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SUMMARY

In developing targeted therapy, the marker-strategy design (MSD) provides an important approach to eval-
uate the predictive marker effect. This design first randomizes patients into non-marker-based or marker-
based strategies. Patients allocated to the non-marker-based strategy are then further randomized to receive
either the standard or targeted treatments, while patients allocated to the marker-based strategy receive
treatments based on their marker statuses. Little research has been done on the statistical properties of
the MSD, which has led to some widespread misconceptions and placed clinical researchers at high risk
of using inefficient designs. In this article, we show that the commonly used between-strategy compari-
son has low power to detect the predictive effect and is valid only under a restrictive condition that the
randomization ratio within the non-marker-based strategy matches the marker prevalence. We propose a
Wald test that is generally valid and also uniformly more powerful than the between-strategy comparison.
Based on that, we derive an optimal MSD that maximizes the power to detect the predictive marker effect
by choosing the optimal randomization ratios between the two strategies and treatments. Our numerical
study shows that using the proposed optimal designs can substantially improve the power of the MSD to
detect the predictive marker effect. We use a lung cancer trial to illustrate the proposed optimal designs.
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1. INTRODUCTION

Owing to an improved understanding of cancer biology and rapid development of biotechnology, we have
entered the era of targeted therapies for clinical oncology (Sawyers, 2004; Green, 2004; Sledge, 2005).
The clinical application of a targeted therapy requires the identification of predictive biomarkers that can
be used to foretell the differential efficacy of a particular therapy based on the presence or absence of
the marker (Mandrekar and Sargent, 2009; Freidlin and others, 2010). For example, the estrogen receptor
(ER) and human epidermal growth factor receptor 2 (HER-2) are predictive markers that are useful for
choosing a targeted therapy for individuals with breast cancer. Tamoxifen is effective only for patients
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Fig. 1. Diagram of the MSD.

with a breast tumor that overexpresses ER (i.e., ER-positive status); whereas trastuzumab, a monoclonal
antibody that binds to HER-2, works effectively only in patients with a breast tumor that expresses high
levels of HER-2 (i.e., HER-2 positive status).

The marker-strategy design (MSD) is an important clinical trial design for identifying and validating
predictive markers (Sargent and others, 2005). As shown in Figure 1, under the MSD, patients are random-
ized into two strategies, namely, the marker-based strategy and non-marker-based strategy. The patients
randomized to the marker-based strategy are treated (deterministically) based upon their biomarker sta-
tuses (e.g., patients with a marker-positive status receive treatment A and those with a marker-negative
status receive treatment B). Patients randomized to the non-marker-based strategy are randomly assigned
to treatment A or B independent of their marker statuses. The MSD has drawn substantial attention from
the medical community and has been used to run a number of large clinical trials (Sargent and Allegra,
2002; Sargent and others, 2005; Cree and others, 2007; Rosell and others, 2008; Mandrekar and Sargent,
2009).

Surprisingly, there has been little investigation of the statistical properties of the MSD, even some
fundamental properties. This is probably due to the relative newness of these designs and the fact that they
were largely developed within the clinical sciences (Sargent and others, 2005; Mandrekar and Sargent,
2009). Several important questions should be answered. For example, for the MSD, in what ratio should
we randomize patients between two strategies and within the (non-marker-based) strategy? The common
approach is to use the equal or fixed-ratio (e.g., 1:2) randomization to assign patients between and within
the two strategies. This choice is mainly driven by practical convenience without much consideration on
the design properties. Ideally, the randomization ratio should be chosen to optimize the power or other
utility (e.g., a tradeoff between statistical power and patient response) of the design. Furthermore, how do
these randomization ratios affect the power of the design? How do we efficiently test the predictive marker
effect at the end of the trial? The lack of answers to these questions has resulted in some widespread
misconceptions and placed clinical researchers at high risk of using inefficient designs, which will waste
research resources and miss the opportunity to discover useful predictive markers.

