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Summary

The estimation of average treatment effects based on observational data is extremely important in 

practice and has been studied by generations of statisticians under different frameworks. Existing 

globally efficient estimators require non-parametric estimation of a propensity score function, an 

outcome regression function or both, but their performance can be poor in practical sample sizes. 

Without explicitly estimating either functions, we consider a wide class calibration weights 

constructed to attain an exact three-way balance of the moments of observed covariates among the 

treated, the control, and the combined group. The wide class includes exponential tilting, empirical 

likelihood and generalized regression as important special cases, and extends survey calibration 

estimators to different statistical problems and with important distinctions. Global semiparametric 

efficiency for the estimation of average treatment effects is established for this general class of 

calibration estimators. The results show that efficiency can be achieved by solely balancing the 

covariate distributions without resorting to direct estimation of propensity score or outcome 

regression function. We also propose a consistent estimator for the efficient asymptotic variance, 

which does not involve additional functional estimation of either the propensity score or the 

outcome regression functions. The proposed variance estimator outperforms existing estimators 

that require a direct approximation of the efficient influence function.
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 1. Introduction

Studying the effect of an intervention or a treatment is central to experimental scientists. 

While a randomized trial is a gold standard to identify average treatment effects, it may be 

infeasible, or even unethical, to conduct in practice. Observational studies are common in 

econometrics, social science, and public health, where the participation of intervention is 

only observed rather than manipulated by scientists. A typical concern for inferring causality 

in an observational study is confounding, where individual characteristics such as 

demographic factors can be related to both the treatment selection and the outcome of 
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interest. In these cases, a simple comparison of sample averages from the two intervention 

groups can lead to a seriously biased estimate of the population average treatment effects.

When the treatment selection process depends entirely on observable covariates, there are 

two broad classes of strategies for estimating average treatment effects, namely outcome 

regression and propensity score estimation. When a linear model is assumed for the outcome 

given covariates, the coefficient for treatment status provides an estimate of average 

treatment effects when all relevant confounders are controlled and when there is no effect 

modifiers. In general, more complex regression models can be used for predicting 

unobservable potential outcomes, while the average treatment effects can be estimated by 

averaging predicted outcomes (Oaxaca; 1973; Blinder; 1973). An alternative class of 

strategies is based on the propensity score, which is the probability of receiving treatment 

given covariates. Rosenbaum and Rubin (1983) showed that adjusting the true propensity 

score can remove all bias due to confounding. They also showed that the true propensity 

score balances the covariate distributions between the two treatment arms. Propensity score 

can be used for subclassification (Rosenbaum and Rubin; 1984; Rosenbaum; 1991), 

matching (Rosenbaum and Rubin; 1985; Abadie and Imbens; 2006), and weighting 

(Rosenbaum; 1987; Hirano et al.; 2003). However, propensity score based methods may not 

be efficient in general.

To study efficient estimation, semiparametric efficiency bounds were derived independently 

by Robins et al. (1994) and Hahn (1998). Interestingly, the efficient influence function for 

the average treatment effects involves both the propensity score and the outcome regression 

functions. This motivated subsequent development of methods involving a combination of 

propensity score and outcome regression modeling (Robins et al.; 1994; Hahn; 1998; Bang 

and Robins; 2005; Qin and Zhang; 2007; Cao et al.; 2009; Tan; 2010; Graham et al.; 2012; 

Vansteelandt et al.; 2012). Recently, Chan (2013), Han and Wang (2013) and Chan and Yam 

(2014) considered methods that can accommodate multiple non-nested models of the 

propensity score and outcome regression at the same time. Many recent methods focus on 

improving covariate balance within the propensity score and outcome regression frameworks 

(Qin and Zhang; 2007; Tan; 2010; Chan; 2012; Graham et al.; 2012; Vansteelandt et al.; 

2012; Han and Wang; 2013; Chan and Yam; 2014). Imai and Ratkovic (2014) argue that the 

estimation of propensity score parameters with a specification of outcome model does not 

align well with the original spirit of propensity score methodology as discussed in Rubin 

(2007). They proposed a covariate balancing propensity score method for the estimation of 

propensity score parameters, which balances covariates for an overidentified moment 

restriction without assuming an outcome model.

All methods mentioned so far require specification of either a propensity score model, an 

outcome model, or both. Consistency of the estimators requires some underlying models to 

be correctly specified. Since the estimand of interest is the average treatment effects, and the 

propensity score or the outcome models are just intermediate steps, it is natural to question 

whether the correctness of the intermediate models were necessary for producing correct 

inference. Nonparametric estimators are developed to provide valid inference in large 

samples without relying on parametric assumptions in the intermediate steps of estimation. 

