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Abstract
We compared the repeatability, reproducibility (intra- and inter-measurer similarity), separa-

tive power and subjectivity (measurer effect on results) of four morphometric methods fre-

quently used in ichthyological research, the “traditional” caliper-based (TRA) and truss-

network (TRU) distance methods and two geometric methods that compare landmark coor-

dinates on the body (GMB) and scales (GMS). In each case, measurements were per-

formed three times by three measurers on the same specimen of three common cyprinid

species (roach Rutilus rutilus (Linnaeus, 1758), bleak Alburnus alburnus (Linnaeus, 1758)
and Prussian carp Carassius gibelio (Bloch, 1782)) collected from three closely-situated

sites in the Lake Balaton catchment (Hungary) in 2014. TRA measurements were made on

conserved specimens using a digital caliper, while TRU, GMB and GMS measurements

were undertaken on digital images of the bodies and scales. In most cases, intra-measurer

repeatability was similar. While all four methods were able to differentiate the source popu-

lations, significant differences were observed in their repeatability, reproducibility and sub-

jectivity. GMB displayed highest overall repeatability and reproducibility and was least

burdened by measurer effect. While GMS showed similar repeatability to GMB when fish

scales had a characteristic shape, it showed significantly lower reproducability (compared

with its repeatability) for each species than the other methods. TRU showed similar repeat-

ability as the GMS. TRA was the least applicable method as measurements were obtained

from the fish itself, resulting in poor repeatability and reproducibility. Although all four meth-

ods showed some degree of subjectivity, TRA was the only method where population-level

detachment was entirely overwritten by measurer effect. Based on these results, we recom-

mend a) avoidance of aggregating different measurer’s datasets when using TRA and GMS

methods; and b) use of image-based methods for morphometric surveys. Automation of the

morphometric workflow would also reduce any measurer effect and eliminate measurement

and data-input errors.
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Introduction
Morphological characteristics have been of fundamental importance in biology since the begin-
nings of the discipline. Indeed, the taxonomic classification of organisms [1] and the first steps
in understanding the evolution of life [2] both came about through morphological descriptions
of different forms. Morphologic investigations compare and analyse “meristic” and/or continu-
ous “measureable”morphometric variables [3]. In the latter case, the morphometric character-
istics selected are translated into numeric values so they can be analysed using appropriate
statistical methods [4,5]. Morphologic investigations can be applied at various levels. Until
recently, for example, morphological methods were generally used to differentiate species [6, 7,
8] or to describe intraspecific differences, such as sexual dimorphism [9,10] and/or population
level detachments [11, 12]. Moreover, morphometric surveys can be applied to the entire body
[13, 14] or to individual body parts, e.g. a fish scale, vertebra or otolith [15,16, 17, 18], depend-
ing on the goal of the survey. Over the last century, however, new morphometric methods have
been developed. The oldest of these, the “traditional” distance-based method (hereafter TRA),
measures the size (e.g. minimum body height, eye diameter, head length) and/or distance
between specific body parts (e.g. prepelvic distance) of an individual [19] (e.g. see Fig 1A) and
analyses these data further. The instruments used to measure distance will vary (e.g. tape mea-
sure or calipers) and the variables selected for measurement will vary depending on the size
and the shape of the individual surveyed.

The TRA method was used exclusively until the introduction of the box-truss network
(hereafter TRU) method at the begining of the 1980s [20]. While the TRU method also uses
distance data, it relies on specifically identifiable, homologous points in order to eliminate
many of the uncertainties inherent in the TRA method. For example, in ichthyological studies,
individual variation in body shape may result in a shift of maximum and minimum body
height (Fig 1A) along the fish’s body. The distance between the base of the dorsal and anal fin
(see: Fig 1C) can be more precisely definied, however, as the distance is homologous in each
individual measured. For more datails see [21].

A new family of morphometric methodolgies was developed at the end of the 20th century
[22]. These ‘landmark-based geometric methods’ use coordinates of homologous points taken
from digital images of the study objects and the data transformations and standardisations nec-
essary require a strong computational background. As the use of personal computers has
become wide-spread, however, such methods have quickly become the most widely used [23],
though distance-based methods are also still applied [24, 25].