As an example, a trial employed the MSD to examine whether the expression level of the excision repair
cross-complementing 1 (ERCC1) gene is a predictive marker for patients with non-small cell lung cancer
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(NSCLC) who are treated with gemcitabine (Cobo and others, 2007). A total of 444 patients with stage-
IV NSCLC were randomized in a 1:2 ratio to either the non-marker-based strategy or the marker-based
strategy. In the marker-based strategy, patients were treated according to their ERCC1 expression levels.
The patients with low levels of ERCC1 expression received the targeted treatment (i.e., gemcitabine +
docetaxel), and the patients with high levels of ERCC1 expression received the standard treatment (i.e.,
cisplatin + docetaxel). In the non-marker-based strategy, the trial chose an extreme randomization ratio of
0:1 and allocated all patients to the standard treatment of docetaxel plus cisplatin. At the end of the trial,
as is often done in practice, the between-strategy comparison (i.e., comparing the overall response rate
between the marker-based strategy and non-marker-based strategy) was used to assess whether ERCC1
expression is a predictive marker for the patient’s response to gemcitabine. As we demonstrate later, this
trial suffered from some design deficiencies: the between-strategy comparison actually was not a valid test
to assess the predictive marker effect, and the allocation ratios adopted by the trial led to a low power to
detect the predictive marker.

The goal of this paper is to fill these knowledge gaps and provide principled and efficient MSD designs
for clinical researchers to use in evaluating the predictive marker effect. Specifically, we develop the opti-
mal MSD, which maximizes the power for testing the predictive marker effect. We show that the typical
approach of comparing the two strategies to assess the predictive marker effect has low power and is
valid only under the restrictive condition that the randomization ratio between two treatments matches the
marker prevalence. To address these issues, we propose a Wald test that is generally valid and uniformly
more powerful than the between-strategy comparison. Based on the proposed test, we derive the optimal
randomization ratios (between strategies and between treatments) that maximize the power. Through a
simulation study and an application to the ERCC1 trial data, we show that the proposed optimal MSD
results in a substantial improvement in statistical power.

The remainder of the article is organized as follows. In Section 2, we propose a Wald test to detect
the predictive marker effect under the MSD. In Section 3, we present a numerical study to investigate the
performance of the proposed design. In Section 4, we apply the proposed design to the ERCC1 trial. We
conclude this article with a brief discussion in Section 5.

2. METHODS

Consider an MSD consisting of a standard treatment T = 0 and a targeted treatment T = 1, with a
binary endpoint Y indicating whether the patient responds favorably to the received treatment (i.e.,
Y = 1) or not (Y = 0). We assume that based on a prespecified set of markers and classification rules,
patients can be classified into marker-negative (M = 0) and marker-positive (M = 1) subgroups. Let
φk = pr(M = k) denote the prevalence of M = k in the target population, and p jk = pr(Y = 1 | T = j, M =
k) denote the response probability for patients with marker M = k who received treatment j , where
j, k = 0, 1. We assume that φk is known or can be estimated from external data, as is often the case in
practice.

As illustrated in Figure 1, under the MSD, the enrolled patient is first randomized to either the non-
marker-based strategy (denoted as S = 1) or the marker-based strategy (denoted as S = 0) with probabil-
ities γ1 and 1 − γ1, respectively. If the patient is randomized to S = 0, we measure his/her marker M to
determine the treatment assignment. If M = 0, the patient is assigned to T = 0, and otherwise to T = 1.
That is, in the marker-based strategy, T = M . If the patient is randomized to the non-marker-based strategy
(i.e., S = 1), the measurement of M is not required. The patient is directly randomized to T = 1 or T = 0
with probabilities γ2 and 1 − γ2, respectively, regardless of his/her marker status. In the non-marker-based
strategy, T is not necessarily equal to M . For the moment, we assume that randomization ratios γ1 and γ2

are known. In the next section, we discuss how to choose optimal randomization ratios that maximize the
power of the MSD.

