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Abstract
Epithelial polarity genes are important for maintaining tissue architecture, and regulating

growth. The Drosophila neoplastic tumor suppressor gene scribble (scrib) belongs to the

basolateral polarity complex. Loss of scrib results in disruption of its growth regulatory

functions, and downregulation or mislocalization of Scrib is correlated to tumor growth.

Somatic scribblemutant cells (scrib-) surrounded by wild-type cells undergo apoptosis,

which can be prevented by introduction of secondary mutations that provide a growth

advantage. Using genetic tools in Drosophila, we analyzed the phenotypic effects of loss

of scrib in different growth promoting backgrounds. We investigated if a central mecha-

nism that regulates cell adhesion governs the growth and invasive potential of scrib
mutant cells. Here we show that increased proliferation, and survival abilities of scrib-

cells in different genetic backgrounds affect their differentiation, and intercellular adhe-

sion. Further, loss of scrib is sufficient to cause reduced cell survival, activation of the

JNK pathway and a mild reduction of cell adhesion. Our data show that for scrib cells to

induce aggressive tumor growth characterized by loss of differentiation, cell adhesion,

increased proliferation and invasion, cooperative interactions that derail signaling path-

ways play an essential role in the mechanisms leading to tumorigenesis. Thus, our study

provides new insights on the effects of loss of scrib and the modification of these effects

via cooperative interactions that enhance the overall tumorigenic potential of scrib defi-

cient cells.

Introduction
Epithelial cells are the major cell-type for all organs in multicellular organisms that organize
into elaborate stratified sheets via formation of intercellular junctions, and have a distinct
apical-basal polarity that is maintained during cell division [1, 2]. In order to achieve correct
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organ size, epithelial tissues need mechanisms that limit their proliferation, and protect tis-
sues from damage caused by defective epithelial cells [3–5]. In Drosophila, defective epithelial
cells that arise due to disruption of apical-basal polarity trigger a cell non-autonomous
response in which either neighboring cells [6] or circulating hemocytes induce apoptosis in
the mutant cells [7]. Epithelial functions such as signaling across the epithelial layer, dynamic
interactions of cells with the underlying basement membrane and extracellular matrix
(ECM) depend on highly organized epithelial architecture that is orchestrated by apical and
basolateral junctional complexes [1, 2, 8]. This highly organized epithelial architecture is
damaged and eventually lost in cancer, where malignant cells lose polarity and connections
to the basement membrane causing cancer cells to become proliferative, motile (by undergo-
ing EMT [epithelial-mesenchymal transition]), and invasive (by degrading ECM) [2, 9, 10].
Thus, the proliferation of cancer cells depends on the influence of cell-cell contacts and the
cell-microenvironment interactions [11–13].

The apical junctional complexes are landmarks for the evolutionarily conserved Crumbs/
Par and the basolateral Scrib polarity modules [1, 5, 14, 15]. The Crumbs (Crb) complex is
formed by the association of Crb with Stardust (Sdt) and PALS1 (protein associated with Lin
seven 1)-associated TJ protein (PATJ), that together play a critical role in establishing the apical
domain [2]. The Par complex consists of three components: Atypical Protein Kinase C (aPKC),
Cell Division Cycle 42 (Cdc42) and Partitioning Defective 6 (Par-6) that act at the apical cortex
to position Bazooka (Baz) at the Adherens Junction (AJs) [9]. The basolateral Scribble complex
comprises of Lethal giant larvae (Lgl) [16], Discs large (Dlg), and Scribble (Scrib) [17, 18] that
are required for the formation of septate junctions, and mutations in Scribble complex compo-
nents cause massive neoplastic overgrowth of mutant tissues in addition to defects in cell polar-
ity and are referred to as “neoplastic tumor suppressor genes”. Further, the basolateral proteins
are required for assembly of other junctional complexes, and are a great model system to study
mechanisms of cell polarity and growth control [19, 20].

In addition to the junctional complexes described above, epithelial cells are connected to
each other via adhesion molecules at the AJs that mediate stable cohesion between cells [21,
22]. These junctional complexes comprise of E-Cadherin (E-Cad), which forms a trans-
dimer on adjacent cells through its extracellular domain and intracellularly binds with β-cate-
nin and α-catenin in a junctional complex [21–23]. During normal development, the inter-
cellular junctions provide the structural foundation for maintaining tissue architecture, and
AJs are actively reorganized to allow tissue remodeling [5, 21]. Further, junctional dynamics
plays a key role in how a cell responds to stress, or other signals [13, 24, 25]. Thus, the organi-
zation and maintenance of junctional complexes in epithelial cells reflects a homeostatic
state, which is disrupted when junctions are damaged in conditions like cancer. Therefore, it
is possible that mutations in polarity genes change cell adhesion to promote aggressive tumor
growth.