Despite the limited information available on the suitability and/or sensitivity of the different
methods available, it is a generally accepted ‘fact’ that geometric methods display higher sepa-
rative power than distance-based methods [26, 27]. Moreover, geometric methods are also gen-
erally considered less destructive, faster and cheaper than TRA methods [28, 29, 30]. While
there have been some methodological studies assessing the quality of data and results obtained
using these methods [31, 32, 33], very few have compared and quantified the applicability of
the different methods now used in ichthyological studies (see: [34, 35]); and those that have
were usually been unable to provide any statistical confirmation. It is a generally accepted ten-
ant of science that unrepeatable or unreproducible measurements have no validity [36]; yet
there is still very little information available regarding the repeatability (i.e. closeness of agree-
ment between independent results obtained on identical subjects using the same method under
the same conditions) or reproducibility (i.e. closeness of agreement between independent
results obtained using the same method on identical subjects but under different conditions
[37, 38]) of the different morphometric methods used today in ichthyology. Moreover, numer-
ous studies compare or combine the datasets of different measurers [35]; meaning that, in most
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cases, the results will be more or less biased by a ‘measurer effect’, despite the use of well-
defined protocols [39, 40, 41]. As this phenomenon is generally well-recognised, it is frequently
advised that the data of just one measurer is used, especially in the case of population-level
studies [42, 43, 44, 45]. Less well-known, however, is how measurer variability affects the
results of different morphometric methods and how this can change based on a species’ physi-
cal characteristics.

In this study, our aim is to survey the applicability of four different morphometric methods
based on five aspects: 1) repeatability and 2) reproducibility of measurement, 3) separative
power, 4) degree of measurer effect and 5) how such features change depending on the physical
characteristics of the different species analysed.

Fig 1. Morphometric landmarks and distances recorded by the three measurers. A: Distances measured when using the “traditional” (TRA)
method (blue lines): 1—height of head, 2—preorbital distance, 3—postorbital distance, 4—head length, 5—prepectoral distance, 6—length of
pectoral fin, 7—prepelvic distance, 8—length of pelvic fin, 9—predorsal distance, 10—length of dorsal fin, 11—preanal distance, 12—length of anal
fin, 13—length of caudal peduncle, 14—minimum body depth, 15—maximum body depth, SL—standard length. The oval and arrow indicate the
scale sampling area.B: codes for the seven landmarks recorded on scales (orange): 1—left cranial edge, 2—cranial end, 3—right cranial edge, 4—
left caudal edge, 5—focus, 6—right caudal edge, 7—caudal peak.C: codes for the 11 landmarks recorded on the body (red): 1—tip of snout, 2 –

occiput, 3—base of dorsal fin, 4—upper base of caudal fin, 5—lower base of caudal fin, 6—base of anal fin, 7—base of pelvic fin, 8—base of pectoral
fin, 9—lower part of head, 10—posterior point of opercule, 11—middle point of eye. Fifteen between-landmark distances were used for truss-network
(TRU) analysis, indicated by green letters and lines. Color codes corresponds with Figs 2 and 3. (For the raw datasets see S1–S4 Tables).

doi:10.1371/journal.pone.0157890.g001
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Material and Methods

Ethics statement
This study was undertaken following all relevant national and international guidelines pertain-
ing to the care and welfare of fish. Fish collection was authorised by the Ministry of Rural
Development (Permit no.: EHVF/188-1/2014). All procedures used in this study were
approved by the Committee on the Ethics of Animal Experiments of the Hungarian Academy
of Sciences’ Centre for Ecological Research (Permit no.: VE-I-001/01890-3/2013). During sam-
pling, every effort was made to minimise the suffering of fish and all fish were anaesthetised
with a lethal dose of clove oil prior to analysis. No endangered species (according to the IUCN
Red List of Threatened Species v. 2015–4 [www.iucnredlist.org]) were caught during this study.