551



Y. ZANG AND OTHERS

Although the measurement of M is not required for the patients randomized to S = 1, in many prac-
tical circumstances, we still collect the marker information for these patients, prospectively or retrospec-
tively, for other research purposes (e.g., biomarker discovery and correlation studies). Based on whether
or not M is measured for patients randomized to S = 1, we distinguish two versions of the MSD: the
MSD with full marker information (MSD-F), under which M is measured for all patients; and the MSD
with partial marker information (MSD-P), under which M is measured only for patients with S = 0. As we
describe later, the test procedures and optimization solutions are different for MSD-F and MSD-P. Because
the MSD does not randomize patients to the treatments within the marker-positive and marker-negative
subgroups, one limitation of the MSD is that it cannot be used to evaluate either the treatment effect
within each marker subgroup or the marginal marker effect (i.e., prognostic marker effect) given a specific
treatment.

A primary objective of the MSD is to evaluate the predictive marker effect. According to our definition,
p11 − p01 is the treatment effect of the targeted agent with respect to the standard treatment in the marker-
positive subgroup and p10 − p00 is the treatment effect in the marker-negative subgroup. Let us define
θ = (p11 − p01) − (p10 − p00). If θ is larger (less) than 0, it means that the presence (absence) of the
biomarker can predict an improvement for the treatment effect. In other words, θ represents the predictive
marker effect. Therefore, for clinical trial designs aiming to evaluate the predictive marker effect (e.g.,
MSD), we are interested in testing

H0 : θ = 0 versus H1 : θ �= 0. (2.1)

Under the MSD, a common approach to testing the predictive marker effect relies on the two-sample
t-test (or binomial test, which is asymptotically equivalent to the t-test) to compare the response
rates between the marker-based and non-marker-based strategies, e.g., as in the ERCC1 trial described
previously. The rationale is that a higher response rate among patients enrolled under the marker-
based strategy will mean the marker is useful in guiding the treatment choice and thus the marker is
predictive.

This approach, however, is problematic. First, the between-strategy comparison lacks power because
of its dilution of the between-strategy difference (Simon, 2008; Freidlin and others, 2010). This dilution
arises because a certain proportion of patients will receive the same treatment regardless of their assignment
to the marker-based or non-marker-based strategies (e.g., some patients with a marker-positive status in
both strategies will receive the targeted treatment). As a result, the MSD itself has been criticized as an
inefficient design (Simon, 2008; Freidlin and others, 2010). In what follows, we show that this is not
absolutely true. If we choose an appropriate test, the MSD has desirable power to detect predictive marker
effects (i.e., the low power issue is caused by the between-strategy comparison, not the MSD itself). In
addition, to the best of our knowledge, a more serious problem that has not been discussed in the existing
literature is that the use of the t-test to compare the treatment effect between two strategies generally is
not equivalent to testing the predictive marker effect, except under a restrictive condition that is described
hereafter.

THEOREM 1 Using the two-sample t-test to compare the treatment effect between two strategies is equiv-
alent to testing the predictive marker effect only if γ2 = φ1.

To see this, note that the hypothesis that the two-sample t-test actually evaluates is that there is no
treatment difference between the two strategies, i.e.,

H∗
0 : pr(Y = 1 | S = 0) − pr(Y = 1 | S = 1) = φ0γ2θ + {(1 − γ2)φ1 − γ2(1 − φ1)}(p11 − p01) = 0.

In general, p11 �= p01; thus, H∗
0 is equivalent to H0 as given in (2.1) only when γ2 = φ1.
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To address these issues, we propose a Wald test that is generally valid for assessing the predictive
marker effect. For ease of exposition, we first consider the MSD-F, in which the value of M is known
for all N patients enrolled in the trial. Let Di j j denote the number of patients who have Y = i with T =
M = j under strategy S = 0, and Ri jk denote the number of patients who have Y = i with T = j and
M = k under strategy S = 1. Given the observed data D = {Di j j , Ri jk}, the likelihood function for p =
(p00, p01, p10, p11) under the MSD-F is

L( p |D) =
1∏

j=0

{
(p j j )

D1 j j (1 − p j j )
D0 j j

1∏
k=0

(p jk)
R1 jk (1 − p jk)

R0 jk

}
. (2.2)

It can be shown that the maximum likelihood estimate (MLE) of p is given by

p̂ jk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D1 j j + R1 jk∑1
i=0(Di j j + Ri jk)

if j = k,

R1 jk∑1
i=0 Ri jk

if j �= k,

(2.3)

with the corresponding information matrix

I = diag(I00, I01, I11, I10)

= diag

(∑1
i=0(Di00 + Ri00)

p00(1 − p00)
,

∑1
i=0 Ri01

p01(1 − p01)
,

∑1
i=0(Di11 + Ri11)

p11(1 − p11)
,

∑1
i=0 Ri10

p10(1 − p10)

)
.

