
3D–2D image registration for target localization in spine surgery: 
investigation of similarity metrics providing robustness to 
content mismatch

T De Silva1, A Uneri2, M D Ketcha1, S Reaungamornrat2, G Kleinszig3, S Vogt3, N Aygun4, 
S-F Lo5, J-P Wolinsky5, and J H Siewerdsen1,2,4,5

1 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA

2 Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA

3 Siemens Healthcare XP Division, Erlangen, Germany

4 Department of Radiology and Radiological Science, Johns Hopkins Medical Institute, Baltimore, 
MD 21287, USA

5 Department of Neurological Surgery, Johns Hopkins Medical Institute, Baltimore, MD 21287, 
USA

Abstract

In image-guided spine surgery, robust three-dimensional to two-dimensional (3D–2D) registration 

of preoperative computed tomography (CT) and intraoperative radiographs can be challenged by 

the image content mismatch associated with the presence of surgical instrumentation and implants 

as well as soft-tissue resection or deformation. This work investigates image similarity metrics in 

3D–2D registration offering improved robustness against mismatch, thereby improving 

performance and reducing or eliminating the need for manual masking.

The performance of four gradient-based image similarity metrics (gradient information (GI), 

gradient correlation (GC), gradient information with linear scaling (GS), and gradient orientation 

(GO)) with a multi-start optimization strategy was evaluated in an institutional review board-

approved retrospective clinical study using 51 preoperative CT images and 115 intraoperative 

mobile radiographs. Registrations were tested with and without polygonal masks as a function of 

the number of multistarts employed during optimization. Registration accuracy was evaluated in 

terms of the projection distance error (PDE) and assessment of failure modes (PDE > 30 mm) that 

could impede reliable vertebral level localization.

With manual polygonal masking and 200 multistarts, the GC and GO metrics exhibited robust 

performance with 0% gross failures and median PDE < 6.4 mm (±4.4 mm interquartile range 

(IQR)) and a median runtime of 84 s (plus upwards of 1–2 min for manual masking). Excluding 

manual polygonal masks and decreasing the number of multistarts to 50 caused the GC-based 

registration to fail at a rate of >14%; however, GO maintained robustness with a 0% gross failure 

rate. Overall, the GI, GC, and GS metrics were susceptible to registration errors associated with 
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content mismatch, but GO provided robust registration (median PDE = 5.5 mm, 2.6 mm IQR) 

without manual masking and with an improved runtime (29.3 s).

The GO metric improved the registration accuracy and robustness in the presence of strong image 

content mismatch. This capability could offer valuable assistance and decision support in spine 

level localization in a manner consistent with clinical workflow.
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 1. Introduction

In image-guided spine surgery, integrating three-dimensional (3D) preoperative images and 

two-dimensional (2D) intraoperative images via 3D–2D registration can provide valuable 

assistance during target localization. For instance, the overlay of vertebral labels identified in 

preoperative computed tomography (CT) images onto the intraoperative radiographs can 

provide decision support system for surgeons in accurate vertebral level identification (Otake 

et al 2012b, 2013, 2015, Lo et al 2015). This could potentially decrease wrong-level errors, 

reported to occur in approximately 1 in 3110 spine surgery procedures (Mody et al 2008), 

and reduce the time and stress associated with resolving anatomical uncertainty. This 

registration requires a high degree of robustness in registration performance. However, the 

presence of surgical instrumentation, hardware implants, and soft-tissue resection/

displacement is common in intraoperative radiographs relative to preoperative CT images, 

causing image content mismatch and potentially confounding image-based registration. 

Manual/semi-automatic methods to mask out such extraneous (or missing) content are time 

consuming, user dependent, error prone, and disruptive to workflow. The development and 

validation of image registration methods (Nithiananthan et al 2011, Uneri et al 2013) that are 

robust in the presence of content mismatch are important to achieving reliable registration in 

a manner consistent with the needs of intraoperative workflow and clinical integration.

Several image similarity metrics have been proposed in 3D–2D registration involving x-ray 

and CT images. Table 1 lists a number of previous studies comparing the performance of 

various image similarity metrics in 3D–2D registration for clinical applications ranging from 

image guidance in the spine (Penney et al 1998) and intracranial interventions (Hipwell et al 
2003, McLaughlin et al 2005) to patient positioning/target alignment in radiotherapy 

(Khamene et al 2006, Kim et al 2007, Wu et al 2009, Gendrin et al 2011). While mismatch 

in image content due to changes in anatomy and/or instrumentation between images 

acquired at two different time points is commonly encountered in many clinical procedures, 

the degree of mismatch and the extent to which it challenges image-based registration 

depend strongly on the specific clinical procedure under consideration. In spine surgery, for 

example, the following sources of mismatch are common occurrences (as shown in figure 1) 

and present particular challenges to 3D–2D registration: (a) The presence of surgical 

instrumentation in the intraoperative radiograph (e.g. retractors, screws, implants, clips, etc); 

and (b) non-rigid anatomical deformation (e.g. soft tissues, gas inside the colon, and skin 
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lines) and anatomical positioning (e.g. arms up, or at the sides), especially when the 

intraoperative patient setup does not match the position in preoperative scanning (e.g. 

preoperative supine CT versus intraoperative prone radiograph).

