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ABSTRACT

The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the
latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to
evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of
genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in pre-
vious publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and
cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC’s
effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation
of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1
focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it
has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection
and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet
assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC’s biological effect
might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be
carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds.
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INTRODUCTION
Ionizing radiation (IR) induces a variety of genomic DNA lesions,
the most detrimental being DNA double-strand breaks (DSBs). The
biological effects of IR are thought to be either direct or indirect
effects, the latter being mediated by IR induction of free radicals and
reactive oxygen species (ROS). It is generally estimated that approxi-
mately one-third of IR-induced DNA damage is cause by the former
and two-thirds by the latter [1]. Thus scavenging of free radicals and
reduction of ROS is critical for radioprotection. In this regard, antiox-
idants have long been investigated as potential radioprotective agents.

One such compound is the antioxidant N-acetyl-L-cysteine (NAC),
which is a glutathione precursor containing an -SH group, the use of which

leads to increased intracellular glutathione concentrations and thereby
ROS scavenging. The protective effect of NAC on IR-induced DNA and
cellular damage has been extensively studied using different assays, such as
the comet assay (single cell gel electrophoresis) [2], micronucleus assay
[3], immunochemical staining for γH2AX [4] or 53BP1 foci [5], and/or
cell viability/clonogenic assays in mammalian cells; however, the data
derived from these studies is inconsistent. In various studies, NAC has
been observed to either suppress [6–10] IR-induced DSBs or to fail to do
so [11]; similarly, NAC has been reported to succeed [12] or fail [13, 14]
to protect cells from IR-induced cell death; and finally, NAC was reported
to suppress IR-induced DSBs while not improving cell survival [7, 8].
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Therefore, this study was designed to evaluate the effect of NAC
on IR-induced genotoxicity and cytotoxicity using various methods,
as well as to measure ROS production in parallel in mammalian cells.

MATERIALS AND METHODS
Cells and cell culture

Normal differentiated rat thyroid cells (PCCL3) were cultured as pre-
viously described [15]. Immortalized human fibroblast BJ cells stably
expressing telomerase reverse transcriptase (BJ-hTERT) were cultured
in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum.

NAC pretreatment, irradiation and H2O2 treatment
Cells were pretreated with 20 or 4 mM NAC (Sigma–Aldrich,
St Louis, MD) for 15 min and X-irradiated using an ISOVOLT Titan

320 (GE Inspection, Tokyo, Japan) or treated with 100 μMH2O2 for
10 min at 37°C. X-rays were administered as a single dose of 1–5 Gy
at a dose rate of 0.8903 Gy/min.

Detection of DSBs by 53BP1 and γH2AX stainings
At the indicated time-points after irradiation, the cells were fixed
with 3.7% formaldehyde for 10 min followed by permeabilization
with 0.5% Triton-X and immunofluorescent analysis. The primary
antibodies used were rabbit anti-p53-binding protein 1 (53BP1)
(1:200; Bethyl, Montgomery, TX) and mouse anti-phospho-H2AX
(γH2AX) (1:200; Millipore, Darmstadt, Germany). Secondary anti-
bodies used were Alexa Fluor488 goat anti-rabbit IgG and anti-mouse
IgG (Life Technologies, Tokyo, Japan). The cells were embedded
with VECTASHIELD Mounting Medium containing DAPI (Vector

Fig. 1. DSBs determined by 53BP1/γH2AX staining and the neutral comet assay in control PCCL3 cells and cells irradiated with
2 Gy IR: (A) representative photographs of 53BP1/γH2AX staining and the comet assay; (B and C), the distribution of the
number of 53BP1 foci and tail moments in the comet assay, respectively, in control and irradiated cells. (D) effect of IR dose
(0 to 5 Gy) on 53BP1/γH2AX staining and the comet assay. *P < 0.01.
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Laboratories, Burlingame, CA). The slides were analyzed using an
All-in-One BZ-9000 Fluorescence Microscope (Keyence, Osaka,
Japan) and the number of nuclear foci per cell was counted in 300
cells. Alternatively, fluorescent intensity of γH2AX staining per cell
was quantified using a BZ-II Analyzer (Keyence, Osaka, Japan) in
300 cells.