Therefore, the MLE and asymptotic variance of θ are given by

θ̂ = p̂00 + p̂11 − p̂01 − p̂10,

σ 2
θ̂

= I −1
00 + I −1

11 + I −1
01 + I −1

10 .

Substituting p jk in σ 2
θ̂

with its MLE, the Wald test statistic Z for testing H0 : θ = 0 is given by

Z = θ̂√
σ 2

θ̂

,

which asymptotically follows a standard normal distribution under H0. Given a significance level of α, we
reject H0 and declare that M is a predictive marker if |Z | > zα/2, where zα/2 is the upper α/2 quantile of a
standard normal distribution.

We now turn to the test of the predictive marker effect for the MSD-P, where M is not measured for
patients with S = 1. In this case, Ri jk are not observed, instead we observe only Ri j · = Ri j0 + Ri j1 for
i, j = 0, 1. The likelihood of the observed data D̃ = {Di j j , Ri j ·} under the MSD-P is

L( p | D̃) =
1∏

j=0

⎧⎨
⎩(p j j )

D1 j j (1 − p j j )
D0 j j

(
1∑

k=0

p jkφk

)R1 j · (
1 −

1∑
k=0

p jkφk

)R0 j ·
⎫⎬
⎭ . (2.4)

We employ the expectation-maximization (EM) algorithm (Dempster and others, 1977) to obtain the
MLE of p. We treat Ri jk as missing data and define the complete data as {Di j j , Ri jk}. As the likelihood of
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the complete data is the same as that of the MSD-F with closed-form MLEs, this is an ideal situation for
using the EM algorithm, which can be described as follows:

1. Initialize the starting values of p̂ jk .
2. E-step: substitute the missing values of Ri jk with their expectations, given by E(R1 jk | p̂ jk, R1 j ·) =

R1 j · p̂ jkφk/
∑1

k=0 p̂ jkφk and E(R0 jk | p̂ jk) = R0 j ·(1 − p̂ jk)φk/
∑1

k=0(1 − p̂ jk)φk .
3. M-step: update p̂ jk with their MLEs, as given by (2.3).
4. Repeat steps 2 and 3 until the estimates converge and estimate θ̂ = p̂00 + p̂11 − p̂01 − p̂10.

The EM algorithm does not produce the variance estimate of θ̂ . We estimate the variance of θ̂ based on
the information matrix Ĩ , which is derived from the observed data likelihood (2.4) and takes the following
form:

Ĩ =
(

Ĩ0 0
0 Ĩ1

)
,

where

Ĩ j =

⎛
⎜⎜⎜⎜⎜⎜⎝

∑1
i=0 Di j j

p j j (1 − p j j )
+ φ2

j

∑1
i=0 Ri j(∑1

k=0 p jkφk

)(
1 −∑1

k=0 p jkφk

) φ jφl
∑1

i=0 Ri j(∑1
k=0 p jkφk

)(
1 −∑1

k=0 p jkφk

)
φ jφl

∑1
i=0 Ri j(∑1

k=0 p jkφk

)(
1 −∑1

k=0 p jkφk

) φ2
l

∑1
i=0 Ri j(∑1

k=0 p jkφk

)(
1 −∑1

k=0 p jkφk

)

⎞
⎟⎟⎟⎟⎟⎟⎠

for j = 0, 1 and l = 1 − j . Therefore, the variance of θ̂ under the MSD-P, say σ̃ 2
θ̂

, is given by

σ̃ 2
θ̂

= a Ĩ −1
0 aT + a Ĩ −1

1 aT , (2.5)

where a = (1,−1). Similarly, substituting p jk in σ̃ 2
θ̂

with its MLE, the Wald test statistic for the MSD-P is

given by Z̃ = θ̂/
√

σ̃ 2
θ̂

, which asymptotically follows a standard normal distribution under H0. As shown

in Supplementary materials (available at Biostatistics online), compared with the two-sample t-test, the
proposed Wald test has higher statistical power to detect predictive marker effects.