Penney et al (1998) presented related work in the context of spine surgery, where the 

performance of multiple image similarity metrics was evaluated in 3D–2D registration in the 

presence of partial mismatch. However, the mismatch in that study was simulated using 

phantom data with clinical image features overlaid. While the amount of clinical data used 

for validation in the studies listed in table 1 is limited, clinical images often pose additional 

challenges for similarity metrics during registration (Penney et al 1998, McLaughlin et al 
2005, Wu et al 2009). Given the high degree of mismatch common in spine surgery 

procedures and the results of previous studies showing variability in similarity metric 

behavior in clinical images, validation in a large clinical data set is essential to the 

assessment of accuracy and robustness in registration performance under mismatch. 

Moreover, such a data set captures the broad variety of realistic anatomical features and 

pathologies that challenge image registration.

From the similarity metrics that have been previously investigated, gradient-based metrics 

have shown promise in 3D–2D image registration problems involving intraoperative 

radiographs and preoperative CT images (Penney et al 1998, Gendrin et al 2011, Otake et al 
2012b, 2015). Image gradients can be used to filter out low spatial frequency differences 

such as soft tissue (Penney et al 1998, Pluim et al 2000) and act as a high-pass filter to focus 

the registration on the bony anatomy clearly visible in x-ray images. Gradient information 

(GI), gradient correlation (GC), and gradient difference (GD) have shown superior 

performance in 3D–2D registration applications in previous studies, while GI and GC 

metrics have been developed with the inherent capacity to handle registrations with partial 

mismatch. For example, previous work on vertebral level localization in spine surgery (Lo et 
al 2015, Otake et al 2015) showed promising results with GC similarity. However, the 

challenge due to content mismatch was mitigated by manually defined polygonal masks that 

excluded extraneous regions during similarity metric evaluation. The definition of polygons 

to mask extraneous objects is a slow, subjective step that is error prone and limits the 

practical utility of image-based registration within streamlined workflow. Alternatively, 

automatic/semi-automatic segmentation methods (Linguraru et al 2007) could be 

implemented as a pre-processing step to mask extraneous objects within the field-of-view of 

the radiograph. However, such an approach increases the computational burden and makes 

the registration algorithm susceptible to segmentation errors.

In order to achieve robust 3D–2D registration, the registration framework (and specifically 

the similarity metric) should inherently handle content mismatch, rather than rely upon user 

input that is subject to variability. In this work, we evaluate the performance of gradient-

based image similarity metrics that have shown promise in previous work, and we develop 

modifications that yield further improvement. Registration performance was evaluated in a 

fairly large clinical data set (51 patients and 115 radiographs) that consisted of preoperative 

CT images and intraoperative radiographs acquired during thoracolumbar spine surgery 

procedures. The accuracy and robustness of vertebral level localization were quantified in 

terms of geometric accuracy (projection distance error) and failure rate (attributed to 
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previously identified failure modes (Lo et al 2015)) in the context of vertebral level 

localization. We also evaluated the properties of the objective function search space and 

compared the capture ranges for each metric. The system is envisioned as a means of 

decision support and an ‘independent check’ in level localization by projecting preoperative 

CT vertebral labels onto the intraoperative radiographs via 3D–2D registration.

 2. Methods and materials

 2.1. Clinical study

The clinical data were collected retrospectively in an institutional review board (IRB) 

approved study from patients undergoing thoracolumbar spine surgery within the past four 

years at our institution. Basic inclusion criteria were the availability of a preoperative CT 

image acquired within one year prior to the surgery date and at least one radiograph acquired 

during the procedure. From an initial data set comprising 60 patients and containing 154 

intraoperative radiographs, some data were excluded according to the following criteria: (1) 

Inappropriate field of view (12 radiographs demonstrated inadequate positioning of the 

detector and/or collimators with respect to vertebral levels of interest); (2) poor image 

quality (9 radiographs exhibited poor image contrast likely due to suboptimal imaging 

techniques); and (3) limited overlap/correspondence between the CT and radiograph (8 cases 

presented preoperative CT that appear to have been acquired for purposes other than the 

spinal pathology or surgical planning and contained little or no overlap with the 

intraoperative radiograph).

The remaining data set comprised 51 patients and 115 radiographs for the study reported 

below. These data exhibited a substantial degree of realistic variation in imaging protocols/

techniques, image quality, and imaging systems used for preoperative and intraoperative 

imaging. For example, the 51 preoperative CT images included three scanner manufacturers 

(Toshiba Corporation, Tokyo, Japan; Siemens Healthcare, Erlangen, Germany; and GE 

Healthcare, Little Chalfont, UK), and scan techniques varied from 120–140 kVp and 80–660 

mAs with slice thickness ranging from 0.24–3.00 mm. All of the intraoperative radiographs 

were acquired using a common model of mobile radiography system (DRX-1, Carestream 

Health, Rochester, NY) with 0.14 × 0.14 mm pixel dimensions and included 105 lateral 

(LAT) and 10 anterior–posterior (AP) projections. All the CT images were acquired with the 

patient supine, whereas intraoperative radiographs were typically in prone position.