We tested this hypothesis in Drosophila scribmutant cells that are known to have different
growth potential depending on the genotype of the mutant or neighboring cells. The vast range
of phenotypes includes the slow growing scribmutant cells to tumors formed by oncogenic
cooperation between scrib- and RasV12 [26–30]. These phenotypic variations lead us to investi-
gate the effects of loss of scrib alone, and genetic combinations that provide a growth advantage
to scribmutant cells on proliferation, differentiation, survival, cell adhesion and invasiveness.
We show that the increased proliferation and survival associated with scrib- cells in different
genetic combinations co-relate with changes in cell adhesion. We further show that invasive
potential of scrib- cell can be uncoupled from the invasive tumor phenotype, which is exhibited
only in the presence of certain oncogenic insults like oncogenic RasV12.

Changes in Cell Adhesion Affect Tumor Growth
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Materials and Methods

Fly stocks and genetics
The Drosophila stocks used in this study are previously published and described in FlyBase.
GFP positive MARCM clones [31] were generated in the eye-antennal imaginal discs by cross-
ing eyFLP; AyGAL4 UAS GFP; FRT82B TubGAL80 flies with (i) FRT82B, (ii) FRT82B scribj7b3

or thlacZ, FRT82B scrib2, (iii) FRT82B wtsX1, (iv) UAS p35; FRT82B scrib2, (v) UAS RasV12;
FRT82B, (vi) UAS RasV12 FRT82B scrib2, and (vii) thlacZ FRT82B scrib2 wtsX1 flies.

GFP negative scrib loss of function clones inMinute background [32] were generated by
crossing eyFLP;; FRT82B M(95A) UbiGFP [33] flies with thlacZ FRT82B scrib2 or FRT82B
scribj7b3 flies. All experiments, except for generation of FRT82BwtsX1 MARCM clones (which
was performed at room temperature), were performed at 25°C. Discs from wandering third
instar larvae were used for all phenotypic analyses.

Immunohistochemistry
Antibody staining was performed by using the following primary antibodies: mouse anti PH3
(1:200, Cell Signaling Technology), mouse anti DIAP1 (1:200, from Dr. Bruce Hay), rat anti
ELAV (1:300, DSHB), mouse anti Armadillo (1:100, DSHB), mouse anti Fas2 (1:100, DSHB),
rat anti E-Cad (1:100, DSHB), and mouse anti MMP1 (1:200, DSHB). The secondary antibodies
used to detect primary antibodies were: Donkey Cy3 conjugated anti mouse IgG (1:200, Jackson
ImmunoResearch) or Donkey Cy5 conjugated anti rat IgG (1:200, Jackson ImmunoResearch).

Immunohistochemistry was performed using standard protocol (Kango-Singh et al., 2002).
Briefly, third instar larvae of appropriate genotypes were dissected in 1X PBS, fixed in 4% para-
formaldehyde (PFA). The discs were incubated with appropriate primary (overnight incuba-
tion at 4°C), and secondary (2 hours at room temperature) antibodies. 1X PBST was used to
permeabilize the tissue, and wash off unbound antibodies following each incubation. The pro-
cessed tissue was mounted in Vectashield (Vector labs). A minimum of 15 discs were analyzed
for each staining and genotype.

Confocal imaging
Images (at 40X magnification) were captured using Olympus Fluoview 1000 Laser Scanning
Confocal Microscope. The images were edited using Phostoshop (Version CS5, and CC).