THEOREM 2 Under both the MSD-F and MSD-P, the proposed Wald test is uniformly more powerful than
the two-sample t-test.

Under the MSD-F and MSD-P, the power of the Wald test depends on the between-strategy randomiza-
tion ratio, γ1, which determines the proportion of patients to be assigned to the non-marker-based strategy,
and the within-strategy randomization ratio, γ2, which determines the proportion of patients to be assigned
to the targeted treatment within the non-marker-based strategy. We derive the optimal MSD-F and MDS-P
that maximize the power to detect the predictive marker effect by choosing the optimal values of γ1 and
γ2. The results are summarized in Theorems 3 and 4, and more details are provided in Supplementary
materials (available at Biostatistics online).
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THEOREM 3 Defining λ jk = p jk(1 − p jk), the optimal MSD-F that maximizes the power of detecting
predictive marker effects is given by the following randomization ratios:

γ1,opt =
√

λ10√
λ10 + √

λ00
+

√
λ01√

λ01 + √
λ11

,

γ2,opt =
√

λ10

(√
λ01 + √

λ11

)
√

λ10 + √
λ01

if λ10λ01 � λ00λ11; otherwise,

γ1,opt = 1,

γ2,opt =
√

λ11φ0 + λ10φ1√
λ11φ0 + λ10φ1 + √

λ01φ0 + λ00φ1
.

THEOREM 4 Define q j = pr(Y = 1 | S = 1, T = j) = p j jφ j + p jlφl for j = 0, 1 and l = 1 − j , and π j =
q j (1 − q j ). The optimal MSD-P that maximizes the power of detecting predictive marker effects is given
by the following optimal randomization ratios:

γ̃1,opt =
√

π0φ0 + √
π1φ1√

π0φ0 + √
π1φ1 + √

λ00φ0 + λ11φ1
,

γ̃2,opt =
√

π1φ1√
π1φ1 + √

π0φ0
.

The implementation of the proposed optimal MSD requires the knowledge of p jk , which can be elicited
from clinicians. If such information is not available, we can adopt a two-stage approach by varying the
randomization ratio during the trial. At the first stage, we equally randomize a portion of patients between
the two strategies and two treatments. Then, at the second stage, based on the data obtained from the
patients in the first stage, we estimate p jk and the optimal randomization ratios γ1,opt and γ2,opt, based on
which we allocate the subsequent patients.

3. NUMERICAL STUDIES

We conducted simulation studies to investigate the operating characteristics of the proposed Wald
test. We considered the following three cases. (1) The marker has no predictive effect, with p =
(p00, p01, p10, p11) = (0.1, 0.2, 0.3, 0.4), which corresponds to the null case H0 : θ = 0. (2) The marker
has both predictive and prognostic effects. We took p = (0.1, 0.2, 0.2, 0.45) for MSD-F, under which the
predictive effect θ = 0.15 and the prognostic effect is 0.1, and p = (0.1, 0.2, 0.2, 0.6) for MSD-P, under
which the predictive effect θ = 0.3 and the prognostic effect is 0.1. The reason we chose a larger predictive
effect for the MSD-P is to ensure its power in the range of practical interest. (3) The marker has only a
predictive effect. We set p = (0.1, 0.1, 0.1, 0.3) for MSD-F (i.e., θ = 0.2) and p = (0.1, 0.1, 0.1, 0.5) for
MSD-P (i.e., θ = 0.4). As we mentioned earlier, the MSD cannot be used to evaluate the prognostic effect.
In the above three cases, we are interested in testing whether the marker is predictive. We considered three
marker prevalence rates, φ1 = 0.3, 0.5, and 0.7. Under each of the simulation configurations, we conducted
10 000 simulated trials to evaluate the empirical type I error rate and the power of the proposed Wald test
under the MSD-F and MSD-P with a significance level of 5%, and compared it to the conventional t-test.