 2.2. Image pre-processing and target definition

 2.2.1. Spine level definition—Preoperative CT images were de-identified and 

prepared for registration by first defining the vertebral levels. Labeling in CT can potentially 

be done automatically (Klinder et al 2009, Ma and Lu 2013), but in this study, a board-

certified neuroradiologist annotated the vertebral labels at the approximate centroid of each 

vertebral body. For each CT scan, all the vertebrae within the scan volume were labeled 

according to standard designations (T1, T2, etc), including normal anatomical variations 

(e.g. the existence of T13 and/or L6).
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 2.2.2. 2D radiographic masking and 3D volumetric masking—To constrain the 

registration to regions proximal to the spine and to test the registration robustness in the 

presence of image content mismatch, the images were masked using two different 

approaches: (1) Manual 2D radiographic masking; and (2) automatic 3D CT masking. 

Manual 2D radiographic masking was performed as in (Otake et al 2015) to exclude regions 

associated with content mismatch. Previous radiographic masking (Lo et al 2015, Otake et al 
2015) involved manual definition of polygonal exclusion masks (denoted p) to exclude 

regions with instrumentation, surgical implants, and strong gradients produced by non-rigid 

anatomy; however, manual masking is a time-consuming and subjective process. A faster, 

less labor-intensive approach would be advantageous to clinical implementation considering 

the time sensitive workflow requirements in the operating room. For example, we 

implemented a simple rectangle (denoted r) manually defined by two points capturing the 

region containing vertebrae and possibly avoiding areas due to collimation/text annotations.

On the other hand, automatic 3D volumetric masking applies a binary spatial mask in the CT 

image around the labeled vertebrae and requires no additional effort in the workflow, since 

the label positions have already been identified. From the label coordinates in the CT image, 

a 3D mask was automatically generated as an elliptical cylinder (minor axis 50 mm and 

major axis 25 mm) encompassing the region about the vertebrae and applied to all the 

registrations performed in this study.

In all cases, to further decrease the effect of deformable soft tissue gradients on the 

registration performance, a simple intensity threshold (50 HU) was applied to the CT image 

as in (Otake et al 2012b) to exclude anatomical regions of low intensity.

 2.3. 3D–2D registration framework

 2.3.1. Basic framework—The registration is performed by optimizing the image 

similarity between the preoperative CT image and the intraoperative radiograph 

 in a rigid 6D transformation space. Figure 2 illustrates the overall 3D–2D 

registration process and variable parameters relating to masking (p, r, or v) and similarity 

metrics (section 2.3.2).

During registration, the image similarity is computed between the intraoperative radiograph 

I2 and a digitally reconstructed radiograph (DRR) ( ) generated from the CT 

image. A parallelized GPU implementation is utilized to efficiently generate DRRs (Otake et 
al 2012a). The patient and imaging system positioning and intrinsic parameters of system 

geometry were initialized from a set of pre-defined discrete configurations. While this 

initialization approximated the patient and imaging setup, simple additional manual 

initialization was performed by translating the CT image along the superior–inferior (S–I) 

direction to ensure a reasonable initial overlap between the DRR and the radiograph. The 

PDE following initialization ranged from 11.3 to 111.1 mm (median PDE = 43.1 mm, 

interquartile range 20.9 mm).

The image similarity metric is an important component within the registration framework 

that plays an important role in the robustness of registration in the presence of content 
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mismatch. The GI and GC metrics have been shown previously (Penney et al 1998, Pluim et 
al 2000, Otake et al 2012b) to be useful when handling partial content mismatch. We 

introduce modified versions of these metrics with the aim of improving registration 

robustness. The details of the modified similarity metrics are described in section (2.3.2).

Content mismatch caused by extraneous objects and tissue deformation can create a 

challenging search space with multiple local optima. To achieve robust performance under 

these conditions, the registration process incorporates a multistart optimization with the 

covariance matrix adaptation; evolution strategy (CMA-ES) reported by (Hansen 2006). In 

CMA-ES, population samples (with nominal population size λ = 100) were randomly drawn 

according to a multivariate normal distribution during optimization. At each iteration, the 

mean, covariance matrix, step-size, and evolution paths are updated deriving from the 

currently sampled population. For the multistart strategy, the six-dimensional (6D) search 

space is partitioned to multiple, equal-size subspaces following a k-d tree partitioning 

algorithm, and a separate CMA-ES search was performed for each subspace initialized at 

their respective centers (Otake et al 2013). The partitioned search range was defined as a 

region centered on the initialization pose and spanning ±200 mm along the superior–inferior 

direction, ±100 mm along the anterior–posterior direction, ±100 mm along the left–right 

direction, and ±10 degrees along each of the three rotational directions in the search space. 

The solution at the subspace search achieving the highest similarity metric at convergence is 

selected as the initialization to a subsequent second-level CMA-ES search. Increasing the 

number of multistarts (denoted S in figure 2) boosts the density of seed points positioned 

within the multidimensional space and therefore improves the robustness of finding the 

global optima at the cost of additional computation in performing parallel searches (roughly 

proportional to the number of multi-starts). The similarity metric evaluations for all the 

multistarts as well as population sample evaluations within a single start were parallelized in 

our implementation to improve the computation time, as characterized below.

 2.3.2. Similarity metrics

 2.3.2.1. Gradient information (GI): When calculating GI, the min operator applied to 

gradient magnitudes of the two images [|∇u I1 and |∇u I2| where u = (x, y)] intends to 

exclude strong extraneous gradients. The metric is computed according to equation (1) by 

combining gradient magnitude and orientation (w) terms where the gradient orientation is 

computed as the cosine angle between two gradient vectors (cos θ) using the vector dot 

product.