Sample collection and data management
In this study we applied two distance based morphometric methods (TRA, TRU) and two geo-
metric methods using body (GMB) and scale (GMS) landmarks to three common and wide-
spread cyprinid fish species. Thirty specimens each of roach Rutilus rutilus (Linnaeus, 1758),
bleak Alburnus alburnus (Linnaeus, 1758) and Prussian (gibel) carp Carassius gibelio (Bloch,
1782) were collected by electrofishing from three sampling sites (Site1: N46.63474 E17.17433,
Site2: N46.79983 E17.38822, Site3: N46.75362 E17.56720) in the Lake Balaton catchment area
(Hungary) in 2014. The sampling sites were situated relatively close to each other, with a
straight-line distance between sites 1 and 2 of 24 km, 33 km between sites 1 and 3, and 15 km
between sites 2 and 3. All fish were euthenised with a lethal dose of clove oil before fixing in 4%
formaldehyde [46], whereupon the samples were moved to the laboratory and tagged with a
unique identification code for further analysis. After tagging, each fish was placed flat on a
table surface and the left side was photographed from a perpendicular angle using a tripod-
mounted Nikon D50 digital camera angle for GMB and TRU analysis. A single scale was then
removed from the area anterior to the dorsal fin of each specimen for GMS analysis (see. Fig
1). All scales were placed between two glass slides and scanned with a Hewlet Packard ScanJet
5300C XPA scanner at 2400 dpi.

Eleven easily defined landmarks were recorded on body and scale images for GMB, and
seven for GMS (Fig 1A and 1B), using tpsUtil and tpsDig2 digital imaging software, both of
which were specifically developed for digitising landmarks and outlines for geometric morpho-
metric analysis (for more details see: [47, 48]). Sixteen inter-landmark distances were recorded
on the digital images for TRU analysis, the distances being measured using freeware imageJ
software (for more details see: [49]). For TRA analysis, 16 commonly-used taxonomic mea-
surements [50, 51, 35] were taken from the left side of each individual (i.e. not from a photo-
graphic image) using a digital caliper, all data being recorded to the nearest 0.01 mm. In total,
26,730 measurements (three species x three populations x 30 individuals x three measurers x
three repeats x 11 variables) were undertaken during GMB analysis, 17,010 measurements dur-
ing GMS analysis (three species x three populations x 30 individuals x three measurers x three
repeats x seven variables), and 38,880 measurements each during TRU and TRA analysis
(three species x three populations x 30 individuals x three measurers x three repeats x 16 vari-
ables). For definitions of the measured characteristics, and for the most important features of
the methods tested and compared in this study see Table 1.

All measurements were undertaken by the same three measurers (M1, M2, M3), the whole
sample set being repeated three times. Before measurement started, the three measurers dis-
cussed the actual methods of measurement (TRA, TRU) and image marking (GMB, GMS)
prior to the survey in order to anticipate any discrepancies originating from different
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conventions and/or personal methods (see: [52]). All three measurers were right handed,
thereby preventing bias in the results from left or right-handedness (see: [53]). During TRA
measurement, the measurers paid special attention to avoid discrepencies from individual fish
degradation. Since all measurements were made within a relatively short period (two months)
after sample collection, the chances of preservative-caused morphometric differences were con-
sidered negligible [46]. All specimens measured have been deposited within the institution’s
fish collection and all fish and images therefrom are accessible from the corresponding author.

To eliminate any size-effect in the TRA and TRU datasets [54], we used the allometric for-
mula of Elliott et al. [55], i.e. Madj = M (Ls—L0)

b where M is the original measurement, Madj is
the size adjusted measurement, Lo is the standard length (SL) of the fish, and Ls is the overall
mean SL for all fish from all samples in each analysis. The standardised data were rechecked by
correlating against the original SL values. For GMB and GMS, a full Procrustes fit was under-
taken on the landmark data, followed by multivariate regression analysis on the logarithm of
Centroid Size (logCS) [56]. Statistical analysis was performed on the residuals of the regression
analysis in order to eliminate any size effect.