Results

scrib- cells proliferate ectopically in the presence of growth promoting
mutations
It is well-documented that scrib- cells in wild-type background undergo apoptosis that masks
their neoplastic potential [30]. We generated somatic scrib- clones in different genetic back-
grounds where their elimination was compromised by (A) reducing fitness of neighboring cells
by making themMinute heterozygous [32] [referred to as scrib-/M throughout the text], (B)
blocking apoptosis due to overexpression of the pan-caspase inhibitor p35 [34] [referred to as
p35+scrib- throughout the text], (C) by introducing loss of function mutation in warts (wts-)
[35]–a key player that mediates growth functions of scrib through the Hippo pathway [29]
[referred to as scrib-,wts- throughout the text], or (D) by activation of oncogenic Ras (UAS
RasV12) [36] in scrib- clones [referred to as RasV12,scrib- throughout the text]. We specifically
tested scrib-,wts- combination as recently we and others have shown that AJC components like
Crb, aPKC, Scrib and Lgl interact with the Hippo pathway to regulate growth [37–44].
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We first tested the effect of these genetic combinations on cell proliferation using an anti-
body against Phospho-histone H3 (PH3), which marks mitotic figures [45–47] (Fig 1). We
compared PH3 profiles in eye imaginal discs containing MARCM clones that were either wild
type (Fig 1A), or scrib- (Fig 1B) with the other genetic combinations (Fig 1C–1F). Consistent
with the well-documented cell cycle regulation in wild-type third instar eye imaginal discs,
PH3 positive cells are seen mainly anterior to the morphogenetic furrow (MF), and in the sec-
ond mitotic wave (SMW) posterior to the MF (Fig 1A) [47, 48]. This pattern remains largely
unaffected in scrib- cells in wild-type background (Fig 1B). In contrast, scrib-/M (Fig 1C), p35+-
scrib- (Fig 1D), scrib-,wts- (Fig 1E), and RasV12,scrib- (Fig 1F) show ectopic PH3 expression.
Interestingly, of these genetic combinations only scrib-,wts- and RasV12,scrib- clones show mas-
sive overgrowth causing a disruption in the eye imaginal disc morphology which become
enlarged in case of scrib-,wts-, and show multilayered neoplastic tumor phenotypes in RasV12,
scrib- double mutants. Although ectopic proliferation is seen in wtsx1 clones (data not shown)

Fig 1. Analysis of cell proliferation in scrib- cells with additional mutations that provide growth advantage.M-phase
cells were observed in third instar eye imaginal discs by using anti PH3 antibody (red, and greyscale in A-F) to mark the
proliferating cells. The panels show disc of the genotypes (A) eyFLP; AyGAL4 UAS GFP; FRT82B TubGal80/FRT82B [Wild-
type], (B) eyFLP; AyGAL4 UAS GFP; FRT82B TubGal80/FRT82B scribj7b3 [scrib-] (C) eyFLP;+; FRT82B (M95A) ubiGFP/
FRT82B scribj7b3 [scrib-/M], (D) eyFLP; AyGAL4 UAS GFP/ UASP35; FRT82B TubGal80/FRT82B scrib2 [p35+scrib-] (E)
eyFLP; AyGAL4 UAS GFP; FRT82B TubGal80/FRT82B wtsX1,scrib2 [scrib-,wts-], and (F) eyFLP; AyGAL4 UAS GFP;
FRT82B TubGal80/UAS RasV12, FRT82B scrib2 [RasV12,scrib-]. Clones in A, B, D, E, and F are positively marked by GFP
(generated by MARCM technique), and clones in C are marked by lack of GFP (generated by FLP/FRT technique). The
yellow arrows (panels A-D) mark the morphogenetic furrow (MF), while the yellow brackets (panels A-D) mark the extent of
the second mitotic wave (SMW). Yellow boxes in panels E and F mark ectopic PH3 within clones. All images are shown at
identical magnification (40X), and orientated with posterior to the left, and anterior to the right. Genotypes, magnification,
orientation and arrangement of panels mentioned in Fig 1 are consistent in Figs 2–4 and 6.

doi:10.1371/journal.pone.0158081.g001
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[49], and in RasV12 overexpressing clones (data not shown) [33]. These data suggest that addi-
tional mutations in scribmutant cells modify their growth profile. However, the effect of these
additional mutations is variable as reflected by the difference in degree of proliferation and
growth. The qualitative difference in clone growth and overall eye disc size led us to ask if dif-
ferentiation, survival, adhesion and invasion potential are altered in scrib- cells in different
genetic backgrounds.

Increased survival of scrib- cells negatively regulates differentiation
High grade tumors often have poorly differentiated cells, and altered morphology [50]. In con-
trast cells with poor growth potential, for example, mutations in ribosomal proteins (theMin-
utemutants) or signaling pathways, for example, loss of Drosophila S6 kinase (dS6k-), yorkie
(yki-) or Target of Rapamycin (dTOR-) show poor growth but no effect on differentiation [32,
51–54]. Therefore, we checked if scrib- cells, or the different genetic backgrounds that modify
the growth potential of scribmutant cells show any effects on cell differentiation. We tested for
expression of Embryonic Lethal Abnormal Vision (ELAV), which is expressed in the differenti-
ated photoreceptor neurons as a marker in the third instar eye discs (Fig 2) [55]. Compared to
wild-type (Fig 2A), we did not observe any noticeable differentiation defects in scrib- cells