(1)

where  and 

 2.3.2.2. Gradient correlation (GC): GC is calculated as the normalized cross correlation 

(NCC) between two gradient images according to equation (2). The corresponding gradient 

images in intraoperative radiographs and DRRs can vary due to the differences in imaging 
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techniques used or due to image content mismatch. GC can accommodate such differences 

up to a linear factor and therefore offers some degree of robustness against mismatch:

(2)

 2.3.2.3. Gradient information with linear scaling (GS): The min operator in GI 

assumes that anatomical structures produce a constant gradient magnitude in both DRRs and 

radiographs. However, this assumption is often not valid, since extraneous objects, 

differences in real/simulated projections may contribute to the similarity metric value. To 

mitigate this effect, we introduced a linear scaling factor (α) to match different levels of 

corresponding gradient magnitudes. This scaling factor (α) was determined dynamically as 

α = γ · max(∇uI1)/max(∇uI2). The parameter γ is a constant that accounts for the presence 

of strong extraneous gradient magnitudes in I2. With the scaling factor (α), GS is calculated 

as:

(3)

 2.3.2.4. Gradient orientation (GO): While all of the above metrics rely upon gradient 

magnitudes, gradient orientation on its own has been widely used for feature matching 

(Lowe 2004), object detection (Dalal and Triggs 2005), and image registration (De Nigris et 
al 2012), and shown promise in robust matching under partial occlusion and view point 

changes. In this study, we introduce a GO metric to achieve robust registration performance 

under mismatch. We hypothesized that GO could help to mitigate the effect of strong 

gradient magnitudes produced by extraneous instrumentation in the registration solution. 

However, gradient orientation could be susceptible to noise in regions that produce low 

gradient magnitudes. Therefore, in computing GO, we only consider pixels with gradient 

magnitudes exceeding the threshold t1 or t2 in the images I1 or I2, respectively. These 

thresholds were defined as the median gradient magnitude of each image. This eliminated 

50% of the image pixels containing low gradient magnitudes from the GO computation. 

Then we perform an intersection operation between the two thresholded gradient magnitudes 

according to equation (4) and the resulting number of overlapping pixels contributing to the 

overall GO value can be variable. To prevent degenerate solutions with minimal overlap 

between the images during metric calculation, we introduce a lower bound (NLB) along with 

the total number of evaluated pixels N and normalized the metric by max(N,NLB) to 

penalize when the number of contributing pixels falls below NLB. In addition, the natural log 

was used instead of cosine weighting to introduce a more sharply decaying penalty to 

gradient orientation mismatch:
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(4)

Figure 3 provides a simple illustration of the four similarity metrics defined above. In each 

case, GI, GC, GS, and GO ‘maps’ (i.e. M(u, v) the metric depicted in the projection domain 

prior to summation over pixels) are shown for a simple simulation of content mismatch 

between the DRR I1 and radiograph I2. The top row in figure 3 simulates the desired 

solution (i.e. images aligned) in the presence of content mismatch (the addition of a triangle 

in I2) and intensity mismatch (hypodensity of the circle and square in I2) and the bottom row 

simulates a degenerate solution (i.e. images misaligned due to additional content) with the 

same mismatch in content and intensity. While all metrics align corresponding square and 

circle elements at the desired solution, the mismatching triangle at the degenerate solution 

causes the GI, GC metrics to yield a larger relative contribution to the overall metric value.

 2.4. Performance evaluation

 2.4.1. Accuracy, robustness, and run time—To provide a reference/truth definition 

in registration, a board-certified neuroradiologist annotated the approximate centroid of each 

vertebral body in the 2D radiographs. The geometric accuracy of registration was measured 

using projection distance error (PDE) calculated as the distance (in the projection domain at 

the detector) between registered CT labels in DRRs and (‘true’) vertebrae centroids in 

radiographs. For the acquired radiographs, the magnification factor at the detector typically 

ranged from 1.4–1.6. For each similarity metric, the performance was evaluated as a 

function of the degree of masking (manual polygonal p or automatic rectangular r) and 

registration runtime (determined primarily by S, set to 200 or 50 multistarts), with three 

nominal configurations (R(p, 200), R(p, 50), and R(r, 50)) defined as follows:

R(p, 200) denoted the configuration in which polygonal masks (p) were manually 

defined in 2D radiographs, and the number of multistarts in the optimization was S 
= 200. This configuration corresponds to that demonstrated in clinical studies by 

(Lo et al 2015). It has the advantages of excluding extraneous gradients via manual 

masking and increased robustness due to the high number of multi-starts. However, 

manual masking presents an obvious challenge to workflow, and the large number 

of multistarts carries a longer run time.

R(p, 50) denoted the configuration in which polygonal masks were manually 

defined as in the previous case, but the number of multistarts was reduced to S = 

50. This configuration was intended as a stress test to improve the run time and to 

examine potential deterioration in registration robustness.

R(r, 50) denoted the configuration in which a simple rectangular mask (r) was 

applied to the 2D x-ray images (simply masks the collimator edges, and could be 

automated), and the number of multistarts was set to S = 50. This configuration 

exposes all the extraneous gradients within the rectangle and poses a challenging 

registration problem with content mismatch and relatively few multistarts. 
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However, it involves minimal manual intervention and a faster run time, each 

advantageous to clinical workflow.