Detection of DSBs by the neutral comet assay
The neutral comet assay was performed using the Trevigen Comet
Assay kit (Trevigen, Gaithersburg, MD). At the indicated time-points
after irradiation, the cells were suspended in cold PBS, and an aliquot
of cells (103/10 μl) was added to 100 μl of molten LMA agarose
maintained at 39°C. An aliquot of 10 μl was immediately spread onto
each comet slide at 37°C. The slide was incubated at 4°C for 10 min
to accelerate gelling of the agarose and then transferred to cold lysis
solution for 60 min at 4°C. A denaturation step was performed in
50 mM Tris base, 150 mM CH3COONa3H2O, pH 9, for 30 min at
4°C. The slides were then subjected to electrophoresis with cold TAE
buffer, pH 8.2 at 25 V for 30 min at 4°C, and immersed in DNA pre-
cipitation solution (100 mM NH4Ac in 95% ethanol) and then in
100% ethanol for 30 min and air dried. DNA was stained with 100 μl
SYBR Gold (Trevigen, 1:30,000) for 20 min and immediately rinsed
with dH2O and air dried. The slides were analyzed using an All-
in-One BZ 9000 fluorescence microscope and CometScore free ware
v1.5 (TriTek, Niigata, Japan).

Detection of intracellular ROS
Cells in 96-well plates (1 × 105 cells/well) were washed twice with
PBS, incubated with 5 μM 2′,7′-dichlorofluorescin diacetate (DCFDA)
(Life Technologies) for 30 min at 37°C and washed twice with PBS.
Immediately after radiation exposure, the plates were read with a
2030 Multilabel Plate Reader ARVO X3 (PerkinElmer, Branchburg,
NJ) using excitation and emission wavelengths of 485 and 528 nm,
respectively.

Clonogenic assay
Cells in 6-well plates (4 × 103 cells/well) were treated with NAC and
X-irradiation. Ten days later, the cells were fixed for 10 min, and
stained with 1% crystal violet (Wako, Osaka, Japan) in 10% ethanol
for 10 min. The number of colonies containing 50 or more cells was
calculated.

Cell viability assays
Cells in 96 well plates (2 × 103 cells/well) were treated with NAC
and X-irradiation. After a 7-day incubation, cell numbers were deter-
mined with the water-soluble tetrazolium salt (WST) assay using
a Cell Counting Kit-8 (Dojindo, Kumamoto, Japan) according to the
manufacturer’s protocol.

Micronucleus assay
Cells in 12-well plates (4 × 105 cells/well) were treated with NAC
and X-irradiated. Immediately after irradiation, the cells were cultured
with 0.5 μg/ml of cytochalasin B (a cytokinesis inhibitor; Wako) for
48 h. The cells were fixed for 10 min, stained with DAPI and analyzed
using an All-in-One BZ 9000 fluorescence microscope at a magnifica-
tion of ×400. Micronuclei were scored as having a diameter that was

less than one-third of the main nuclei. The number of micronuclei in
100 binucleated cells was determined.

Statistical analysis
All data are expressed as mean ± S.E. and differences between groups
were examined for statistical significance using the Student’s t-test.
P < 0.05 was used to identify statistically significant differences.