For testing repeatability and reproducibility there is no generally accepted protocol [38]. In
some cases each measured morphometric variable is tested independently on some selected
specimens [57, 58, 59], or the repeteadly recorded entire datasets of the whole analysed stocks
can be compared [60, 61]. In our case, we chose to follow the latter method, with repeatability
calculated as ‘intra-measurer similarity of three independently recorded datasets obtained from
the same population by the same method’. Intra-measurer similarity was computed as follows:
each of the three datasets derived from the same population was converted into a distance
matrix using Euclidean distance and compared by pairwise Mantel-tests [62]. Pairwise com-
parison correlation coefficients (R) and significance (p) values were used to characterise the
level of similarity between the three repeated measurements. Values for R ranged between 0
and 1, with 0 representing complete differentiation and 1 representing complete agreement
(repeatability) between the two datasets. The R values were arranged into groups in order to
assess repeatability at three different consecutive levels: I—measurer, II—species and III—
method. Reproducibility was computed in a similar manner, but with inter-measurer similarity
of independent datasets compared using the same method from the same population. The R
values of pairwise Mantel-tests were then arranged into groups at two consecutive levels: I–spe-
cies, and II—method. Differences found between groups at consecutive levels were tested using
the non-parametric Kruskal-Wallis test.

Separative power and subjectivity (i.e. measurer’s influence on the results) were assessed via
a datamatrix containing a randomly chosen dataset from the three repeats on the same individ-
ual. In each case, the results were analysed using Canonical Variate Analyses (CVA) and two-
way permutational ANOVA (PERMANOVA) [63] of Euclidean distance with 9 999

Table 1. Summary description of the four morphometric methods tested and compared in our study.

Abbreviation Method type Method description Object
measured

Data extraction equipment No. of
variables

TRA Distance-
based

“Traditional” method—distance between
specific body parts

Actual body Digital calipers 16

TRU Distance-
based

Distance between homologous body
landmarks

Body image imageJ software 16

GMB Geometric Distance between homologous body landmark
coordinates

Body image tpsUtil and tpsDig2 digital imaging
softwares

11

GMS Geometric Distance between homologous scale landmark
coordinates

Scale image tpsUtil and tpsDig2 digital imaging
softwares

7

doi:10.1371/journal.pone.0157890.t001
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permutations. The analysis was performed independently for each method and for each spe-
cies. All statistical analyses were carried out using PAST v.2.17c software [64].

Results

Raw data and standardisation process
TRA measurement indicated SLs ranging from 61.1 to 130.9 mm for bleak, 64.5 to 135.7 mm
for roach and 43.7 to 157.7 mm for Prussian carp. All raw data for GMB and GMS landmark
analysis and the variables measured for TRU and TRA analysis are presented in supplementary
S1–S4 Tables. None of the variables measured showed any significant correlation with SL data
after standarisation; hence, all variables were used for further analysis.

Repeatability and reproducibility
Measurement repeatability (correlation coefficient of pairwise Mantel-tests) varied between
0.015 and 0.986, with 308 of 324 (95.1%) semi-matrix pairwise comparisons from repeated
measurements displaying significant correlations (p< 0.05). For GMB and TRU analysis, all
comparisons were significant, while just one result was not significant using GMS. TRA indi-
cated just 65 of 81 pairwise comparisons (80.2%) as significant (S5 Table).

Mean repeatability values indicated only slight differences between most comparisons at
level 1 (measurer), with only one of 36 crosschecks (2.7%) showing significant inter-measurer
differentiation (Fig 2, level I). Moreover, most R values derived from different measurer data-
sets showed a similar range-spread for each species.

In comparison, major differences were found in repeatability at the two higher levels (Fig 2,
levels II and III). At level II (species), mean repeatability (mean ± SD) of GMB measurements
on Prussian carp was significantly lower (0.820 ± 0.13) than that of the other two species
(roach 0.943 ± 0.02, bleak 0.934 ± 0.05; no significant difference between roach and bleak). On
the other hand, both bleak and roach displayed significantly lower GMS repeatability (bleak