In addition to geometric accuracy (PDE), we evaluated the overall robustness of registration 

in terms of the ‘failed’ registrations in which the registered labels were positioned outside 

the correct vertebral body. Considering an average thoracolumbar vertebral height (superior–

inferior direction) of 22 mm (Busscher et al 2010), we defined failure as any registration 

with PDE > 30 mm (equal to 22 mm (in the object) times an approximate typical 

magnification factor of ~1.4). Registration was performed on a desktop Windows 7 64-bit 

workstation with an Intel Xeon 2 processor (2.4 GHz) and GeForce TITAN Black GPU 

(nVidia, Santa Clara CA), with GPU implementations of the forward projection (DRR) 

calculation, and similarity metric calculation.

 2.4.2. Quality of the objective function search space—To evaluate the effect of 

the various similarity metrics in improving robustness to image content mismatch, we 

assessed the quality of the search space for the most challenging configuration R(r, 50). A 

one-dimensional (1D) surrogate for visualization of the 6D search space was formed from 

line profiles sampled across different directions centered around a known ground truth, 

obtained from a successful registration (low PDE) using the R(p, 200) configuration. The 

profiles were normalized such that a unit change in all the transform directions (i.e. both 

rotations and translations) cause the same mean shift in physical dimensions in the image 

(Škerl et al 2006). This provided a highly simplified visualization of the 6D search space and 

elucidated how various similarity metrics determined the quality/condition of the search (e.g. 

more or fewer false local maxima, etc).

 2.4.3. Sensitivity to initialization—The simple manual initialization in the S–I 

direction described above is intended to provide coarse, nominal overlap between the 

radiographs and the DRR at the start of the registration. For example, if the preoperative CT 

covers the entire spinal column, but the intraoperative radiograph covers only a portion of 

the thoracic spine, then the user simply slides a 2D rectangle window on the DRR to roughly 

demark the thoracic spine. Other forms of initialization variability exist as well, e.g. 

magnification associated with variable source-to-image distance, but disparity in the S–I 

position is believed to be the most susceptible for level misidentification (e.g. registration 

errors resulting in label positions away from the true level by one or more levels in the S–I 

direction). We evaluated the capture range over which registration was robust against S–I 

initialization error. For each intraoperative lateral radiograph, we varied the initialization 

pose (p0) along the S–I direction from −300 to +300 mm, and PDE was evaluated to 

quantify the capture range (i.e. extent in the S–I direction for which the registration was 

robust against failure).

 3. Results

 3.1. Registration accuracy and robustness

Figure 4 compares the registration performance for each similarity metric under various 

parameter configurations. Table 1 shows the median ± interquartile range (IQR) in PDE 

along with failure rates (fraction of cases for which PDE > 30 mm). For the R(p, 200) 
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configuration (i.e. 2D polygonal masks and 200 multistarts), both the GC and GO metrics 

exhibited an accurate and robust performance. The GI and GS metrics failed to achieve a 

clinically acceptable level of accuracy, suffering a >16% failure rate, although GS improved 

the gross failure rate compared to GI by approximately 50%. The performance exhibited by 

the GC metric is consistent with that in (Lo et al 2015).

Reducing to 50 multistarts in the R(p, 50) configuration (as shown in figure 4(b)) improves 

the runtime (detailed below and in table 2) but compromises the robustness of the 

registration and results in an increasing failure rate for all of the similarity metrics. The GC 

and GO metrics maintained superior performance in comparison to GI and GS.

As shown in figure 4(c), configuration R(r, 50) further challenged the algorithm by exposing 

all the extraneous gradients within the simple rectangular field of view in the radiograph. 

The performance of the GI, GC, and GS metrics degraded significantly, e.g. the gross failure 

rate for GC increasing to 15%. The GO metric, on the other hand, maintained geometric 

accuracy and robustness. A slight improvement in the GO registration when compared with 

R(p, 50) is attributed to the additional benefit of relevant anatomical information included 

with rectangle masking but masked out with polygonal masking.

Since our PDE distributions were not normally distributed, we tested the statistical 

significance of differences between the PDE distributions for each configuration using a 

non-parametric pairwise Wilcoxon signed rank test. Among distributions RGO(p, 200), 

RGO(p, 50), and RGO(r, 50), we found p-value >0.94 failing to reject the null hypothesis that 

the PDE distributions have the same median. This suggests that the challenging 

configuration RGO(r, 50) produces a similar PDE distribution to the more manually intensive 

RGO(p, 200) and RGO(p, 50) configurations. Comparing the GI, GS, and GC metrics to the 

GO metric, table 2 marks the cases (*) for which the PDE distribution was statistically 

significantly different (p < 0.05).

The computation time was primarily a function of the number of multistarts used during the 

optimization. Owing to GPU implementations for each metric, the average computation time 

ranged from 23–29 s for the S = 50 configurations, compared to 65–85 s for the S = 200 

configuration. Thus, the improvements in robustness observed with 200 multistarts come 

with approximately three-fold increase in computation time. Overall, the RGO(r, 50) 

configuration outperformed all of the GI, GS, and GC configurations in terms of geometric 

accuracy, robustness, and run time and presents an implementation that is advantageous with 

respect to clinical workflow (via a simple, potentially automatic definition of a rectangular 

mask).

