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SUMMARY

Motivated by a study on visual implicit learning in young children with Autism Spectrum Disorder (ASD),
we propose a robust functional clustering (RFC) algorithm to identify subgroups within electroencephalog-
raphy (EEG) data. The proposed RFC is an iterative algorithm based on functional principal compo-
nent analysis, where cluster membership is updated via predictions of the functional trajectories obtained
through a non-parametric random effects model. We consider functional data resulting from event-related
potential (ERP) waveforms representing EEG time-locked to stimuli over the course of an implicit learn-
ing experiment, after applying a previously proposed meta-preprocessing step. This meta-preprocessing is
designed to increase the low signal-to-noise ratio in the raw data and to mitigate the longitudinal changes
in the ERP waveforms which characterize the nature and speed of learning. The resulting functional ERP
components (peak amplitudes and latencies) inherently exhibit covariance heterogeneity due to low data
quality over some stimuli inducing the averaging of different numbers of waveforms in sliding windows
of the meta-preprocessing step. The proposed RFC algorithm incorporates this known covariance hetero-
geneity into the clustering algorithm, improving cluster quality, as illustrated in the data application and
extensive simulation studies. ASD is a heterogeneous syndrome and identifying subgroups within ASD
children is of interest for understanding the diverse nature of this complex disorder. Applications to the
implicit learning paradigm identify subgroups within ASD and typically developing children with diverse
learning patterns over the course of the experiment, which may inform clinical stratification of ASD.
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1. INTRODUCTION

Electroencephalography (EEG) is a non-invasive method for measuring spontaneous electrical activity
across brain regions over time. As a method to identify neural function and cognitive states, it has been
studied in diverse biomedical settings including epilepsy, sleep disorders, multiple sclerosis, brain tumors,
schizophrenia, and bipolar disorder (Tierney and others, 2012). Here we consider an application to a study
of visual implicit learning in young children with Autism Spectrum Disorders (ASDs) (Jeste and others,
2015). ASD has a highly heterogeneous presentation, making it difficult to tease apart underlying mecha-
nistic pathways to core deficits. The goal of this paper is to provide insights into those pathways through a
better understanding of implicit learning, defined as the detection of regular patterns in one’s environment
without a conscious awareness to learn. Age-matched 2–5-year-old typically developing (TD) and ASD
children were presented with a continuous sequence of six colored shapes organized into three shape pairs
(Figure 1(a)). Shapes within pairs appeared in the same order but the pairs themselves occurred in random
order. Transitions within a shape pair were labeled “expected” since they could be learned and transitions
between shape pairs were “unexpected” since they could not be predicted.

EEG signals, time-locked to visual stimuli (e.g. presentation of colored shapes), result in event-related
potential (ERP) waveforms containing the P3 and N1 phasic components shown in Figure 1(b). While the
focus is on the P3 and N1 components in this particular paradigm, other phasic components may be studied
in different applications. The P3 peak of the ERP waveform is thought to be related to cognitive processes
such as decision-making, while the N1 dip represents early category recognition (Bugli and Lambert, 2006;
Jeste and others, 2015). Implicit learning is assessed through differences in the amplitude (size of the peak)
and latency (time when the peak occurs) of the ERP components between the expected and unexpected
conditions.

It is natural to seek inference about potential differences in ERP variation between TD and ASD groups
in the implicit learning paradigm (Jeste and others, 2015). However, ASD is a heterogeneous syndrome
characterized by impairments in social communication and the presence of restricted interests and repet-
itive behaviors. Hence, in addition to contrasting learning patterns of TD and ASD groups, identify-
ing subgroups within ASD children with distinct learning patterns is also of interest for understanding
the diverse nature of this complex disorder. We therefore propose a robust functional clustering (RFC)
algorithm to more finely grain learning patterns within TD and ASD children. The term “robust” refers
to the proposed algorithm’s ability to make maximal use of the existing structural information on covari-
ance heterogeneity of ERPs induced by data quality issues to improve clustering accuracy even in small
samples.