Table 1 shows the rejection rate of H0 across 10 000 simulations under the MSD-F with different ran-
domization ratios γ1 and γ2. When the predictive marker effect is zero, the rejection rate corresponds to
the type I error rate. The t-test yielded reasonable type I error rates only when φ1 = γ2, and led to seriously
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Table 1. Empirical type I error rate and power of the t-test and proposed Wald test (in percentages) under
the MSD-F and N = 500

Not predictive Predictive + prognostic Predictive only
(p00, p01, p10, p11) = (0.1, 0.2, 0.3, 0.4) (0.1, 0.2, 0.2, 0.45) (0.1, 0.1, 0.1, 0.3)

φ1 γ1 γ2 Wald t-test Wald t-test Wald t-test

0.3 0.5 0.3 5.4 5.2 35.8 14.3 72.1 28.2
0.5 5.6 19.8 38.1 5.0 73.4 16.3
0.7 5.5 57.0 34.4 10.8 67.0 8.9

0.7 0.3 5.3 5.4 40.3 11.4 76.0 21.4
0.5 5.1 18.8 42.7 5.4 79.4 12.7
0.7 5.2 52.2 38.5 11.0 73.3 7.2

1.00 0.56 5.3 N/A 45.7 N/A 80.8 N/A
0.90 0.56 5.2 19.4 45.2 7.0 81.1 6.7

0.5 0.5 0.3 5.6 18.0 40.3 47.6 76.4 56.1
0.5 5.3 5.3 45.1 16.5 82.1 31.2
0.7 5.6 17.2 41.5 5.0 77.6 14.2

0.7 0.3 5.4 15.0 44.9 40.4 82.4 46.2
0.5 5.5 5.6 52.0 13.2 87.6 24.3
0.7 5.5 16.5 48.1 5.3 84.4 11.3

1.00 0.56 4.9 N/A 55.2 N/A 89.5 N/A
0.90 0.56 5.0 7.1 54.3 6.3 90.0 9.3

0.7 0.5 0.3 5.5 52.5 36.5 80.3 67.9 80.4
0.5 5.4 17.5 41.6 42.6 77.0 49.7
0.7 5.5 5.4 40.7 11.2 76.8 20.9

0.7 0.3 5.4 44.6 40.3 71.1 75.4 70.8
0.5 5.4 14.3 47.1 35.5 84.2 40.6
0.7 5.1 4.8 46.7 10.5 84.0 16.7

1.00 0.56 5.2 N/A 51.9 N/A 87.4 N/A
0.90 0.56 5.1 6.8 51.6 12.3 87.9 14.0

The underlined values are the optimal randomization ratios and corresponding power.

inflated type I errors if φ1 �= γ2. For example, when φ1 = 0.3, γ1 = 0.5, and γ2 = 0.7, the type I error rate
of the t-test was 57.0%. In contrast, the proposed Wald test consistently controlled the type I error rate at
around the nominal level of 5% in all cases.

In terms of power (i.e., the rejection rate when there is a predictive marker effect), the proposed Wald
test substantially outperformed the t-test, given that both tests adequately controlled the type I error rate
(i.e., when φ1 = γ2). For example, when φ1 = γ2 = 0.3, γ1 = 0.5, and p = (0.1, 0.1, 0.1, 0.3), the power of
the Wald test was about 44% higher than that of the t-test. In addition, the optimal MSD-F when using the
proposed optimal randomization ratios (underlined in Table 1) yielded substantially higher power than the
MSD-F when using other randomization ratios. For example, when φ1 = 0.3 and p = (0.1, 0.1, 0.1, 0.3),
the power of the MSD-F with γ1 = 0.5 and γ2 = 0.7 was 67.0%, while that of the optimal MSD-F with
γ1,opt = 0.90 and γ2,opt = 0.56 was 81.1%.