Fig 2. Boxplots for repeatability derived from pairwise Mantel tests of intra-measurer R values (for data see S5 Table). Nine pairwise R values,
obtained from the samemeasurer’s data, were used for each box. Each box represents the 25% and 75% quartiles while the line in the box represents the
median. The whiskers show the highest and lowest values within the dataset. In rows indicated by grey Roman numerals, the datasets were analysed at
different levels, i.e. I (measurer; n = 9), II (species; n = 27) and III (method; n = 81). Groups with the same letter did not differ significantly (p < 0.05) using
the Kruskal-Wallis test. Color codes corresponds with Figs 1 and 3.

doi:10.1371/journal.pone.0157890.g002
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0.658 ± 0.20, roach 0.528 ± 0.20) than Prussian carp (0.854 ± 0.06). Using TRA, significant differ-
ences were observed between repeatability values for bleak (0.226 ± 0.11) and Prussian carp
(0.363 ± 0.16), but not between roach and bleak or Prussian carp (0.292 ± 0.17). No significant
species-level differences were observed in mean repeatability using TRU (bleak 0.508 ± 0.14,
roach 0.482 ± 0.14, Prussian carp 0.493 ± 0.11). At level III (method), measurement repeatibility
improved from TRA (0.294 ± 0.16) through TRU (0.439 ± 0.13) and GMS (0.680 ± 0.20) to GMB
(0.899 ± 0.10), with crosschecks between each method being significant (p< 0.05; Fig 2, level III).

Measurement reproducibility ranged between 0.01 and 0.99, with 882 of 972 pairwise com-
parisons (90.7%) exhibiting significant correlations. All pairwise comparsions for GMB were
significant for all three species investigated, while 239 of 243 (98.4%) were significant for GMS
and 230 of 243 (94.78%) for TRU. TRA displayed the lowest number of significant pairwise
comparisons, with 170 of 243 (69.9%) (S6 Table). At the species level (I), mean (± SD) repro-
ducibility of GMB measurements on Prussian carp was significantly lower (0.774 ± 0.14) than
than that for roach and bleak (roach 0.935 ± 0.02, bleak 0.926 ± 0.05), with no significant dif-
ference between these species (Fig 3).

Mean (± SD) GMS measurement reproducibility for Prussian carp (0.769 ± 0.08) was signif-
icantly higher than that for bleak (0.6481 ± 0.22) or roach (0.360 ± 0.13). A similar trend was
observed for TRU reproducibility, with highest mean (± SD) values observed for Prussian carp
(0.578 ± 0.126), followed by roach (0.450 ± 0.13) and bleak (0.421 ± 0.14). For TRA, however,
roach (0.187 ± 0.12) showed significantly lower reproducibility than either Prussian carp
(0.324 ± 0.12) or bleak (0.274 ± 0.13). At the method level (II), GMB showed significantly
higher reproducibility (0.878 ± 0.11) than either GMS (0.536 ± 0.23) or TRU (0.483 ± 0.15),
with lowest mean values recorded for TRA (0.262 ± 0.14).

A comparison of repeatability and reproducibility data indicated lower mean values for
reproducibility, both at the species and method level, though significant differences were only
observed for GMS in all three species investigated (Kruskal-Wallis test, p< 0.05).

Separative power and subjectivity
In almost all cases, CVA analysis indicated significant differentiation of the three study popula-
tions. For GMB, 26 out of 27 pairwise population comparisons showed significant isolation
(Table 2), with all three populations differing from each other significantly in eight cases out of
nine. For GMS, 21 of 27 comparisons were significantly different, and 23 of 27 comparisons for
TRU, with all three populations differing significantly from each other in five cases each. For
TRA, 21 pairwise comparisons were significantly isolated, and in six cases all populations were
significantly isolated from each other. In just two cases, the populations showed no significant
detachment (roach-GMS-M1 and Prussian carp-TRA-M2).

Analysis of subjectivity indicated strong differences between the methods studied. Using the
GMB method, CVA scatter plots indicated that all three study populations were separated
from each other in the same manner by all three measurers, and that this pattern was detected
for all three species (Fig 4). Note, however, that the relative positions of the different measurers
group centroids were shifted slightly (ghosting) along the y and/or x axes in all cases. A similar
effect was noted for both TRU and GMS, though the study populations were much less sepa-
rated. This was especially true in case of GMS, where differentiation was much weaker and the
datasets overlapped much more than GMB for all three species. In the case of TRA, a very dif-
ferent pattern was detected, the group centroids being aggregated according to measurer rather
than sampling site (Fig 4).