Fig 2. Effect on differentiation in scrib loss of function clones, and other genetic backgrounds. Panels show eye
imaginal discs containing clones of the following genotypes (A) Wild-type (GFP-positive), (B) scrib- (GFP-positive), (C)
scrib-/M (GFP-negative), (D) p35+scrib- (GFP-positive), (E) scrib-,wts- (GFP-positive), and (F) RasV12,scrib- (GFP-positive)
stained with antibody to the pan-neural marker ELAV (red, and greyscale in A-F) to assess changes in differentiation,
morphogenetic furrow progression, and photoreceptor organization. Note that for all genotypes, only those clones posterior
to the morphogenetic furrow are relevant for analysis. Yellow arrows in panels B-F highlight areas/mutant clones where
changes in ELAV expression were assessed.

doi:10.1371/journal.pone.0158081.g002
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undergoing apoptosis (Fig 2B). However, we saw varying degree of effect on MF progression or
differentiation of photoreceptor neurons when the growth potential of scribmutant cells is
modified in other genetic combinations (Fig 2C–2F). In scrib-/M discs photoreceptor neurons
differentiate both in the scribmutant and the neighboringM/+ cells, however, the spacing of
the ommatidial clusters and the progression of the MF are affected (Fig 2C) suggesting misre-
gulation of furrow progression. The scrib-,wts- double mutants show suppression of MF pro-
gression in the ventral eye margin and increased spacing between ommatidial clusters (Fig 2E),
a phenotype that resembles wtsmutant cells (S1A Fig). These phenotypes are typical of loss of
Hippo pathway genes, and consistent with our earlier finding that scrib acts through wts to reg-
ulate its growth functions [29]. In comparison, p35+scrib- mutant cells (Fig 2D) and the
RasV12,scrib- mutant cells (Fig 2F) show a complete suppression of differentiation. The RasV12

control clones (S1B Fig) show defects in photoreceptor organization, and regulation of furrow
progression. One reason why suppression of cell death (p35) or overactivation of oncogenic
Ras (RasV12) cause suppression of differentiation in scribmutant cells is that the signals con-
trolling MF progression are inhibited, or alternatively changes in cell survival or cell adhesion
or combinations thereof cause tumor like growth by suppressing differentiation. Therefore, we
tested if these factors contribute to increased growth and tumorigenesis in scribmutant cells
that have increased proliferation ability.

We assessed survival potential of clones by testing expression of Drosophila inhibitor of apo-
ptosis-1 protein (DIAP1), which is known to protect cells from apoptosis in several contexts
including developmentally regulated apoptosis, or stress induced apoptotic response [56–62].
Compared to the ubiquitous expression of DIAP1 seen in wild-type (S2A Fig), DIAP1 levels
are down regulated in scrib- cells (S2B Fig), and p35+scrib- (S2D Fig) clones, but induced in
scrib-/M clones (S2C Fig). Consistent with previous reports, DIAP1 levels are robustly induced
in scrib-,wts- (S2E Fig), and RasV12,scrib- (S2F Fig) clones [28, 29]. Of note, forced suppression
of apoptosis by expression of p35 in scrib- cells caused inhibition of differentiation despite sup-
pression of DIAP1 suggesting that a net increase in survival of scribmutant cells promotes
growth and inhibits differentiation. Overall, these data suggest that upregulation of survival sig-
naling in scribmutant cells is correlates with increased growth and negative regulation of dif-
ferentiation. Next, we tested if scribmutant cells also induce changes in cell adhesion that
enhance the overall tumorigenic potential of scribmutants in the genetic backgrounds under
study, or if increased survival of cells from loss of wts or Ras overexpression account for the
growth phenotypes.

Is loss of differentiation linked to changes in cell adhesion?
Epithelial cells establish specific adhesion complexes at the lateral and apical cell surface that
appear to act as specialized sites of signal transmission [63]. Fasciclin 2 (Fas2), the Drosophila
Neural Cell Adhesion Molecule (NCAM) ortholog, is a member of the immunoglobulin super-
family that functions in lateral adhesion, growth cone guidance, and in reintegrating misori-
ented cells into epithelial monolayers [64–66]. In wild-type eye discs, Fas2 is strongly
upregulated just posterior to the morphogenetic furrow, and is expressed basolaterally in the
differentiated ommatidial clusters (Fig 3A). Interestingly, Fas2 expression is lost in scrib- cells
in wild type background (Fig 3B), and significantly reduced in scrib-/M (Fig 3C), p35+scrib-

(Fig 3D), and RasV12,scrib- (Fig 3F) clones respectively. However, in scrib-,wts- (Fig 3E), wts-

(S3A Fig) or UAS RasV12 (S3B Fig) clones, Fas2 expression is disrupted but not downregulated.
Overall, these data suggest that loss of scrib is sufficient to downregulate Fas2 likely due to dis-
ruption of apical basal polarity and this effect is exaggerated in the different genetic back-
grounds that modify the growth potential of scribmutant cells. The loss of lateral adhesion
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generally makes cells susceptible to elimination from epithelial monolayers [64], however, the
different growth potential of scribmutant cells that co-express p35 or RasV12 suggests that
other factors besides suppression of lateral adhesion or differentiation may contribute to the
observed effects. Therefore, we tested if the apical adherence junctions are affected in scrib
mutant cells in different genetic backgrounds.