Hahn (1998), Hirano et al. (2003), Imbens et al. (2006), Chen et al. (2008) have considered 
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various nonparametric estimators for the average treatment effects. Although the validity of 

estimation does not rely on any parametric assumption on the propensity score and outcome 

models, their methods require sieve approximations of those unknown conditional functions, 

as these functions appear explicitly in the semiparametric efficient inference functions 

(Robins et al.; 1994; Hahn; 1998). An important observation has been made by Hirano et al. 

(2003) that the celebrated inverse probability weighted estimator of Horvitz and Thompson 

(1952) is globally semiparametric efficient when a sieve maximum likelihood propensity 

score estimator is used. Global semiparametric efficiency is more desirable than local 

semiparametric efficiency which requires the correct specification of parametric models. An 

implication of Hirano et al. (2003) is that global efficiency can be achieved by solely 

estimating the propensity score nonparametrically, without requiring to estimate the outcome 

model, which also appears in the efficient influence function. An efficient estimator is 

adapted from the Horvitz-Thompson estimator, a simple estimator used by decades of 

statisticians. Alternatively, Imbens et al. (2006) and Chen et al. (2008) showed that globally 

efficient estimators can be constructed from nonparametric estimators of the outcome model 

only. A combination of nonparametric estimators of the propensity score and outcome 

models can also produce globally efficient estimators (Imbens et al.; 2006; Chen et al.; 

2008).

The existing globally efficient estimators do not require correct specification of propensity 

score or outcome regression models in large samples, but the need to specify a 

nonparametric approximation of either or both functions is still present. It has been shown 

that estimators for average treatment effects can have substantial bias when either functions 

are poorly estimated (Kang and Schafer; 2007; Ridgeway and McCaffrey; 2007). It is natural 

to question whether nonparametric estimation of these functions is even necessary, and 

whether they can be replaced by an alternative simple balancing criterion which is inherited 

from the unknown propensity score function. Although estimators that improve balance of 

covariate distribution are discussed in recent papers (Qin and Zhang; 2007; Tan; 2010; 

Graham et al.; 2012; Vansteelandt et al.; 2012; Han and Wang; 2013; Imai and Ratkovic; 

2014; Chan and Yam; 2014), their methods require parametric modeling of the propensity 

score model or the outcome model. Nonparametric methods for improving covariate balance 

have been studied widely in the survey sampling literature (Deming and Stephan; 1940; 

Deville and Särndal; 1992; Kim and Park; 2010; Hainmueller; 2012). The recent paper of 

Hainmueller (2012) focused on using the implied weights of the raking estimator of Deming 

and Stephan (1940) to preprocess data for estimating the treatment effects on the treated. 

Since he focused on preprocessing, he did not study statistical inference and estimation 

efficiency.

There are two substantial gaps in the literature of nonparametric inference for average 

treatment effects that we aim to fill in this article. First, we show that a broad class of 

calibration estimators which solely targets on covariate balancing can attain semiparametric 

efficiency bound without explicitly estimating the propensity score or outcome regression 

functions. Compared to the seminal paper of Hirano et al. (2003) who showed that globally 

efficient estimation can be achieved by a nonparametric adaptation of a simple estimator by 

Horvitz and Thompson (1952), which has been used by statisticians for decades, we show 

that a globally efficient estimator can be adapted from another class of simple estimators 

Chan et al. Page 3

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pioneered by Deming and Stephan (1940). However, our work contains three very different 

conceptual aspects compared to existing survey calibration methods. The first important 

difference is that the proposed weights minimize a distance measure from a set of 

misspecified, uniform weights, whereas the original survey calibration estimators minimizes 

distance from the design weights, which are the unknown inverse propensity score weights 

for the evaluation problem. Therefore, our formulation does not involve the estimation of the 

unknown propensity score function. By minimizing the distance to uniform baseline 

weights, we improve robustness by avoiding extreme weights that typically ruin the 

performance of Horvitz-Thompson estimators with maximum likelihood estimated weights. 

The uniform baseline weights are misspecified unless the treatment is randomized, and the 

usual theory for survey calibration that requires a correctly specified baseline weights are 

therefore inapplicable. The mathematical proofs for the theorems are therefore very different 

from the existing results. Second, we reformulate the problem as the dual of the original 

calibration problem, which is a separable programming problem subject to linear constraints. 

The dual, as discussed in the optimization literature, is an unconstrained convex 

optimization problem. This reformulation allows us to provide a simple and stable algorithm 

for practical usage and streamlines the mathematical proofs. Third, we consider a growing 

number of moment conditions as opposed to a fixed number of moment conditions for 

survey calibration. The growing number of moment conditions is necessary for removing 

asymptotic bias associated with misspecified design weights while at the same time attaining 

global efficiency.