Overall, therefore, CVA scatterplots indicated measurer impact on differentiation with all
methods tested, though measurer role in separation was only important for all three species in
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TRA analysis. These findings were supported by the results of two-way PERMANOVA analy-
sis, with both site and measurer having a significant effect on population differentiation in
most cases, independent of method used (Table 3). In the case of GMB, higher F values were
calculated for site for all three species, whereas only Prussian carp showed this pattern using
GMS and TRU. Using GMS, the role of measurer was higher than that for sampling site in the
differentiation of roach and bleak populations, while the effect of measurer was notably higher
than site for all three species using TRA.

Discussion
Our results indicate that all four methods tested were able to detect morphometric differences
between the different fish populations, despite the relatively narrow geographic scale. Never-
theless, the features examined showed considerable differences in some cases, with mean
repeatability using GMB, for example, three times higher than that for TRA. Our results corre-
spond with those of Parsons et al. [29], who showed that geometric/morphometric methods

Fig 3. Boxplots of reproducibility derived from pairwise Mantel tests of inter-measurer R values (for
data see S6 Table). Each box presents 81 pairwise R values obtained from a comparison of datasets derived
from the same subjects by different measurers. The box represents the 25% and 75% quartiles, with the line
in the box representing the median. The whiskers show the highest and lowest values within the dataset. In
rows indicated by grey Roman numerals, datasets were analysed at different levels, i.e. I (species; n = 81)
and II (method; n = 243). Groups with the same letter did not differ significantly (p < 0.05) using the Kruskal-
Wallis test. Color codes corresponds with Figs 1 and 2.

doi:10.1371/journal.pone.0157890.g003
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had higher separative power, making them more applicable than traditional, distance-based
methods. At the same time, all four methods were more-or-less burdened by different negative
effects; hence, all the methods studied had weaknesses and strengths, affecting their
applicability.

In most cases, measurement repeatability did not differ between measurers. Hence, as long
as measurements are carried out by competent analysts, all methods are equally usable as
regards repeatability. At the species level, repeatability and reproducibility showed similar
trends, though reproducibility was lower in each case. In roach and bleak, both repeatability
and reproducibility decreased from the GMB through GMS and TRU to TRA. For both species,
GMB measurements showed> 90% repeatability, which corresponds well with the literature
(e.g. [65]). There was no significant difference in repeatability using GMB and GMS for Prus-
sian carp, presumably due to its more characteristic scale shape [66]. Therefore GMS appear to
be equally applicable as GMB, as long as the species examined has a characteristic scale shape.
Moreover as Staszny et al. [67] discussed, body shape is more influenced by the conditional sta-
tus of a fish than scale shape; hence, scale shape is less sensitive to short-term environmental
effects (e.g. starvation). On the other hand, unlike the other three methods, GMS measure-
ments showed significantly lower reproducability (compared with its repeatability) for each
species. In this case, therefore, it would appear important that a single measurer’s dataset is
used. When using TRU and GMB, however, datasets of different measurers may be combined
if the methodology and other influencing factors are the same (e.g. for species level differentia-
tion, supraspecific taxonomic researche using a large number of individuals).

Analysis of subjectivity indicated that all the morphometric methods were influenced by
measurer effect to a greater or lesser degree. Even in the case of GMB, which is generally less
burdened by measurer effect, the relative position of different measurer group centroids were
shifted along the y and/or x axes in all cases. At the same time, TRA was the only method
where population level detachment was entirely overwritten by measurer effect. Despite the
lack of any significant difference between repeatability and reproducibility using TRA, there-
fore, calculation of subjectivity indicated that different measurers could have a crucial affect on
analysis results; hence, it is recommended to avoid from datasets aggregation of different

Table 2. Level of detachment of the three study populations using canonical variate analysis.