Typical analysis of ERP data focuses on summaries of key components, such as peak amplitude and
latency. Specifically, to increase the low signal-to-noise ratio (SNR) in raw ERP data, the waveforms result-
ing from repeated stimuli (referred to as trials) are averaged for each subject so that the ERP components
are identifiable. Hasenstab and others (2015) proposed a meta-preprocessing step for the analysis of ERP
data, based on a moving average, which increases the SNR of the observed ERPs while preserving changes
in ERPs across trials. Meta-preprocessing retains valuable longitudinal information which is lost by the
common practice of averaging ERP trajectories across all trials. Capturing these trends is especially impor-
tant in settings such as our motivating example, where patterns of learning correspond by definition to
changes of ERP features across trials. However, an important issue with the meta-preprocessed functional
ERP components is covariance heterogeneity, due to removed trials. Trials resulting in low data qual-
ity, commonly encountered in experiments involving young children, are removed in the data cleaning
steps. This leads to the averaging of different numbers of waveforms in the sliding windows during meta-
preprocessing, and hence to covariance heterogeneity in the functional data. We propose a novel clustering
algorithm for the functional data produced by the meta-preprocessing step (consisting of ERP components
obtained over trials of the experiment for each subject), which accounts for the known source of covariance
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Fig. 1. (a) The sequence of shape pairs in the implicit learning paradigm. (b) The ERP waveform containing the P3 and
N1 phasic components from the implicit learning study. (c) ERP waveform from a single subject, condition, electrode,
and trial in the right frontal region of the scalp after preprocessing. (d) The average of the first 30 consecutive ERP
waveforms for the same subject, electrode, and condition.

heterogeneity in the trajectories induced by data quality issues, setting it apart from previously proposed
functional clustering algorithms.

Clustering or classification of functional data typically involves either regularization or filtering. Reg-
ularization involves discretization of the time interval followed by the application of standard multivariate
clustering or classification methods. Because the resulting data are high-dimensional and highly corre-
lated, a regularization constraint is typically applied to the covariance structure in model-based methods
(Yeung and others, 2001; Fraley and Raftery, 2002; Samé and others, 2011). Filtering methods work by
projecting each curve onto a finite-dimensional set of basis functions, such as B-splines or functional prin-
cipal component analysis (FPCA), and then applying standard clustering or classification algorithms to the
resulting basis coefficients (James and Sugar, 2003; Serban and Wasserman, 2005; Delaigle and others,
2012; Gattone and Rocci, 2012). Serban and Jiang (2012) extended filtering-based functional approaches
to hierarchical data structures using multilevel FPCA in the context of hard and soft clustering.

Chiou and Li (2007, 2008) introduced another filtering method, k-centers functional clustering (FC),
based on FPCA to identify homogeneous clusters within the sample sharing a cluster-specific mean
function and a cluster-specific covariance surface. We build on this approach to incorporate the known

486 K. HASENSTAB AND OTHERS



covariance heterogeneity in the meta-preprocessed functional data into the proposed clustering algorithm.
First, we identify induced covariance subsets within each diagnostic group with similar low quality data
patterns over time (trials of the ERP experiment). Fixing the covariance subsets, trajectories are clus-
tered according to the estimated mean trends where covariance subset and cluster memberships are
allowed to differ. Mean trajectory and covariance surface estimates are updated iteratively in a non-
parametric fashion, where cluster memberships are updated in a reclassification step based on a non-
parametric random effects model. We further extend the proposed RFC for multilevel functional data
to be applicable to the meta-preprocessed ERP components obtained from multiple electrodes on the
scalp.

The remainder of the paper is organized as follows. Section 2 describes the cleaning and meta-
preprocessing of ERP data in detail. Section 3 provides background on FPCA and introduces the pro-
posed RFC algorithm for single- and multilevel functional data. Section 4 applies the proposed RFC to
the autism study and compares the results with those obtained from alternative algorithms including FC
of Chiou and Li (2007). We study the performance of the proposed algorithm in extensive simulations
summarized in Section 5 and conclude with a brief discussion (Section 6).