E-Cad localizes to the AJs in epithelial cells, and is often downregulated or mislocalized in
cancers [67–71]. In wild-type eye discs, E-Cad was localized normally at the AJs (Fig 4A).
Interestingly, in scrib- cells in wild-type background no obvious defect in E-Cad expression is
seen (Fig 4B). Similarly, no appreciable change in E-Cad levels or localization (see Z-projec-
tions for all genotypes) is seen in scrib-/M (Fig 4C), p35+scrib- (Fig 4D), scrib-,wts- (Fig 4E),
wts- (S4A Fig), or UAS RasV12 (S4B Fig) clones that show hyperplastic overgrowth. In contrast,
in the RasV12,scrib- clones that show robust tumorigenic potential E-Cad is downregulated (Fig
4F) [30]. Overall, these data show that in all combinations except RasV12,scrib-, E-Cad can
localize correctly suggesting that although adhesion is reduced in the different genetic back-
grounds that modify the growth potential of scribmutant cells, the apical AJs may not be
severely affected.

To further confirm our findings, we checked if levels and localization of another AJ protein-
Armadillo (Arm) to test if AJs are affected in scrib- or RasV12,scrib- mutant cells (Fig 5). In

Fig 3. Alterations in Fas2 expression due to loss of scrib. Eye imaginal discs stained with antibody against Drosophila
Fas2 (red, and greyscale in A-F) are shown in somatic clones of the genotypes (A) Wild-type (B) scrib- (C) scrib-/M, (D)
p35+scrib-, (E) scrib-,wts-, and (F) RasV12,scrib-. The effect on Fas2 expression, and localization was assayed in clones that
were present posterior to the MF where Fas2 is endogenously expressed. The yellow arrows in panels B-F point to the
clones depicting changes in Fas2 expression.

doi:10.1371/journal.pone.0158081.g003
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epithelial cells, Arm is ubiquitously expressed in the cytoplasm and the apical AJs, and anchors
them to the actin cytoskeleton [23, 72]. Compared to wild-type (Fig 5A), expression of Arm is
mildly disrupted in scrib- clones especially posterior to the MF (Fig 5B). Similarly, in clones
overexpressing RasV12 alone Arm expression appears normal (Fig 5C). In contrast, in RasV12,
scrib- clones, Arm levels are downregulated and mislocalized from the membrane to the cyto-
plasm (Fig 5D). These changes in Arm expression and localization are consistent with our ear-
lier observations with E-Cad, confirming that loss of scrib alone does not significantly impact
apical junctional complexes. In summary, epithelial integrity of scribmutant cells is weakened
due to disruption of the lateral but not apical cell adhesion in genetic backgrounds like scrib-/
M, p35+scrib-, or scrib-,wts- that enhance survival of scrib- cells. However, in RasV12,scrib-

Fig 4. Changes in AJ organization in response to scrib loss of function in epithelial cells. Panels show eye imaginal
discs stained with anti-E Cad antibody (red, and greyscale in A-F). Genotypes analyzed include (A) Wild-type (B) scrib- (C)
scrib-/M, (D) p35+scrib-, (E) scrib-,wts-, and (F) RasV12,scrib- clones. (A-F) Panels show expression of E-Cad staining in
XY plane, clones marked with yellow arrows. In addition, XZ (A, C-F) or YZ (B, marked by cyan line) projections of region
highlighted by yellow lines are shown for each genotype to show E-Cad localization. Yellow arrowheads in XZ or YZ
projections (A-F) show apical E-Cad localization at the AJs, and red asterisk (F) shows lack of E-Cad in RasV12, scrib-

clones.

doi:10.1371/journal.pone.0158081.g004
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clones both apical and translateral adhesion complexes are disrupted suggesting that cell adhe-
sion is severely compromised. Overall, these data suggest that loss of differentiation is tightly
correlated to loss of adhesion in RasV12,scrib- but not in other genetic backgrounds like scrib-/
M, p35+scrib-, or scrib-,wts- that enhance survival of scrib- cells.