The simulation results for the MSD-P (see Table 2) were similar to those for the MSD-F. That is, the
t-test yielded valid type I error rates only when φ1 = γ2; whereas the proposed Wald test consistently
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Table 2. Empirical type I error rate and power of the t-test and proposed Wald test (in percentages) under
the MSD-P and N = 500

Not predictive Predictive + prognostic Predictive only
(p00, p01, p10, p11) = (0.1, 0.2, 0.3, 0.4) (0.1, 0.2, 0.2, 0.6) (0.1, 0.1, 0.1, 0.5)

φ1 γ1 γ2 Wald t-test Wald t-test Wald t-test

0.3 0.5 0.3 4.8 4.8 47.5 40.0 74.8 69.8
0.5 5.1 20.0 47.6 10.1 73.9 40.3
0.7 5.4 57.0 41.1 6.5 66.6 17.2

0.7 0.3 5.5 5.4 41.8 32.9 67.1 59.6
0.5 5.3 19.3 39.9 8.7 66.4 32.7
0.7 5.1 51.1 38.2 6.1 61.3 13.8

0.51 0.37 5.2 7.2 48.4 27.0 74.8 59.1
0.47 0.37 4.9 6.7 47.7 26.9 75.5 59.5

0.5 0.5 0.3 5.3 19.0 45.3 87.3 72.4 96.3
0.5 5.1 5.1 52.7 44.9 79.5 73.8
0.7 5.3 17.3 51.5 9.1 79.9 33.1

0.7 0.3 5.4 15.4 42.0 80.4 67.1 92.3
0.5 5.3 5.3 46.2 36.8 71.5 64.7
0.7 5.1 16.2 47.0 8.6 71.9 27.1

0.51 0.58 5.1 7.4 53.0 26.3 79.4 56.7
0.48 0.60 5.0 7.8 52.4 22.5 80.4 53.6

0.7 0.5 0.3 5.3 53.1 23.8 99.2 41.1 99.8
0.5 5.4 17.0 31.2 83.0 50.4 92.6
0.7 4.9 4.7 34.7 29.8 56.0 51.2

0.7 0.3 5.0 44.2 24.5 97.8 40.0 99.3
0.5 5.6 14.1 28.1 74.1 46.2 87.1
0.7 5.4 5.5 30.5 25.7 48.7 43.8

0.51 0.76 4.9 5.8 34.9 17.9 56.9 35.9
0.49 0.79 5.2 7.0 34.0 12.1 57.1 29.9

The underlined values are the optimal randomization ratios and corresponding power.

produced reasonable type I error rates and was uniformly more powerful than the t-test. In addition, using
the optimal MSD-P design could substantially improve the power of the MSD-P.

We also conducted a simulation to evaluate the performance of the two-stage approach when the
response rate p jk are unknown. The two-stage design equally randomized the first 100 patients to two
strategies and then, based on the estimates of the response rates from the first stage, used the optimal ran-
domization ratio to allocate the remaining 400 patients in the second stage. The simulation results show
that the two-stage approach was only slightly less powerful than the optimal approach (See Figure 6 in Sup-
plementary material available at Biostatistics online). Therefore, when p jk are unknown, we recommend
the two-stage approach to be used in practice.

4. APPLICATION

We now turn to the ERCC1 trial (Cobo and others, 2007), in which a total of 444 patients with NSCLC
were randomly assigned in a 1:2 ratio (i.e., γ1 = 1/3) to either the non-marker-based strategy or the
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marker-based strategy. ERCC1 mRNA expression was assessed in all patients using real-time reverse tran-
scriptase polymerase chain reaction. Relative to the housekeeping gene β-action, ERCC1 mRNA expres-
sion was classified into a low level or a high level based on the cutoff 4.9 × 10−3 (Israel and others, 2004).
In the marker-based strategy, patients were treated based on their ERCC1 mRNA levels. The patients with
high ERCC1 mRNA levels (i.e., M = 0) received the standard treatment, i.e., 75 mg/m2 of docetaxel plus
75 mg/m2 of cisplatin; whereas patients with low ERCC1 mRNA levels (i.e., M = 1) received the tar-
geted agent, 40 mg/m2 of docetaxel plus 1000 mg/m2 of gemcitabine. Among 296 patients randomized to
the marker-based strategy, 211 patients were assessable for the treatment response, of which 122 and 89
patients had low and high levels of ERCC1 mRNA expression, respectively. In the marker-based strategy, a
total of 107 patients had a favorable response to the treatments, including 65 (i.e., response rate of 53.2%)
from the low ERCC1 level subgroup, and 42 (i.e., response rate of 47.2%) from the high ERCC1 level
subgroup. In the non-marker-based strategy, rather than randomizing patients into the two treatments, this
trial allocated all patients to the standard treatment with γ2 = 0.