2. DESCRIPTION OF THE DATA CLEANING AND META-PREPROCESSING STEPS

AND THE RESULTING MULTILEVEL FUNCTIONAL DATA

In the motivating study of implicit learning, EEG data were recorded for 120 trials per condition
(expected/unexpected) for each of the 34 TD and 37 ASD children at 128 electrodes. The EEG signals
were sampled at 250 Hz, producing 250 within-trial time points per waveform, spanning 1000 ms. Despite
the standard preprocessing steps (see Hasenstab and others, 2015 for more details), the ERP data has a
small SNR, making it difficult to identify components, such as peak amplitudes and latency, on trial-
specific ERPs. Figure 1(c) displays a single ERP waveform for one subject from a single trial recorded
in the right frontal region of the scalp. The P3 peak and N1 dip are unrecognizable due to the low SNR.
Typical analysis of averaging across all ERP trials in order to increase the SNR to a level where features
are identifiable leads to a loss of longitudinal information about potentially important changes over the
course of the experiment. Hence the meta-preprocessing of Hasenstab and others (2015), utilizing a mov-
ing average of ERPs across sliding trial windows, is necessary to extract meaningful longitudinal informa-
tion on features of the ERP curves. Figure 1(d) displays the meta-preprocessed ERP (an average of 30 ERP
waveforms from adjacent trials) where the P3 peak and N1 dip are easily recognized due to the increased
SNR. Components of interest such as peak amplitudes are extracted from these averaged ERP waveforms
(see Hasenstab and others, 2015 for details).

In addition to identifying the magnitudes of the key ERP components over trials, the meta-preprocessing
provides information on the variance of the extracted components. EEG experiments involving young chil-
dren tend to have larger amounts of trials with low quality data due to head movements or lack of coop-
eration. Hence, the number of ERPs averaged in the sliding windows during meta-preprocessing may not
be the same, introducing a known form of covariance heterogeneity in the ERP components. Components
extracted from ERPs averaged over a smaller number of trials will have larger variance. For illustration
of the methods, we consider P3 peak amplitude trajectories between the 5th and 60th trials of the experi-
ment, where implicit learning is thought to be maximal, and analyze data from the four electrodes in the
right frontal region of the scalp. The considered data are multilevel (electrodes nested in subjects) on P3
amplitude difference trajectories between expected and unexpected conditions and the number of aver-
aged ERPs. We first cluster the multilevel functional data on the number of averaged ERPs to determine
the induced covariance subsets (see Section 4 for details), which are assumed to be known in the proposed
RFC algorithm outlined below.
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3. ROBUST FUNCTIONAL CLUSTERING

Our work builds on the FC algorithm proposed by Chiou and Li (2007). The original formulation of FC
assumes identical mean and covariance cluster membership. This assumption of within-cluster covariance
homogeneity may not be warranted in meta-preprocessed ERP data. Hence, we aim to make use of the
covariance subset information induced in the meta-preprocessing step due to data quality issues. We con-
sider nv covariance subsets, but we do not require subset membership to necessarily overlap with cluster
membership in the proposed RFC, which clusters trajectories according to mean trends. Even though the
covariance subsets are known, the covariance surfaces cannot be estimated with unknown cluster member-
ship of the functional trajectories. Hence the proposed algorithm involves an iterative mean and covariance
update to estimate cluster structures. These cluster structures are used for updating cluster memberships
via predictions based on a non-parametric random effects model of the truncated Karhunen–Loève (K-L)
expansions. We introduce basic principles in Section 3.1 and the RFC algorithm in Section 3.2.

3.1 Functional model

The observed functional trajectory for subject i , yi (t), is assumed to be a realization of a stochastic process,
Yi (t), defined in a Hilbert space of square integrable functions L2(T ), t ∈ T = [0, T ] with the norm ‖ · ‖ =
〈·, ·〉1/2, where 〈 f, g〉 = ∫

f (t)g(t) for two functions f and g. The random function Yi (t) has smooth and
continuous mean μ(t) = E{Yi (t)} and covariance cov{Yi (s), Yi (t)} = �(s, t) + σ 2 I (s = t), leading to the
K-L expansion, Yi (t) = μ(t) + ∑∞

k=1 ξikφk(t) + εi (t), where φk(t) are the eigenfunctions associated with
covariance � and corresponding eigenvalues λk such that 〈�(·, t), φk〉 = λkφk(t) and εi (t) is measurement
error with mean zero and variance σ 2. The eigenfunctions are orthonormal, i.e. 〈φk, φk ′ 〉 = δkk ′ , where
δkk ′ = 1 when k = k ′ and 0 when k 
= k ′. The eigenvalues are assumed in non-increasing order (λ1 � λ2 . . .)

such that their sum is finite. The scores ξik = ∫ {Yi (t) − μ(t)}φk(t) d(t) are the projections of Yi (t) − μ(t)
in the direction of the kth eigenfunction φk(t) and are uncorrelated with E(ξik) = 0 and Var(ξik) = λk .