In addition to the reversible association of Arm with the AJs, cytoplasmic pools of Arm are
regulated by phosphorylation-based mechanisms by Wingless (Wg) [73], and Jun N-terminal
kinase (JNK) signaling pathway [74–76]. Interestingly, polarity regulators (like PAR-1) posi-
tively regulate Wnt/β-catenin pathway and inhibit the JNK pathway [77]. Thus, it is possible
that downregulation of Arm in RasV12,scrib- clones is linked with increased JNK signaling pre-
viously reported in RasV12,scrib- clones. Further, increased JNK signaling is required for growth
and invasion in RasV12,scrib- clones [30, 44]. Therefore, we tested levels of JNK signaling in all
genetic combinations under study.

JNK activation is not sufficient for Invasive growth of scribmutant cells
Matrix metalloproteinase-1 (MMP1) is a JNK regulated gene that is a well-described marker of
invasion, and is known to be involved in ECM degradation following EMT [78–81]. MMP1
also plays an important role in tissue remodeling and cell migration during development [80,
82]. Loss of scrib is known to induce JNK activity [30], however, do all genetic combinations
under study show a similar induction with JNK activity, and if JNK activation was sufficient to
confer invasive phenotype remains unclear. We therefore tested expression of MMP1 in the
genotypes of our interest (Fig 6). MMP1 is expressed ubiquitously at low levels in wild type
cells (Fig 6A). We observed a strong upregulation of MMP1 in all combinations under study,
however, the pattern of MMP1 induction is variable. MMP1 is strongly induced in large clones
in scrib- (Fig 6B), scrib-/M (Fig 6C), p35+scrib- (Fig 6D), and RasV12,scrib- (Fig 6F); however,
MMP1 is induced in patches in scrib-,wts- (Fig 6E) or wts- (S5A Fig) clones. Interestingly,
MMP1 is not induced in UAS RasV12 control clones (S5B Fig). Taken together, these data

Fig 5. Armadillo expression is disrupted at the AJs during neoplastic growth. Arm expression and localization (red,
and greyscale in A-D) in eye discs containing GFP positive eyFLPMARCM clones of the genotype (A) Wild-type, (B) scrib-,
(C) RasV12, and (D) RasV12,scrib- clones (GFP, green) is shown. The yellow arrows in panels A-D highlight mutant cells in
different genotypes.

doi:10.1371/journal.pone.0158081.g005
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suggest that loss of scrib is sufficient for JNK activation, however, JNK activation by itself does
not correlate with tumorigenic growth. It is also interesting to note that MMP1 activation in all
genetic combinations except RasV12,scrib- does not co-relate with invasion suggesting that inva-
sive potential of scribmutant cells is not just dependent on JNK activation but alteration of cell
survival due to increased Epidermal Growth Factor/ Mitogen-Activated Protein Kinases
(EGFR/MAPK) or Yki activity in case of RasV12 or loss of wts respectively.

Discussion
Studies in Drosophila imaginal discs have provided important insights about effects of loss of
apical basal polarity on cell proliferation, cell death and cooperative interactions that can lead to
tumor growth and progression [1, 19, 20, 26, 27, 83]. In this study, we investigated if a central
mechanism that regulates cell adhesion governs the growth and invasive potential of scrib
mutant cells; and if this mechanism promotes tumorigenic growth via cooperative interactions.
Over the last decade, a number of strategies have been used to study effects of loss of polarity by
loss of function mutations in scrib, for example, loss of scrib inMinute background [28], or com-
bining loss of scrib with UASp35 which suppresses cell death [26, 84] or inducing scribmutant
clones in eigermutant background [28, 84]. All of these manipulations lead to formation of scrib
mutant cells that are no longer eliminated, and the range of phenotypes observed by loss of scrib
in combination with these mutations is comparable but not identical, suggesting that these

Fig 6. Effect of loss of scrib on JNK/MMP1 signaling. Panels show eye imaginal discs stained for MMP1 (red, greyscale
in A-F) from the following genotypes: (A) Wild-type, (B) scrib-, (C) scrib-/M, (D) p35+scrib-, (E) scrib-,wts-, and (F) RasV12,
scrib-. Clones in A-B and D-F are GFP positive, and clones in C are GFP-negative, and are marked by yellow arrows.

doi:10.1371/journal.pone.0158081.g006
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genetic modifiers of scrib induce distinct effects on growth and tumorigenesis. To address the
shared and distinct effects of loss of scrib in different genetic backgrounds, we compared effects
on proliferation, differentiation, cell survival and cell adhesion. Our studies show that reduced
cell survival, activation of the JNK pathway and reduced cell adhesion are central to loss of scrib,
however, for scrib cells to induce aggressive growth cooperative interactions that derail signaling
pathways play an essential role in the mechanisms leading to tumorigenesis (Fig 7).