The similarity metric maps shown in figure 5 depict the metric value at each pixel location 

(prior to summation, as in the toy illustrations in figure 3). In this example, the gradients 

produced by instrumentation appearing in the radiograph (but not the CT) tend to dominate 

the similarity metric value for the GI, GC, and GS metrics. For the GI and GC metrics, this 

tends to direct the registration to a false (erroneous) solution. For the GS metric, this effect is 

mitigated partly by the scaling parameter α; however, the exclusion of extraneous gradients 

requires estimating α to accurately match the corresponding gradients in the two images. For 
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the GO metric, the gradient magnitude values do not dominate the overall metric value, and 

the desired solution is reached wherein corresponding vertebrae gradients align in a manner 

that is robust against extraneous gradients and occlusions from instrumentation.

 3.2. Quality of the objective function search space

The quality of the search space is illustrated in the spaghetti plots of figure 6, each plot 

showing 1000 1D line profiles centered about the true solution in the 6D objective function 

search space. The plots correspond to a single case, similar to that in figure 5. For all the 

metrics, the space exhibits numerous false local optima associated with surgical instruments 

present in the radiograph (but not the CT) or the semiperiodic structure of the spine itself in 

the S–I direction. For GI and GS, the peak at the solution is less distinct from surrounding 

local maxima, although GS appears improved over GI (consistent with improved robustness 

noted above). The min operator applied in these metrics imparts a flattening effect in the 

search space and can challenge the optimizer to reach the solution. On the other hand, GC 

shows a more distinct optimum at the solution, but it also exhibits sharp local maxima 

attributed to strong gradient magnitudes far from the solution (surgical instruments). 

Therefore, unless these extraneous gradients are masked from the image (as with the manual 

p mask as in previous work (Lo et al 2015), the registration is susceptible to failure. The GO 

metric exhibits the most distinct global optimum at the solution and suppresses false maxima 

far from the solution.

 3.3. Sensitivity to initialization/capture range

Figure 7 shows the median and third quartile of the distribution in PDE over all cases for 

each similarity metric as a function of displacement in the S–I direction from the manual 

initialization. For each case, the capture range was computed as the displacement in the S–I 

direction that resulted in PDE within 5 mm of that at the true S–I position. Consistent with 

the results above, GO exhibited the best overall performance with a median capture range of 

375 mm ± 122 mm IQR measured at the detector. This capture range spans approximately 

12 vertebra in the S–I direction. The other metrics demonstrated a fairly broad capture range 

as well: GI capture range = 192 mm ± 214 mm IQR; GC capture range = 345 mm ± 185 mm 

IQR; and GS capture range = 293 mm ± 180 mm IQR. Such broad capture ranges are partly 

attributable to the similarity metric and perhaps more so to the robust optimization strategy 

involving multiple parallel searches from multiple initial seed points. The result is 

encouraging in that it suggests a high level of robustness to S–I initialization error, 

particularly considering the ability to move through multiple false local maxima associated 

with one-level error, two-level error, and so on.

 4. Discussion and conclusions

Image content mismatch caused by surgical instruments introduced between the preoperative 

CT and intraoperative radiographs can be problematic in achieving robust registration. Our 

results indicate that similarity metrics that rely upon gradient magnitudes tend to be more 

susceptible to registration failure under such conditions. This may be attributed to the fact 

that the extraneous objects produce stronger gradient magnitudes than those of the vertebrae 

and therefore can dominate the search space and drive the solution to false local maxima. 
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The main advantage of GO is that both the instrumentation and vertebrae gradients 

contribute similar weights to the overall metric value. As long as vertebral bodies produce a 

larger spatial distribution of gradients in comparison to those produced by the extraneous 

objects, the desired solution of accurately aligning vertebrae is more favorable within the 

GO search space. The GO similarity metric thereby exhibits robust performance against 

content mismatch and enables the definition of a simple rectangular mask of the radiograph 

collimators to reduce or eliminate the need for polygonal masking.

In addition to the time required during surgery, the definition of manual polygonal masks is 

subject to user variability and tends to exclude regions that may be disadvantageous to 

registration. For example, complex polygonal masks about surgical implants within verte-

brae can partially occlude vertebral boundaries (cortical margins) that are salient features for 

registration. The slight improvement in registration accuracy for RGO(r, 50) compared to 

RGO(p, 50) could be attributable to this additional image content available with the simple 

rectangular mask. Another drawback of the polygonal masking approach is that it requires 

the user to anticipate and identify problematic gradients in a radiograph with many 

subtleties. Considering the multiple sources of image mismatch, ranging from skinline 

deformation to surgical instrumentation, the manual delineation of such masks could be 

cumbersome and susceptible to user variability and repeat registration with mask refinement.

Although the GS metric somewhat improved the registration performance compared to GI, it 

did not exhibit particularly strong robustness to failure (>16%) over all the tested 

configurations. One challenge in the design of the GS metric is the selection of the 

parameter that attempts to match the gradient magnitudes of similar anatomical objects in 

the DRR and radiograph. We evaluated this parameter by computing the ratio of maximum 

gradient magnitudes observed between the two images; however, the parameter should be 

adjusted according to mismatch caused by strong gradient magnitudes. Automatic 

determination of the parameter for any given pair of images is non-trivial. With the objective 

of improving performance in GC under mismatch we experimented with a modified version 

according to equation (5):

(5)

by truncating β percentiles from the top-most and the bottom-most values prior to GC 

summation. The top β percentile was excluded to eliminate extraneous strong gradients due 

to instrumentation, whereas the bottom β percentile was excluded to mitigate the 

contribution from soft tissues. While the modified metric showed an improved overall 

performance compared to conventional (untruncated) GC, it suffered from the same 

limitation of automatically determining the parameter β that is dependent on the degree of 

image content mismatch.