To allow for granularity in the foregoing model, we allow subclusters within each of the overarch-
ing diagnostic groups (i.e. ASD and TD). Specifically, we assume that Yi (t) is sampled from a mixture of
stochastic processes, with cluster membership indexed by c ∈ {1, 2, . . . , C}. To account for covariance het-
erogeneity, we allow for covariance subsetting, indexed by v ∈ {1, 2, . . . , nv}, which may be different from
cluster membership. Conditioning on cluster membership c and covariance subset v, means and covari-
ances of the subprocesses are given as E{Yi } = μ(c)(t), cov{Yi (s), Yi (t)} = �(v)(s, t) + σ 2(v)

I (s = t),
respectively. The measurement error ε

(v)
i (t) has mean zero and variance σ 2(v)

for covariance subset v.
We note that, for full generality, measurement error can be allowed to change across covariance subsets,
but in practice one will often contain it to be the same across v. It is assumed that each subprocess has a K-L
expansion with corresponding mean function μ(c)(t) and eigenvalues λ

(v)
k and corresponding eigenfunc-

tions φ
(v)
k (t) such that �(v)(s, t) = ∑

k λ
(v)
k φ

(v)
k (s)φ(v)

k (t), s, t ∈ T and ξ
(c,v)
ik = ∫ {Yi (t) − μ(c)(t)}φ(v)

k (t) dt .
The updating of the cluster membership in the proposed RFC will utilize functional predictions based

on the non-parametric random effects model, Y (c,v)
i (t) = μ(c)(t) + ∑Kv

k=1 ξ
(c,v)
ik φ

(v)
k (t) + ε

(v)
i (t). Methods

for selecting the number of components Kv include cross-validation (Yao and others, 2005), Akaike’s
Information Criterion (Yao and others, 2005), and percentage of variance explained (Chiou and Li, 2008;
Di and others, 2009). We found that choosing components to explain 90% of the variation works well
in our applications. For a trajectory Yi (t) from covariance subset v, Y (c,v)

i (t) will be the truncated K-L
expansion and hence will be a good approximation of Yi (t) if Yi (t) actually belongs to cluster c, but may
match poorly if the current cluster assignment is incorrect. Hence, the cluster membership updating will
compare an observed curve for subject i , yi (tip) (p = 1, . . . , Ti ), from covariance subset v to its estimated
predictions ŷ(c,v)

i (tip) from each of the c = 1, . . . , C clusters and assign cluster membership according to

the criterion c∗(yi ) = arg minc∈{1,...,C}
[∑Ti

p=1{yi (tip) − ŷ(c,v)
i (tip)}2

]1/2
.
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3.2 RFC algorithm

Single-level RFC Algorithm

1. Fit the FPCA model to the entire sample and cluster the leading K scores ξ̂ik using k-means to
initialize mean clusters c(0)

i , i = 1, . . . , n.
2. For each subject i belonging to covariance subset v and assigned to mean cluster c during

iteration r :

(a) Estimate μ̂
(c)
(−i)(t), c = 1, . . . , C , using all subjects assigned to mean cluster c in iteration r

while leaving out the i th subject.
(b) Estimate φ̂

(v)
k(−i)(t), k = 1, . . . , Kv , using all mean centered trajectories of subjects who belong

to the covariance subset v, while leaving out the i th subject.
(c) Estimate ξ̂

(c,v)
ik , for the mean clusters c = 1, . . . , C and the covariance subset v.

(d) Calculate predictions for the mean clusters c = 1, . . . , C and the covariance subset v via
ŷ(c,v)

i (tip) = μ̂
(c)
(−i)(tip) + ∑Kv

k=1 ξ̂
(c,v)
ik φ̂

(v)
k(−i)(tip).

(e) Assign the i th subject to mean cluster

c(r+1)
i = arg min

c∈{1,...,C}

⎡
⎣

Ti∑
p=1

{
yi (tip) − ŷ(c,v)

i (tip)
}2

⎤
⎦

1/2

.