An equally important contribution of our paper is a novel nonparametric variance estimator 

for interval estimation and hypothesis testing. While there are plenty of point estimators for 

estimating average treatment effects, the problem of nonparametric estimation of efficient 

variance has received little attention because it is difficult. A consistent plugged-in estimator 

proposed by Hirano et al. (2003) involves the squared inverse of estimated propensity score 

function and can perform extremely poorly in small samples as shown in the simulation 

studies given in the online supplementary materials. In a local semiparametric efficiency 

framework, consistent variance estimation often requires both the propensity score and 

outcome regression models to be correctly modeled despite point estimators that are often 

doubly robust. Due to these difficulties, many authors proposed novel point estimators while 

leaving the variance estimation unattended. Bootstrapping may be used but is typically 

computationally intensive and may not be practical to implement for large data sets. Others 

have suggested that the estimated weights shall be treated as fixed weights (see for example, 

Section 3.4 of Hainmueller, 2012). However, statistical inference can be very misleading. 

The variability of the estimated weights can be substantial, and in fact we illustrate using a 

real example in Section 5.2 to show that the standard error of the treatment effects can be 

underestimated by more than five fold if the weights are treated as fixed. Our proposed 

variance estimator is both novel and important for statistical inference in practice. It does not 

require direct nonparametric estimation of either the propensity score or outcome regression 

models. This is in contrast to Hirano et al. (2003), whose point estimator does not require 

nonparametric estimation of outcome regression function but that additional functional 

estimation is required for interval estimation. We show that the proposed estimator is 

consistent to the semiparametric variance bound and its validity does not depend on any 
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parametric models; it outperforms existing estimators which require direct approximation of 

the efficient influence function.

The paper is organized as follows. In Section 2, we shall introduce the notations and a class 

of the calibration estimators, explain the philosophical and practical differences between 

calibration and propensity score modeling, and study the large sample properties of the 

calibration estimators. A consistent asymptotic variance estimator is proposed in Section 3. 

In Section 4, we study three extensions of the problem: the estimation of weighted average 

treatment effects, treatment effects on the treated, and the estimation for multiple 

comparison groups. Analyses of the National Health and Nutrition Examination Survey and 

the famous Lalonde (1986) data for the effect of job training on income are presented in 

Section 5. Some final remarks are given in Section 6.

The proposed methods can be implemented through an open-source R package ATE 

available from the Comprehensive R Archive Network (http://cran.r-project.org/

package=ATE).

 2. Point Estimation

 2.1. Notations and basic framework

Let T be a binary treatment indicator. We define Y (1) and Y (0) to be the potential outcomes 

when an individual is assigned to the treatment or control group respectively. The population 

average treatment effects is defined as τ ≜ (Y (1) − Y (0)). The estimation of τ is 

complicated by the fact that Y (1) and Y (0) cannot be observed jointly. The potential 

outcome Y (1) is only observed when T = 1, and Y (0) is only observed when T = 0. The 

observed outcome can be represented as Y = TY (1) + (1 − T)Y (0). In addition to (T, Y), we 

assume that a vector of covariates X is observed for everyone, and T is typically dependent 

on (Y (1), Y (0)) through X. We assume the full data {(Ti, Yi(1), Yi(0), Xi), i = 1, …, N} are 

independent and identically distributed, and the observed data is {(Ti, Yi, Xi), i = 1, …, N}. 

The following assumption is often made for the identification of t:

Assumption 1. (Unconfounded Treatment Assignment) Given X, T is independent 
of (Y (1), Y (0)).

Based on Assumption 1, the semiparametric efficiency bound for estimating t has been 

developed by Robins et al. (1994) and Hahn (1998). Let π(x) ≜  (T = 1|X = x) be the non-

missing probability, also known as the propensity score, and m1(x) ≜ [Y (1)|X = x], m0(x) 

≜ [Y (0)|X = x] are the conditional mean functions. Conventional statistical methods for 

estimating τ involves modeling of π(X), (m1(X), m0(X)) or both, based on different 

representations of τ:

(1)
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(2)

(3)

The inverse probability weighted estimators (Horvitz and Thompson; 1952; Hirano et al.; 

2003) have been constructed based on (1); the regression prediction estimators (Oaxaca; 

1973; Cheng; 1994; Imbens et al.; 2006) have been proposed based on (2); and the 

augmented inverse probability weighted estimators (Robins et al.; 1994; Bang and Robins; 

2005; Cao et al.; 2009) have been proposed based on (3).