We initially compared differences in proliferation and differentiation, and their correlation
to cell survival. In Drosophila eye imaginal discs, cell division is very tightly regulated in the dif-
ferentiating cells posterior to the MF, where cells undergo a G1 arrest as they enter the MF,
begin differentiating into the photoreceptor neurons to form the precluster (Fig 1). The cells
then go through one round of cell division in the second mitotic wave and arrest in the G1
phase, and all the remaining cells that comprise the ommatidial clusters are differentiated [47].
We found that in scribmutant clones generated in wild-type background, the cell division pro-
file is largely unperturbed but in all other combinations mutant cells undergo ectopic prolifera-
tion and show defects in differentiation with respect to progression of the morphogenetic
furrow or differentiation of photoreceptor neurons. Increased proliferation and loss of differ-
entiation is linked to tumor progression, so we next tested if the genetic combinations that pro-
mote scrib growth affected differentiation (Fig 2). We found mild defects in morphogenetic
furrow progression and spacing of ommatidial clusters in scrib/M cells, and scrib- wts- clones.
We found that differentiation is suppressed in two genotypes (p35+scrib-, and RasV12,scrib-)
(Fig 2) where increased survival either by upregulation of DIAP1 or suppression of apoptosis
by expression of p35 promotes growth. However, p35+scrib- clones do not grow into invasive
tumors, suggesting that although loss of differentiation is linked to tumor progression, cells

Fig 7. Models depicting changes in scribmutant cells in different genetic backgrounds. The image
shows changes in signaling pathways, and cell adhesion in scribmutant cells, and changes to these signals
in scrib cells combined with different growth modifiers.

doi:10.1371/journal.pone.0158081.g007
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require a potent growth-promoting signal to form aggressive tumors. Furthermore, the differ-
ences in phenotype with respect to regulation of furrow progression and differentiation of pho-
toreceptor neurons also shows that these genetic combinations do not share a single molecular
mechanism to enhance growth of scrib- cells.

Previous studies have shown that regulation of apical basal polarity and maintenance of
junctional integrity plays a critical role in cellular functions and homeostasis [8, 25]. We tested
if the genetic combinations that modify scrib growth and survival show any defects with respect
to the lateral and apical adhesions formed by the homophilic binding of Fas2, E-Cad or Arm
(Fig 7). Interestingly, Fas2 was misregulated in all genotypes, suggesting that loss of scrib
resulted in disruption of photoreceptor differentiation and also defects in intercellular adhesion
however, the severity of the phenotype is dependent on the modifying mutations. Furthermore,
studies in other model systems have established an interesting reciprocal relationship between
the regulation of NCAM (Fas2) and E-Cad in the initiation and maintenance of EMT [85].
Reduced levels of NCAM expression is shown to promote tumor dissemination in vivo [85].
NCAMs promote signaling changes in membrane microdomains, and promote interactions at
the focal adhesion and AJs [9, 64]. Therefore, we extended our analysis to the stability of AJs
(E-Cad, Arm) in the genetic combinations that promote growth of scribmutant cells.

Consistent with previous data, where knockdown of scrib in wing discs caused no polarity
defect [86], we found that loss of scrib in wild type or inM background did not result in loss of
apical AJ proteins like E-Cad or Arm, suggesting that junctional organization is not immedi-
ately lost in these genetic combinations. Similarly, loss of scrib in combination with wts did not
cause polarity defects. Comparison of AJ markers like E-Cad and Arm in p35+scrib-, and
RasV12,scrib- sheds some light on the changes that may be critical for induction of invasive
tumors. We found that both genotypes show loss of differentiation but adhesion is lost more
severely in RasV12,scrib- mutant cells suggesting that apical basal polarity and cell adhesion are
lost only in this genotype.