3. Repeat Step 2 until no curve is reclassified.

The proposed RFC algorithm for single-level data is summarized in the above table. Note that covariance
subset assignments do not change throughout the algorithm; only the mean clusters are updated in each
iteration. Clusters are initialized in Step 1. Note that if the initial clusters are far from the true clustering,
this could adversely affect cluster quality and the RFC may converge to a local optimum. Hence, robust-
ness to initial clustering results should be studied in applications. Given the initial clustering results, we
estimate predictions for the i th subject’s trajectory from all clusters c = 1, . . . , C (Step 2(a)–(d)). Model
components are estimated (details are deferred to the supplementary material available at Biostatistics
online) while leaving out the i th subject to avoid bias in the model predictions. While the covariance
components themselves, such as the eigenfunctions and eigenvalues, are not associated with mean clus-
ters, their estimates will be associated with multiple mean clusters since mean centered trajectories are
used in the estimation of both �(v)(s, t) and σ 2(v)

(Step 2(b)). Nevertheless, covariance estimates are not
indexed by these sets of mean clusters for ease of notation. When estimating FPCA model components,
only the mean functions of the cluster containing subject i need to be re-estimated. In addition, the eigen-
function estimates need to be estimated only for one covariance subset, the subset that contains the i th
subject’s trajectory. Scores can be estimated based on the leave-one-out mean and eigenfunction estimates
for c = 1, . . . , C , based on the estimated projection ξ̂

(c,v)
ik = ∫ {yi (t) − μ̂

(c)
(−i)(t)}φ̂(v)

k(−i)(t) dt for dense func-
tional data. For sufficiently large sample sizes, one may ignore the leave-one-curve out procedure when
calculating predictions ŷ(c,v)

i (tip) in order to significantly reduce computational time, assuming negligi-
ble bias. Finally, the sum in Step 2(e) is taken over all observation time points for subject i , but different
weighting schemes can be implemented if observation times in certain intervals are thought to be more
informative than others in determining cluster membership.
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limitations in sample size (there are n = 32 and 34 children in the TD and ASD groups, respectively, after
removal of outliers). Readers are referred to Li and Chiou (2011) for an extensive discussion on methods
for selecting the number of clusters in the context of functional data. In addition, the bandwidth choices
in the estimation of the mean functions and covariance surfaces may have an effect on the performance
of the clustering, since the cluster memberships, hence possibly the smoothness levels of the mean and
covariance functions, dynamically change across iterations. We defer discussions on the selection of the
smoothing bandwidths to Section 4 and the supplementary material (available at Biostatistics online).

Chiou and Li (2007) discuss identifiability conditions for their FC algorithm and show that the cluster
eigenspaces cannot be subsets of each other; there cannot be two identical cluster mean functions and
that if a cluster mean function belongs to its own cluster’s eigenspace, then another mean function cannot
belong to that same eigenspace. Note that unlike our proposed RFC, the FC algorithm of Chiou and Li
assumes that all curves within a cluster have the same covariance and uses both mean and covariance
differences to identify clusters. In contrast, the proposed RFC clusters functional trajectories only based
on differences in mean trends, since cluster and covariance subset memberships do not necessarily overlap.
Hence identifiability conditions for the proposed RFC include that (1) the cluster mean functions cannot
be the same and that (2) the cluster mean functions cannot lie in any covariance subset eigenspace. Note
that the identifiability of the covariance subsets (via the assumption that eigenspaces cannot be subsets of
each other) is no longer needed for RFC, since the covariance subsets are assumed to be known a priori.
However, while cluster mean functions lying in their own eigenspaces is not a problem for FC, where
FC cluster and covariance subset memberships overlap, it poses an identifiability issue for RFC, where
memberships do not necessarily overlap. Since the first identifiability condition is standard, we examine
only the second condition through simulation studies (Section 5).

We also extend the proposed RFC algorithm to multilevel functional data. Multilevel functional data
refers to functional data collected in a hierarchy of units such as subject-specific ERP feature trajecto-
ries observed at multiple electrodes (subunits) on the scalp. Let Yi j (ti j p) denote a functional response
observed for subject i , on subunit j at time point ti j p, p = 1, . . . , Ti j . Total functional variation in Yi j (t),
t ∈ T , can be decomposed via functional analysis of variance (FANOVA) such that Yi j (t) = μ(t) + η j (t) +
Zi (t) + Wi j (t) + εi j (t), where μ(t) and η j (t) are fixed functional effects that represent the overall mean
function and subunit (e.g. electrode-specific) shifts, respectively; Zi (t) and Wi j (t) are the subject- and
subunit-specific deviations, respectively; and εi j (t) is measurement error with mean zero and variance σ 2