Among 148 patients randomized to the non-marker-based strategy, 135 patients were assessable and
53 of them had a favorable response to the treatment. A comparison of the response rate between the
two strategies resulted in a slightly significant p-value of 0.02, based on which the investigators of the trial
concluded that the ERCC1 mRNA expression level was a potential predictive marker for gemcitabine. Due
to the lack of understanding of the theoretical properties of the MSD, this trial suffered from some design
deficiencies. Specifically, as γ2 did not match the estimated marker prevalence φ̂1 = 0.58, the between-
strategy comparison was not valid for testing the predictive effect of the ERCC1 mRNA, although an
objective of the trial was to “confirm that ERCC1 mRNA levels predict response to platinum-based therapy
in advanced NSCLC” (Cobo and others, 2007, p. 2752). Strictly speaking, the predictive effect was not
identifiable in this trial (without using external data) as no patient with a high level of ERCC1 mRNA
expression was treated with the targeted agent.

We retrospectively applied the proposed methodology to the ERCC1 trial data to demonstrate the poten-
tial power gain by using the proposed optimal designs. Based on the response data reported by the trial, we
estimated response rates of p̂00 = 0.47, p̂01 = 0.33, p̂11 = 0.53, and φ̂1 = 0.58. Because no patient with
a high level of ERCC1 mRNA expression was treated with the targeted agent in the ERCC1 trial, we
estimated p̂10 = 0.23 based on Burris and others (1997). Applying Theorem 3, the optimal randomization
ratios for MSD-F were γ1,opt = 0.95, γ2,opt = 0.49. To appreciate the potential power gain, we simulated
10 000 trials to compare the optimal MSD-F to the ERCC1 trial design (with γ1 = 1/3 and γ2 = 1/10). Note
that, for the ERCC1 trial design, in order to make the predictive effect identifiable, we used γ2 = 1/10,
rather than 0. The results show that the empirical power of the optimal MSD-F design was 98.8%, whereas
that under the ERCC1 trial design was only 60.9% (when the proposed Wald test was used in both designs).

5. DISCUSSION

We have proposed the optimal MSD for detecting predictive marker effects under two scenarios of marker
measuring: when the marker is fully measured or only partially measured for the population of patients
enrolled in the trial. Under the MSD, the commonly used approach to test predictive marker effects is to
apply the two-sample t-test to compare the treatment effect between the marker-based strategy and the
non-marker-based strategy. We have shown that such an approach has low power and is valid only under
the restrictive condition that the randomization ratio between the two treatments matches the marker preva-
lence. To address these issues, we have proposed using a Wald test that is generally valid and uniformly
more powerful than the t-test. Based on the proposed test, we have derived the optimal randomization ratios
(between strategies and treatments) that maximize the power. The numerical studies have shown that the
proposed optimal MSD can substantially improve the power of the MSD.
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The proposed optimal designs focus on a binary outcome. In practice, other types of endpoints, such as
ordinal outcomes (e.g., complete remission, partial remission, stable disease, and disease progression) and
time-to-event outcomes (e.g., progression-free survival and overall survival times) are also frequently used
in clinical trials. The extension of the proposed optimal design to these cases is of great practical importance
and warrants further research. We consider one biomarker and two treatments in this article. The idea can
be extended to multiple biomarker and treatment arms. However, the calculation is much more involved and
there are typically no closed form expression for the optimal randomization ratio (Hu and Rosenberger,
2006). More recently, Zang and others (Zang and others, 2015; Zang and Guo, 2016; Zang and others,
2016) proposed several optimal biomarker-guided designs when biomarkers are measured with errors. It is
also of interest to develop the optimal marker- strategy design subject to imprecisely measured biomarkers.
Future research in this area is needed.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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