It is interesting to note that several key changes occur in p35+scrib- cells, for example,
defects in differentiation, loss of Fas2 and activation of MMP1, but these clones fail to induce
robustly growing tumors. One reason for this may be that changes in cell adhesion in a cell
where apoptotic signals are induced by activity of caspases, differ fundamentally from the
changes that occur due to oncogenic cooperation. Normally, apoptotic cells show several key
changes like condensation of the cytoplasm, breakdown of nuclear integrity, cell rounding,
membrane blebbing, and in epithelial cells the loss of cell polarity and cell junctions [87, 88].
These changes are caused by cleavage of key proteins by caspases [89]. A key early change in
the apoptotic cell is the loss of contact and extrusion of these cells from the epithelium by
neighboring cells. Since the integrity of the epithelial cells depends on the cadherin-catenin
mediated establishment of the apical AJs, it is not surprising that several of these junctional
proteins are targets of caspase activity during apoptosis. For example, the Drosophila Caspase 3
Drice targets Armadillo for cleavage, which is responsible for the loss of DE-Cad from cell junc-
tions and thus might contribute to the degeneration of epithelial integrity during apoptosis
[90]. Our data with p35+scrib- shows that expression of the caspase inhibitor prevents activa-
tion of caspases, thereby, causing no obvious change in the expression of E-Cad or Arm, which
may be important for cells to change their signaling behavior and show robust tumorigenic
growth. Taken together, our data show that loss of apical basal polarity and cell adhesion is crit-
ical for progression of scribmutant cells to tumors. In addition, increased signaling from
growth promoting pathways (Yki, TGF-β [Transforming growth factor beta], MAPK etc) syn-
ergistically contribute to tumor growth and progression.

We found that MMP1- a JNK regulated gene and marker for tumor invasion was induced
in all genetic combinations under study (Figs 6 and 7). This was an interesting finding as scrib/
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M or p35+scrib- or scrib- wts- clones show induction of MMP1, and an increase in clone size
but do not show signature changes of aggressive neoplastic tumors. Thus, JNK activation is
clearly not sufficient but required for the changes that confer tumorigenic potential to scrib
mutant cells. It is thought that in RasV12,scrib- clones, JNK undergoes a paradoxical switch
from pro-apoptotic to pro-proliferation signal by modifying Yki activity via inactivation of
Wts by F-actin mediated activation of Ajuba [91]. However, direct inactivation of wts in scrib
mutant cells shows a phenotype that is qualitatively different where clones show hyperplastic
growth, and there is no loss of cell adhesion. Thus, oncogenic Ras specifically contributes to
tumorigenesis by activation of MAPK and Yki that synergistically cause tumor growth and pro-
gression. Alternatively, AJs are disrupted only when certain clonal mass is achieved in scrib-

cells due to additional mutations such as RasV12. In summary, our studies show that some
changes are caused by loss of scrib and are therefore shared in all genotypes (e.g., effect on
Fas2, MMP1) but other defects are contributed by the modifying mutations, which synergisti-
cally interact and modify the phenotype. In all genetic combinations where one or more of
these critical changes do not occur show improved survival of scribmutant cells, but not highly
proliferative and invasive tumors. Overall our data show that loss of apical basal polarity and
cell adhesion are critical for progression of scribmutant cells to tumors. In addition, increased
signaling from growth promoting pathways (Yki, TGFβ, MAPK, etc.) may synergistically con-
tribute to tumor growth and progression.

Supporting Information
S1 Fig. Differentiation defects in wts- and RasV12 clones. Panels show ELAV (red, greyscale)
expression in somatic clones (GFP, green) (A) wts- loss of function, or (B) overexpression of
RasV12 in eye discs. ELAV staining within the clones is highlighted in yellow arrows.
(TIF)

S2 Fig. Survival potential of scrib- cells different genetic backgrounds. Panels show DIAP1
expression (Red, greyscale) in eye discs containing clones (GFP, green) of the following geno-
types (A) wild-type, (B) scrib-, (C) scrib-/M, (D) p35+scrib-, (E) scrib-,wts- and (F) RasV12,scrib-

clones. Note that scrib-/M clones are marked by loss of GFP. DIAP1 expression in clones of the
indicated genotypes is marked with yellow arrows.
(TIF)

S3 Fig. Effect on Fas2 localization during hyperplastic growth. Eye imaginal discs showing
Fas 2 expression (red, greyscale) in clones (GFP, green) of the genotype (A) wts-, and (B)
RasV12 are depicted. Note that clones located posterior to morphogenetic furrow (yellow
arrows) are relevant for comparing changes in Fas2 expression.
(TIF)

S4 Fig. E-Cad expression, and localization in wts-, and RasV12 clones. E-Cad (red, greyscale)
expression and localization in (A) wts-, and (B) RasV12 clones (GFP, green) is shown. Panels
show cross sections (of regions corresponding to yellow lines) to highlight E-Cad localization,
and expression (yellow arrowheads). Cyan lines in A show the orientation of the YZ projection.
Yellow arrows highlight E-Cad levels in appropriate clones.
(TIF)

S5 Fig. MMP1 expression in wts-, and RasV12 clones. Panels show eye discs containing eyFLP
MARCM clones (marked by yellow arrows) (GFP, green) of the genotype (A) wts-, and (B)
RasV12 stained for MMP1 (red, greyscale).
(TIF)
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