(Di and others, 2009). The deviations Zi (t) and Wi j (t) are assumed to be uncorrelated mean zero stochas-
tic processes. As with the K-L decompositions for the single-level functional data, decomposition across
both levels of variation results in Yi j (t) = μ(t) + η j (t) + ∑∞

k=1 ξikφ
(1)
k (t) + ∑∞


=1 ζi j
φ
(2)

 (t) + εi j (t),

where φ
(1)
k (t) and φ

(2)

 (t) are level 1 and level 2 eigenfunctions, and ξik and ζi jl are subject-specific scores

with mean zero and variance λ
(1)
k and λ

(2)

 , respectively. Note that φ

(1)
k (t) and φ

(2)

 (t) may not be mutually

orthogonal. The above formulation models the dependency between subunit-specific trajectories within a
subject, while still allowing covariance surfaces within subunits to be different from covariance surfaces
across subunits. In this application, we consider multilevel functional data from four electrodes in the right
frontal region of the scalp. However, we note that more complex FANOVA models can be developed with
additional layers in the multilevel structure (e.g. electrodes nested within multiple brain regions). Simi-
larly to the single-level case, we assume that Yi j (t) is sampled from a mixture of subprocesses with cluster
means and induced covariance subsets. Cluster membership updates still utilize functional predictions
based on the estimated non-parametric truncated multilevel random effects model and cluster allocation is
performed based on a multilevel extension of the single-level distance-based criterion. A detailed summary
of the multilevel RFC extension is included in the supplementary material (available at Biostatistics
online).
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4. APPLICATION TO THE IMPLICIT LEARNING STUDY

We utilize the proposed multilevel RFC algorithm to cluster P3 amplitude difference trajectories within
ASD and TD groups. Following the data cleaning and meta-preprocessing steps, differences in amplitudes
are computed for each trial between expected and unexpected conditions; trials which do not have valid
data for both conditions are considered missing. To determine the covariance subsets, the number of ERPs
(from sliding windows in the moving average) are further averaged across conditions, where the number
of ERPs are observed to be quite similar for the two conditions. Five subjects are removed as outliers
prior to analysis. Two of the removed subjects (one in each diagnostic group) did not have observed data
until trial 20 of the experiment, and the remaining three subjects had amplitude differences more than
2 standard deviations away from their respective group means for most of the trials. Covariance subset-
ting is determined by clustering the multilevel functional trajectories of the number of averaged ERPs.
A k-means clustering is applied to the level 1 scores in the multilevel FPCA decompositions. Due to small
sample sizes in both the TD and ASD groups (32 and 34 children in TD and ASD groups, respectively),
we explore two clusters and two covariance subsets via RFC.

The number of averaged ERPs from all 4 electrodes are plotted in Figures 2(a) and (b) for the two
covariance subsets identified within the TD and ASD groups. Lower numbers of averaged ERPs cor-
respond to higher variance. The numbers of averaged ERPs increase to their maximum value of 30
around trial 20 in the first covariance subset. The separation between covariance subsets is larger in the
ASD group with respect to shapes and magnitudes of the trajectories due to lower numbers of averaged
ERPs, suggesting stronger covariance heterogeneity. The second covariance subset within ASD has con-
sistently low numbers of averaged ERPs across the first 60 trials. In contrast, the trajectories in the sec-
ond covariance subset within TD are more similar in shape to those in the first covariance subset but with
smaller magnitudes. These observations are consistent with the estimated covariance subset eigenfunctions
(Figures 2(c) and (d)) obtained after the estimation of the cluster means via RFC. The estimated leading
eigenfunction for the second covariance subset within TD shows that much of the variability in the trajec-
tories is observed at later trials, where the number of averaged ERPs decrease. Nevertheless, the estimated
leading eigenfunctions differ more in ASD than the TD group. The major differences are in the earlier
trials, where the second covariance subset within ASD has lower numbers of averaged ERPs.