species method/ measurer GMB GMS TRU TRA

Bleak M1 *** *** *** ***

M2 *** ** ** ***

M3 *** *** ** ***

Roach M1 ** - *** ***

M2 *** ** ** ***

M3 *** *** ** ***

Prussian carp M1 *** *** *** *

M2 *** ** *** -

M3 *** *** *** **

all pops. differ significantly 8/9 5/9 5/9 6/9

significant differences 26/27 21/27 23/27 21/27

*** = all three populations significantly separated

** = two of three populations significantly isolated

* = one population significantly isolated

- = no significant isolaton between populations; all at p < 0.05.

doi:10.1371/journal.pone.0157890.t002
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measurers in this case. Very low levels of repeatability and reproducibility were detected for
TRA in some cases (�1%), possibly due to errors in measurement or during the data entry pro-
cess (clerical errors). Direct data entry [68] (rather than transfer from paper to computer, as in
our case) can reduce the number of data entry errors during fish morphometric survey. TRA
repeatability did not correspond absolutely with that of the other three methods tested, possibly
as the fish were handled during measurement, the other three methods utilising static images
for markings and measurement. In this case, slight differences in the positioning of the fish
between measurements may have affected measurement repeatability (for more details see
[31]). The use of image analysis techniques instead of actual body measurement, therefore,
clearly improved the applicability of distance-based methods.

Our findings (with distance-based TRA and TRU methods showing similar separative
power to GMS) partially contradict those of Medebacher [26], who stated that “traditional
morphometrics is often at its limit when closely related entities are analysed”. On the other

Fig 4. Canonical variate analysis scatterplots of standardised morphometric data derived from three species by three measurers using
four different methods. For clarity, only the group centroids are indicated, with vertical and horizontal whiskers indicating the maximum and
minimum values. Each measurer is represented by a different colour (M1—red, M2—green, M3—blue), while each site is represented by a different
shape (Site1—4, Site2—⬜, Site3—�). Numbers in parentheses show the variance on each axis.

doi:10.1371/journal.pone.0157890.g004

Applicability of Fish Morphometric Methods

PLOS ONE | DOI:10.1371/journal.pone.0157890 June 21, 2016 10 / 16



Table 3. Results of two-way PERMANOVA analysis (9 999 permutations) for effect of site andmeasurer. High F values with bold letters indicate a sig-
nificant effect (p < 0.05) of site and/or measurer.