RESULTS AND DISCUSSION
As shown in Fig. 1A, 2 Gy IR induced distinct 53BP1 and γH2AX
immunofluorescent nuclear foci, as well as the typical ‘head and
tail’ pattern (representing intact DNA and DSBs, respectively) in the
neutral comet assay in PCCL3 cells. Figure 1B and C shows represen-
tative quantitation of the distributions of 53BP1 foci per cell and
comet assay tail moments, which is thought to be the most sensitive
parameter for this assay [11], in control and irradiated cells. Quantifi-
cation of γH2AX foci resulted in data similar to that of 53BP1 (data
not shown). A clear dose dependency was observed in the comet
assay, 53BP1 foci, and fluorescence intensity of γH2AX between 0
and 5 Gy; however, 5 Gy was not evaluated with γH2AX foci because
of the previously reported problem with focus overlap at 5 Gy [16]
(Fig. 1D; Supplementary Fig. 1).

The temporal effects of NAC (20 mM) on DSBs were examined
from 30 min to 24 h after 2 Gy irradiation (Fig. 2). The 2 Gy IR
doubled intracellular ROS levels, and NAC almost completely sup-
pressed IR-induced ROS production (Fig. 3A). In the comet assay

Fig. 2. The temporal effects of 20 mM NAC on IR-induced
DSBs. DSBs were determined by the neutral comet assay (A),
53BP1 foci (B), γH2AX foci (C) and γH2AX fluorescent
intensity (D) from 0.5 to 24 h after 2 Gy irradiation. The open
and solid bars indicate the data obtained with/without NAC,
respectively. *P < 0.05; **P < 0.01.
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(Fig. 2A) the tail moments were significantly ameliorated by NAC
pretreatment at 0.5 and 1.5 h post-IR and almost completely reverted
to basal levels at 24 h post-IR, irrespective of the presence/absence
of NAC. Unexpectedly, the numbers of foci in the 53BP1 and
γH2AX focus formation assays and the fluorescent intensity of
γH2AX at 0.5 and 1.5 h post-IR were unchanged after NAC pre-
treatment (Fig. 2B–D). It should be noted here that peak γH2AX
fluorescence was observed at 0.5 h post-IR, while peak 53BP1 was
observed at 1.5 h post-IR in our study; this is consistent with previ-
ous reports [17, 18]. Thus, the data on NAC’s effects on DSBs
detected with the comet assay versus the focus/fluorescence assays
are contradictory. Results that were essentially the same were ob-
served with the lower concentration of NAC (4 mM), with DSB
prevention being much weaker despite the complete suppression of
ROS generation (Supplementary Fig. 2).

Next, experiments were carried out with 1–5 Gy IR to determine
the dose dependency of IR. Figure 3 shows the comet assay and
γH2AX staining results at 0.5 h post-IR, and 53BP1 staining at 1.5 h
post-IR. IR increased intracellular ROS levels in a dose-dependent
manner with a significant, yet trivial, increase observed at 1 Gy (an
increase of ∼×1.2); NAC almost completely suppressed IR-induced
ROS production within the range of 1–5 Gy (Fig. 3A). In parallel,
DSBs determined using the comet assay were also decreased by
NAC, although its effect was almost complete at 1 Gy and it was less
effective at higher irradiation doses (Fig. 3B), which is consistent
with previous reports [7, 8]. However, a similar inhibitory effect of
NAC on DSB formation was not observed with 53BP1 and γH2AX
staining (Fig. 3C and E). The possible metabolism of ROS by cata-
lase in the culture medium [19] was excluded by confirming the
absence of an effect of NAC on 53BP1 foci and ROS levels using

Fig. 3. Intracellular ROS levels (A), and DSBs determined by the neutral comet assay (B) and 53BP1/γH2AX staining (C to E)
in control PCCL3 cells and cells pretreated with 20 mM NAC and/or irradiated or exposed with H2O2. The data were obtained
0.5 h (the comet assay and γH2AX) or 1.5 h (53BP1) after irradiation or 10 min after addition of H2O2. *P < 0.05; **P < 0.01.
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serum-free media (data not shown). In contrast, NAC-suppression of
H2O2-induced ROS production and DSB formation detected by
using the comet assay and 53BP1 or γH2AX staining was clearly
demonstrated (Fig. 3A–E). Further, data that was essentially equiva-
lent was obtained with fibroblasts (Supplementary Fig. 3), indicating
that the contradictory data between 53BP1/γH2AX staining and the
comet assay are not cell-type-specific.