Estimated cluster means and 90% bootstrap bands obtained from the RFC algorithm are shown in
Figures 3(a) and (b) for the TD and ASD groups, respectively. Bandwidths for the mean and covariance
smooths are selected using generalized cross-validation and visual assessment to maximize cluster qual-
ity, where selected bandwidths are 5 and 10 for mean and covariance smoothing, respectively. A sensitiv-
ity analysis, where different bandwidths across iterations were selected by generalized cross-validation,
yielded similar results. The percentile confidence bands are based on 200 bootstrap samples chosen with
replacement from TD and ASD subject-specific ERP data. The data cleaning and meta-preprocessing steps
are applied to the resampled ERP data followed by covariance subsetting and RFC clustering. Hence, in
addition to assessing the variability in the proposed RFC algorithm, the bootstrap procedure also includes
variability associated with the meta-preprocessing of the data and sampling variation within the TD and
ASD groups. While resulting confidence intervals are wide, given the small sample sizes of our applica-
tion, we note that the shapes of the cluster mean trajectories are fairly preserved in the bootstrap bands.
Bootstrap clusters are mapped to the cluster means of the original sample such that the distance between
them is minimized. The percentage of times a subject is assigned to their original mean cluster over the
200 bootstrap runs is averaged across all subjects to be used as a measure of RFC cluster consistency.
Despite the small sample size of the groups, RFC clustering is found to be fairly consistent, its subjects in
the bootstrap sample being assigned their original clusters 76% and 77% of the time for the TD and ASD
groups, respectively. In addition to the plots of the estimated cluster means, Figures 3(c) and (d) display
the electrode-specific cluster means which are quite similar within clusters, implying small within-subject

491Robust functional clustering of ERP data
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Fig. 2. The number of averaged ERP trajectories from the two covariance subsets for the TD (a) and ASD (b) children.
Estimated eigenfunctions for the two covariance subsets are given in plots (c) and (d) where the gray and black trajec-
tories correspond to the covariance subset index and the solid and dashed lines represent the first and second principal
components, respectively.

between-electrode variation. Hence, we further display amplitude difference trajectories smoothed across
electrodes in the top rows of Figures 4 and 5 for the TD and ASD groups, respectively.

The TD group contains two clusters with roughly equal numbers of children showing condition dif-
ferentiation in opposing positive and negative directions, while the ASD group comprises a subgroup of
children (n = 24) with a flat mean condition differentiation and another subgroup (n = 10) with a posi-
tive mean differentiation pattern (Figures 3(a) and (b)). While the average pattern over the two subgroups
within the TD and ASD groups are consistent with previous findings (Hasenstab and others, 2015), with a
negative overall mean differentiation pattern for TD and a positive overall mean pattern for ASD, they iden-
tify diverse subgroups within each diagnostic group, implying that not all TD and ASD children display
opposing trends of condition differentiation. In fact, most children in the ASD group are in the cluster with
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Fig. 3. The estimated cluster mean functions obtained from RFC for the TD (a) and ASD (b) groups along with
90% bootstrap confidence bands. The estimated electrode-specific cluster mean functions are also plotted for the TD
(c) and ASD (d) groups.

a flat differentiation pattern indicating little or no implicit learning, while others differentiate positively
between the conditions, similar to roughly half of the TD children. RFC analysis shows that the negative
differentiation pattern of half of the TD children is not shared by children with ASD. These findings pro-
vide novel insights into the diversity of implicit learning patterns within each group, while also enabling
comparisons across groups.

The RFC clustering results are further compared with clusters obtained via a simpler version of the
algorithm that assumes a single covariance subset [referred to as the single subset functional clustering
(SFC)] and a multilevel extension of the FC algorithm of Chiou and Li (2007). Smoothed amplitude dif-
ference trajectories across electrodes from all clustering algorithms are also displayed in Figures 4 and 5.
For the TD group, SFC yields similar clustering results to RFC with a few differences in cluster assign-
ments and an equal subject split across clusters. In contrast, the SFC results are quite different from RFC
for the ASD group, allocating several of the subjects from the cluster with the flat mean to the cluster
with the positive mean. This is consistent with the prior observations where trajectories of the number
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Fig. 4. The smoothed P3 amplitude difference trajectories across electrodes for each algorithm (row) and cluster
(column) within the TD group. The trajectories in SFC and FC with different clustering assignment from the proposed
RFC are given dashed.
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Fig. 5. The smoothed P3 amplitude difference trajectories across electrodes for each algorithm (row) and cluster
(column) within the ASD group. The trajectories in SFC and FC with different clustering assignment from the proposed
RFC are given dashed.