The challenging search space illustrated in figure 6 shows multiple local maxima resulting 

from extraneous objects and stands to benefit from the multistart optimization strategy to 

improve robustness. The benefit of increasing the number of multistarts is evident in table 2 
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(column R(p, 200) relative to R(p, 50)), showing a reduction in failure rate (i.e. PDE > 30 

mm). However, increasing the number of multistarts did not necessarily improve the 

precision of the registration, as observed in the median ± IQR PDE, but such mm-scale 

variations in PDE in table 2 were not statistically significant (p = 0.52, 0.72, 0.10, and 0.07 

for GI, GC, GS, and GO, respectively) and are likely not clinically significant with respect to 

localizing a particular vertebral body. The small variations in PDE could be attributed to 

errors in the localization of the vertebrae centroid (expert reader truth definition), the 

stochasticity of the CMA-ES optimizer, and/or fundamental limitations arising from the use 

of similarity metrics as surrogate measures of registration accuracy during the optimization 

process. Moreover, the corresponding increase in robustness has diminishing return due to 

the ‘curse of dimensionality’ in the 6D search space, whereas the computation time 

increases approximately linearly with the number of multistarts. Due to its ability to handle 

mismatch, GO yielded a comparable performance when the number of multistarts was 

decreased from 200 to 50. A smaller number of multistarts is desirable in decreasing the 

computation time. Therefore, it is desirable for the registration framework to rely less upon 

the number of multistarts, an attribute exhibited with the incorporation of the GO similarity 

metric.

Deformation of the spine is not specifically addressed in the current (rigid) registration 

approach, but the large clinical dataset did present realistic levels of anatomical deformation. 

The main objective in this work was to achieve the best rigid alignment even in the presence 

of realistic deformation. Given the clinical need to identify the correct vertebral level within 

approximately 30 mm PDE (i.e. within the correct vertebral body), the rigid registration 

framework may be sufficient if the labels can be projected in close proximity to the accurate 

vertebral levels when deformation occurs. This assertion is the subject of ongoing clinical 

evaluation of the algorithm.

In conclusion, we have extended the LevelCheck 3D–2D registration algorithm to 

incorporate an improved objective function that exhibits stronger robustness to the image 

content mismatch observed in real clinical images. These improvements better enable 

clinical translation of the registration algorithm, and we are currently evaluating registration 

performance in a prospective clinical study.
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Figure 1. 
Illustration of image content mismatch present in the (a) intraoperative radiograph in 

comparison to (b) the projection image from CT. The extraneous gradients caused by content 

mismatch are conspicuous in (c) the radiograph gradient image in comparison to (d) CT 

projection gradients. Such gradients are caused by, for example: (1) anatomical deformation 

associated with the lung, colon, gas bubbles, etc; (2) interventional instruments; (3) surgical 

implants; and (4) collimators and ‘burnt-in’ text annotations.
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Figure 2. 
Overall 3D–2D image registration process. The experimental variables in the study are 

shown in italics. Three masking methods (denoted by M) include 2D radiographic 

rectangular (r) or polygonal (p) masks or 3D volumetric (v) masks. Four similarity metrics 

(denoted by G) are GI, GC, GS, or GO. The number of multistarts (S) varied from 50 to 200. 

RG(M, S) represents a registration performed using similarity metric G, masking M, and 

multistart S.
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Figure 3. 
Illustration of the four similarity metrics evaluated in this work for various simple 

simulations of content mismatch between the (a) I1 (DRR) and (b) I2 (radiograph). In each 

case, the similarity map shows the metric prior to summation over pixels. (c)–(f) All the 

metrics, at the desired solution, align the corresponding square and circle elements 

overcoming mismatch due to the triangle. However, the triangle mismatch at the degenerate 

solution, causes a larger relative contribution in (c) and (d) GI, GC metrics when compared 

with (e) and (f) GS, GO metrics.
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Figure 4. 
Violin plots showing the distribution in PDE for registration using the four similarity metrics 

considered in this work. The three configurations of parameter settings ((a) R(p, 200), (b) 

R(p, 50), and (c) R(r, 50)) represent increasingly challenging conditions but with an 

improved run time. The horizontal line of each distribution marks the median PDE, and the 

‘Failure’ line at PDE > 30 mm demarks the threshold for which the registered label is likely 

outside the true vertebra.
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Figure 5. 
Illustration of image content mismatch in a typical case presenting surgical instrumentation 

in the intraoperative radiograph (but not the preoperative CT). The robustness of each 

similarity metric is evident in the similarity ‘maps’. The images on the left show the 

intraoperative radiograph overlaid by ground truth labels (crosses), registered labels 

(circles), and the distance between the two (PDE, marked as a line segment).
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Figure 6. 
Profiles through the objective function search space centered on the true registration 

solution. Each plot is for a given similarity metric—(a) GI, (b) GC, (c) GS, and (d) GO—

and corresponds to a single case in which surgical instruments are present in the 

intraoperative radiograph but not the preoperative CT. The central peak corresponds to the 

true registration solution, and other peaks correspond to false local maxima. The GO metric 

exhibits the highest quality search space in presenting the most distinct global optimum.
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Figure 7. 
Capture range measurements analyzing the sensitivity to initialization errors in the S–I 

direction for each similarity metric. (a) Median PDE. (b) The third quartile in the PDE 

distribution.
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Table 1

Summary of an example previous work comparing the performance of similarity metrics in 3D-2D 

registration.

