registration. (a) Median PDE for CMA-ES and downhill simplex. (b) 

Median coordinate-wise error in each translation and rotation parameter in CMA-ES (Ty: 

out-of-plane translation, ∥T∥ and ∥R∥ indicate L2-norm of translation and rotation). (c), (d) 

Average dispersion computed as a function of the number of selected sample points, 

demonstrating a smoother objective function landscape in DS2 (decreasing dispersion) 

compared to DS8.
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Figure 8. 
Robustness of 3D–2D registration. The PDE for all registration trials and deformation 

scenarios is shown for various settings of N (number of multi-starts). The abscissa in each 

plot is the scenario # defined in table 1, with progressively stronger deformation for higher 

scenario #. Each box plot represents 1,800 random trials (9 images × 200 trials). The median 

PDE is marked by the bold line, the box marks first and third quartiles, and the whiskers 

mark the minimum and maximum values. Outliers (registrations defined as a failure due to 

PDE > 5 mm) are marked by the × symbols.
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Figure 9. 
(Left) The total success rate plotted as a function of computation time and number of 

function evaluations. (Right) PDE before and after registration with N = 250 (54.0 s) of 14 

400 trials. Box plots mark the median (bold line), first and third quartiles (box), and range 

(whiskers).
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Figure 10. 
For each deformation scenario (#1– #8) and image index (#1– #9) defined in table 1, plots of 

(a) NGI, (b) median PDE and (c) the 95% confidence interval of PDE resulting from 3D–2D 

registration (N = 250). The plots illustrates not only the registration accuracy in each 

anatomical region and deformation scenario (median PDE typically < 1 mm) but also the 

correlation between NGI and degree of deformation.
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Table 1

Summary of datasets in the cadaver experiments. Notation is as follows: (↑ supine), (↓ prone), (↑∩ supine with 

lordosis), and (↓∩ prone with kyphosis).

Image characteristics

Supine CT 512 × 512 × 1437 voxels 0.67 × 0.67 × 0.60 mm

Prone CT 512 × 512 × 1410 voxels 0.67 × 0.67 × 0.60 mm

Projections 768 × 768 pixels 0.388 × 0.388 mm

Target regions and magnifications

Image # Geometric magnification Region

1 2.4 Thoracic (C6-T7)

2 2.0 Thoracic (C6-T7)

3 1.7 Thoracic (C6-T7)

4 2.4 Abdominal (T8-L1)

5 2.0 Abdominal (T8-L1)

6 1.7 Abdominal (T8-L1)

7 2.4 Lumbar (L2-L5)

8 2.0 Lumbar (L2-L5)

9 1.7 Lumbar (L2-L5)

Deformation scenarios

Scenario # Position in CT Position in fluoroscopy Description

Deformation Position between CT and fluoroscopy

1 ↑ (supine) ↑ (supine) No Same

2 ↓ (prone) ↓ (prone) Same

3 ↑ (supine) ↑∩ (supine+lordosis) Yes Same

4 ↓ (prone) ↓∩ (prone+kyphosis) Same

5 ↑ (supine) ↓ (prone) No Different

6 ↓ (prone) ↑ (supine) Different

7 ↑ (supine) ↓∩ (prone+kyphosis) Yes Different

8 ↓ (prone) ↑∩ (supine+lordosis) Different
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