495Robust functional clustering of ERP data



of averaged ERPs and estimated eigenfunctions confirm that the ASD group displays higher covariance
heterogeneity than the TD group, which makes the single covariance subset assumption of SFC harder to
justify. The clustering results from FC are different from those obtained from RFC in both the TD and ASD
groups. For the TD group, FC assigns subjects from the cluster with the negative mean to the cluster with
the positive mean. For the ASD group, FC assigns almost half of the subjects from the cluster with the flat
mean to the cluster with the positive mean. The FC algorithm clusters subject trajectories according to both
the mean and covariance trends. Hence, due to the covariance heterogeneity in the TD and ASD groups,
FC is unable to robustly identify clusters according to differences in the mean trends. We also compare the
three clustering algorithms within the TD and ASD groups using multilevel extensions to multiple internal
cluster validation metrics: the Davies–Bouldin, Calinski–Harabasz, and Silhouette indices. Indices show
that RFC achieves a better cluster separation over the other two algorithms within each diagnostic group
and differences across the three algorithms are greater in the ASD group (details on the results are deferred
to the supplementary material available at Biostatistics online). Performance of the three clustering algo-
rithms are further compared via simulations (Section 5).

5. SIMULATION STUDIES

We study the performance of the proposed RFC compared with FC and SFC, and study the performance
of the algorithm under the second non-identifiability condition outlined in Section 3.2, that the cluster
mean functions lie in the same or different covariance subset eigenspaces. We summarize the findings
in this section and defer the simulation details including the selection of smoothing bandwidths to the
supplementary material (available at Biostatistics online). We conducted simulations under five scenarios.
The first two cases correspond to the second non-identifiability condition with cluster mean functions
lying in the eigenspace of the same covariance subset (case 1) and different covariance subsets (case 2).
The cluster and covariance subset memberships are not assumed to be identical. The last three simulation
scenarios correspond to the assumptions of RFC, SFC, and FC, respectively: that the cluster and covariance
subset memberships are not identical (case 3); that there is a single covariance subset for the entire sample
(case 4); and cluster and covariance subset membership are set to be the same (case 5). All three algorithms
perform poorly in the first two simulation cases of non-identifiability conditions, since the cluster means
lying in the eigenspace of the covariance subsets is also a non-identifiable case for SFC and FC with
non-overlapping cluster and covariance subset memberships. RFC outperforms SFC and FC in the third
simulation case, improving cluster quality by incorporating the known covariance heterogeneity into the
clustering of the mean trends. When the covariance groups are highly similar (simulation case 4), all three
algorithms perform equally well as expected. In case (5), where cluster and covariance subset membership
overlap and there are multiple covariance subsets, RFC is almost as effective in finding clusters as FC and
SFC is unable to recosver clusters.

6. DISCUSSION

We proposed a novel clustering algorithm (RFC) that is designed to integrate existing structural informa-
tion on covariance heterogeneity in the sample into clustering, leading to improvements in cluster accu-
racy even in small samples. In our data application, the known covariance heterogeneity arises during
the preprocessing steps designed to address data quality issues and is quantified by the longitudinal data
available on the number of averaged ERPs (during meta-preprocessing) which are further clustered to
determine covariance subsets. Similar situations can arise in brain imaging applications where data anal-
ysis typically follows a long set of preprocessing procedures that may introduce covariance heterogeneity.
Another example would be clustering of concatenated data where the goal may be to cluster according to
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mean trends robust to possible covariance heterogeneity introduced by the different data sources or data
collection methods. A second point of novelty in the proposal is the extension to multilevel functional data
where developments are especially designed for clustering longitudinal trends in ERP experiments from
multiple electrodes. Coupled with the previously proposed meta-preprocessing step, the proposed RFC
is the only algorithm to date that can cluster longitudinal trends effectively within an ERP experiment.
Finally, the proposed methodology leads to novel scientific insights into the diversity of implicit learning
patterns within and across ASD and TD children.

Note that the proposed RFC algorithm relies on consistent estimation of the cluster and covariance sub-
set components such as the mean functions, covariance surfaces, eigenfunctions, and eigenscores. Even
though the asymptotic consistency of the model components has been established in Yao and others (2005)
and model components for multilevel functional data have been studied extensively in simulation studies,
finite sample performance of these estimators may affect the performance of the RFC. Another issue is
the consistency of the cluster and covariance subset components based on observations from estimated
clusters. Almost sure convergence of cluster means for the classical k-means clustering algorithm was
established by Pollard (1981) for multivariate data. Chiou and Li (2007) point out that owing to the com-
plexity of convergence and slower convergence rates for estimating cluster means and covariance subset
eigenfunctions in functional data, consistency results for FC need development of further technical results.
Similarly, consistency of RFC requires further research.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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