Method Species Source Sum of sqrs df Mean square F p

GMB Roach sampling site 0.043 2 0.021 9.81 0.0001

measurer 0.025 2 0.013 5.84 0.0001

Interaction 0.003 4 0.001 0.32 0.9995

Residual 0.567 261 0.002

Total 0.638 269

Bleak sampling site 0.034 2 0.017 7.91 0.0001

measurer 0.027 2 0.014 6.28 0.0002

Interaction 0.003 4 0.001 0.36 0.989

Residual 0.568 261 0.002

Total 0.633 269

Prussian Carp sampling site 0.074 2 0.037 17.88 0.0001

measurer 0.025 2 0.012 5.98 0.0001

Interaction 0.004 4 0.001 0.45 0.9989

Residual 0.542 261 0.002

Total 0.644 269

GMS Roach sampling site 0.021 2 0.011 2.42 0.0085

measurer 0.059 2 0.029 6.67 0.0001

Interaction 0.016 4 0.004 0.88 0.6123

Residual 1.15 261 0.004

Total 1.246 269

Bleak sampling site 0.07 2 0.035 3.22 0.0004

measurer 0.097 2 0.048 4.44 0.0001

Interaction 0.038 4 0.009 0.87 0.6325

Residual 2.85 261 0.011

Total 3.055 269

Prussian Carp sampling site 0.095 2 0.047 9.80 0.0001

measurer 0.017 2 0.008 1.73 0.0558

Interaction 0.008 4 0.002 0.42 0.9962

Residual 1.258 261 0.005

Total 1.378 269

TRU Roach sampling site 0.108 2 0.054 6.05 0.0001

measurer 0.143 2 0.072 8.04 0.0001

Interaction 0.019 4 0.005 0.53 0.9899

Residual 2.322 261 0.009

Total 2.591 269

Bleak sampling site 0.112 2 0.056 6.30 0.0001

measurer 0.202 2 0.101 11.43 0.0001

Interaction 0.025 4 0.006 0.7 0.908

Residual 2.311 261 0.009

Total 2.649 269

Prussian Carp sampling site 0.32331 2 0.162 14.79 0.0001

measurer 0.068632 2 0.034 3.14 0.0001

Interaction 0.036716 4 0.009 0.84 0.7093

Residual 2.8531 261 0.011

Total 3.2818 269

TRA Roach sampling site 0.095 2 0.047 5.79 0.0002

(Continued)
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hand, our results correspond with those of Franklin et al. [69], where analysis using some care-
fully selected TRA variables can provide similar results to those from geometric morphometric
methods using numerous landmarks. Moreover, a combination of meristic variables and the
TRA method could further increase the separative power of the analysis [70, 71]. Similarly, Ibá-
ñez & O’Higgins [72] shows that GMS separative power could be strengthened with the use of
form (shape and size data) instead of shape alone.

Our results draw attention to the importance of measurer skill and expertise, especially
when planning morphometric studies. Furthermore, when deciding on the morphometric
method to be used, factors such as the selection of variables should be considered alongside the
function of specific physical characteristics (e.g. scale shape) for each species examined. Our
data showed that, whereas the same set of variables appeared appropriate for differentiating
roach and bleak populations, they were less suitabe for discerning Prussian carp populations
(see Table 2). For best results, therefore, the most appropriate method and morphometric vari-
ables to be used will depend on the species studied. Our study showed that all the morphomet-
ric methods tested are appropriate for detecting even population level differences. Athough the
methods differed considerably in their sensitivity, separative power and subjectivity, the final
results were strongly influenced by attributes of the species investigated and by the measurer’s
skill and expertise. The considerable impact of measurer effect on the results provides some
weight to the need for greater automation of morphometric analysis, including distance mea-
surement and landmark processing, data standardisation and statistical analysis. This would
also help reduce the level of measurment and data input errors. The methodologies of other
disciplines (e.g. medicine and astronomy) that are already largely automated could prove useful
in the automatisation of morphometric assessment [73,74, 75], though further methodological
studies are needed in order to identify the most appropriate methods (or combination of meth-
ods) and measurement variables for individual species and for the goals of individual studies.

Supporting Information
S1 Table. Raw dataset of the GMB analyses, for codes see text.
(DOCX)

Table 3. (Continued)

Method Species Source Sum of sqrs df Mean square F p

measurer 2.238 2 1.119 136.66 0.0001

Interaction 0.05 4 0.012 1.52 0.1082

Residual 2.137 261 0.008

Total 4.519 269

Bleak sampling site 0.148 2 0.074 7.06 0.0001

measurer 1.961 2 0.98 93.66 0.0001

Interaction 0.082 4 0.021 1.97 0.0179

Residual 2.732 261 0.01

Total 4.924 269

Prussian Carp sampling site 0.043 2 0.021 1.74 0.1077

measurer 4.686 2 2.343 190.62 0.0001

Interaction 0.055 4 0.014 1.13 0.3114

Residual 3.208 261 0.012

Total 7.993 269

doi:10.1371/journal.pone.0157890.t003
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S2 Table. Raw dataset of the GMS analyses, for codes see text.
(DOCX)

S3 Table. Raw dataset of the TRU analyses, for codes see text.
(DOCX)

S4 Table. Raw dataset of the TRA analyses, for codes see text.
(DOCX)

S5 Table. Results of repeatability computations. „R” values and significance levels (� =
p<0.05; �� = p<0.01) of pairwise Mantel tests made on Euclidean distance matrices of the
repeated measurement data of the same measurers.
(DOCX)

S6 Table. Results of reproduciblity computations. „R” values and significance levels (� =
p<0.05; �� = p<0.01) of pairwise Mantel tests made on Euclidean distance matrices of the data-
sets of two different measurers.
(DOCX)
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