Publication 3D-2D Registration application Metrics Validation

Penney et al (1998) CT to projection x-ray in spine surgery NCC, entropy, MI, GC, 
PI, GD

Phantom + simulated 
clinical images

Hipwell et al (2003) Magnetic resonance angiography (MRA) to digital 
subtraction angiography (DSA) in neurointerventions

NCC, GC, entropy, MI, 
PI, GD

Phantom + 4 patients

McLaughlin et al (2005) MRA to projection x-ray in neurointerventions GD Phantom + 4 patients

Khamene et al (2006) CT to projection x-ray in radiotherapy LNC, GC, PI, GD, 
VWC, MI, CR, NCC

Phantom

Kim et al (2007) CT to dual projection x-ray in radiotherapy NCC, entropy, GC, 
GD, PI, MI

3 phantoms

Wu et al (2009) CT to dual projection x-ray in radiotherapy PIU, NMI, NCC, PI, 
GC, GD

2 phantom studies + 1 
patient

Gendrin et al (2011) CT to projection x-ray in radiotherapy NCC, RC, CR, MI Phantom

Otake et al (2012, 2013, 

2015)

CT to projection x-ray in spine surgery GI, GC Simulation, phantom, 
and cadaver

Note: Metrics include: normalized cross correlation (NCC), entropy of the difference image, mutual information (MI), gradient correlation (GC), 
pattern intensity (PI), gradient difference (GD), correlation ratio (CR), local normalized correlation (LNC), variance weighted correlation (VWC), 
partitioned intensity uniformity (PIU), and rank correlation (RC).

Phys Med Biol. Author manuscript; available in PMC 2016 June 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

De Silva et al. Page 24

Ta
b

le
 2

M
ed

ia
n 

PD
E

, i
nt

er
qu

ar
til

e 
ra

ng
e,

 f
ai

lu
re

 r
at

e 
(F

ai
lu

re
),

 a
nd

 m
ed

ia
n 

ru
n 

tim
e 

(R
un

) 
fo

r 
th

e 
fo

ur
 s

im
ila

ri
ty

 m
et

ri
cs

 a
nd

 th
re

e 
pa

ra
m

et
er

 c
on

fi
gu

ra
tio

ns
.

R
(p

, 2
00

)
R

(p
, 5

0)
R

(r
, 5

0)

M
et

ri
c

P
D

E
 (

m
m

)
IQ

R
 (

m
m

)
F

ai
lu

re
 (

%
)

R
un

 (
s)

P
D

E
 (

m
m

)
IQ

R
 (

m
m

)
F

ai
lu

re
 (

%
)

R
un

 (
s)

P
D

E
 (

m
m

)
IQ

R
 (

m
m

)
F

ai
lu

re
 (

%
)

R
un

 (
s)

G
I

8.
2*

38
.9

31
.3

65
.1

8.
9*

46
.7

36
.5

23
.7

29
.1

*
48

.1
49

.5
23

.7

G
C

6.
2

3.
7

0
84

.5
6.

1
3.

5
2.

6
29

.0
6.

4*
6.

9
14

.7
28

.9

G
S

7.
7*

10
.3

16
.5

60
.5

6.
8*

7.
5

16
.5

22
.7

8.
2*

26
.1

26
.9

22
.2

G
O

6.
4

4.
4

0
84

.1
5.

6
2.

9
0.

8
28

.8
5.

5
2.

6
0

29
.3

N
ot

e:
 T

he
 a

st
er

is
ks

 m
ar

k 
ca

se
s 

fo
r 

w
hi

ch
 th

e 
di

st
ri

bu
tio

n 
in

 P
D

E
 w

as
 s

ta
tis

tic
al

ly
 s

ig
ni

fi
ca

nt
ly

 d
if

fe
re

nt
 (

p 
<

 0
.0

5)
 f

ro
m

 th
at

 o
f 

th
e 

G
O

 c
as

e.

Phys Med Biol. Author manuscript; available in PMC 2016 June 21.


	Abstract
	1. Introduction
	2. Methods and materials
	2.1. Clinical study
	2.2. Image pre-processing and target definition
	2.2.1. Spine level definition
	2.2.2. 2D radiographic masking and 3D volumetric masking

	2.3. 3D–2D registration framework
	2.3.1. Basic framework
	2.3.2. Similarity metrics
	2.3.2.1. Gradient information (GI)
	2.3.2.2. Gradient correlation (GC)
	2.3.2.3. Gradient information with linear scaling (GS)
	2.3.2.4. Gradient orientation (GO)


	2.4. Performance evaluation
	2.4.1. Accuracy, robustness, and run time
	2.4.2. Quality of the objective function search space
	2.4.3. Sensitivity to initialization


	3. Results
	3.1. Registration accuracy and robustness
	3.2. Quality of the objective function search space
	3.3. Sensitivity to initialization/capture range

	4. Discussion and conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Table 2