Next, experiments were performed to evaluate the effect of
NAC on IR-mediated genotoxicity and cytotoxicity using the micro-
nucleus assay (performed 48 h post-IR) and a cell survival assay (per-
formed 7–10 days post-IR). It was observed that 10 Gy IR increased
the number of micronuclei, which was significantly decreased by
NAC (Fig. 4A and B). Similarly, 10 Gy IR killed most of the cells and
significantly suppressed cell/colony numbers as determined by the
WST and clonogenic assays, respectively, with NAC clearly improving
cell survival in both assays (Fig. 4C and D).

Thus, we obtained a complex dataset on the effect of NAC on IR-
induced DSBs. The ameliorating effect of NAC was clearly detected
by the neutral comet assay (that detects DSBs) and the micronucleus
and cell viability/clonogenic assays (both assays reflect not only the
degree of DNA damage, but also the efficacy of recovery), but not
using 53BP1/γH2AX staining (which also detects DSBs).

As mentioned previously, the protection of DNA from IR-
induced DSBs by NAC has been demonstrated in previous reports;
for instance, in cultured microvascular endothelial cells and human
lymphoblastoid cell lines using the γH2AX focus assay [6–8] and in
human lymphocytes using the micronucleus and alkali comet assays

(which detect DSBs and single-strand breaks) [10] and using the
53BP1/γH2AX focus assay [9]. In contrast, there are some controver-
sial data stating that NAC does not efficiently mitigate IR-induced
DNA damage determined using the alkali comet assay in human lym-
phocytes [11]. Regarding cell survival/cytotoxicity, NAC improved
the survival of irradiated granulocyte/macrophage colony-forming
cells [12], but not squamous lung cancer cells (SW-1573) [13] or
lymphoblastoid cells [14]. Furthermore, it was reported that NAC
protected cells from DNA damage determined using γH2AX foci
but not from cell death determined using the clonogenic assay; there-
fore, caution must be exercised when using γH2AX as a surrogate
marker in radioprotection studies [6–8].

The comet assay reflects the physical status of genomic DNA, while
53BP1/γH2AX staining represents processes related to the biological
response to DNA damage (e.g. phosphorylation/dephosphorylation
and recruitment/release of DSB repair–related molecules such as
53BP1 and γH2AX). Our data indicates that NAC suppresses IR-
induced DSBs in the comet assay but not in the focus assays, indicating
that the antioxidant NAC exerts its protective effect on IR-induced
genomic damage, but may additionally affect cellular responses to DNA
damage. Indeed, it has been reported that NAC possesses other
biological activities, such as protein stabilization and support of the
DNA repair process [12], as well as altering the phosphorylation status
of proteins by affecting the activity of receptor-type tyrosine kinases
(MAP kinase and IκB kinase) [20]. Furthermore, it has been reported
that γH2AX can be induced by other factors, such as UV-induced
nucleotide excision [21] and altered osmolarity [22]. Therefore, our

Fig. 4. Micronuclei and cell survival assays in control PCCL3 cells and cells irradiated and/or pretreated with NAC. (A)
Representative photographs of micronuclei. The dashed circles indicate binucleated cells and the arrows indicate micronuclei.
The effects of NAC on IR-induced micronuclei-positive cells, cell viability with the WST assay, and the clonogenic assay are
shown in B, C and D, respectively. *P < 0.05; **P < 0.01.
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data call attention to the fact that multiple parameters should be used
carefully for analyzing DNA damage when studying potential radiopro-
tective compound candidates.

SUPPLEMENTARY DATA
Supplementary data are available at Journal of Radiation Research
online.
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