Based on Assumption 1, another important feature for the propensity score π(X) is that

(4)

Recently, many authors have proposed estimators by combining (1) and (4) in various 

creative manners under the propensity score framework, see Qin and Zhang (2007), Tan 

(2010), Chan (2012), Graham et al. (2012), Vansteelandt et al. (2012), Han and Wang 

(2013), Imai and Ratkovic (2014) and Chan and Yam (2014). Since (4) often defines an 

overidentifying set of moment restrictions, estimation is generally done within the 

generalized method of moments or the empirical likelihood framework. These methods 

require modeling and estimation of the propensity score but the proposed method does not.

 2.2. A general class of calibration estimators

Let D(v, v0) be a distance measure, for a fixed v0 ∈ ℝ, that is continuously differentiable in 

v ∈ ℝ, nonnegative, strictly convex in v and D(v0, v0) = 0. The general idea of calibration as 

in Deville and Särndal (1992) is to minimize the aggregate distance between the final 

weights w = (w1, …, wN) to a given vector of design weights d = (d1, …, dN) subject to 

moment constraints. The minimum distance estimation is closely related to generalized 

empirical likelihood as discussed in Newey and Smith (2004). In survey applications, the 

design weights are known inverse probability weights. In the estimation of average treatment 

effects, the inverse probability weights are di = π(Xi)−1 if Ti = 1 or di = (1 − p(Xi))−1 if Ti = 

0, for i = 1, …, N, which are unknown and need to be estimated. A recent paper by Chan and 

Yam (2014) discussed the calibration methods with design weights estimated by maximum 

likelihood approach. Here we consider a different formulation. To circumvent the need to 

estimate the design weights, we consider a vector of misspecified uniform design weights d* 

= (1, 1, …, 1), and construct weights w by solving the following constrained minimization 

problem:
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subject to the empirical counterparts of (4), that are

The choice of uniform design weights is based on a few observations. First, if the 

counterfactual variables are observable for everyone, we can estimate τ by the sample mean 

of Y (1) − Y (0) which assigns equal weights. Also, the need for estimating π(x) is not 

needed when the design weights are assumed to be uniform. Moreover, by minimizing the 

aggregate distance from constant weights, the dispersion of final weights is controlled and 

extreme weights are less likely to obtain. In contrast, extreme weights cause instability in 

Horvitz-Thompson estimators with maximum likelihood weights under model 

misspecification. However, the choice of uniform design weights also poses unique 

challenges. When the number of matching conditions is fixed, Hellerstein and Imbens 

(1999) showed that an empirical likelihood calibration estimator with misspecified design 

weights yields inconsistent estimators in general. To circumvent this theoretical difficulty, 

we consider matching uK which is a K(N)-dimensional function of X, K(N) increases to 

infinity when N goes to infinity yet with K(N) = o(N).

The constrained optimization problem stated above is equivalent to two separate constrained 

optimization problems:

(5)

and

(6)

Furthermore, to efficiently implement the method, we consider the dual problems of (5) and 

(6). The reason is that the primal problems (5) and (6) are convex separable programming 

with linear constraints, and Tseng and Bertsekas (1987) showed that the dual problems are 

unconstrained convex maximization problems that can be solved by efficient and stable 

numerical algorithms.
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Let D(v) = D(v, 1), f(v) = D(1 − v) and its derivative be f′(v), ∀v ∈ ℝ. The dual solutions are 

given as follows. For i such that Ti = 1, 1

where ρ′ is the first derivative of a strictly concave function

(7)

and γ̂
K ∈ ℝK maximizes the following objective function

(8)

Similarly, for i such that Ti = 0,

and β̂
K ∈ ℝK maximizes the following objective function

(9)

According to the first order conditions of the maximizations of (8) and (9), we can easily 

check that the linear constraints in (5) and (6) are satisfied. We define the proposed 

empirical balancing estimator for τ to be

The relationship (7) between ρ(v) and f(v) = D(1−v) is shown in Appendix B, where we also 

show that strict convexity of D is equivalent to strict concavity of ρ. Since the dual 

formulation is equivalent to the primal problem and will simplify the following discussions, 

we shall express the estimator in terms of ρ(v) in the rest of the discussions. When ρ(v) = 

−exp(−v), the weights are equivalent to the implied weights of exponential tilting (Kitamura 

and Stutzer; 1997; Imbens et al.; 1998). When ρ(v) = log(1 + v), the weights correspond to 
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empirical likelihood (Owen; 1988; Qin and Lawless; 1994). When ρ(v) = −(1 − v)2/2, the 

weights are the implied weights of the continuous updating estimator of generalized method 

of moments (Hansen et al.; 1996), and also minimizes the squared distance function. When 

ρ(v) = v − exp(−v), the weights are equivalent to the inverse of a logistic function.

Despite the close connections with generalized empirical likelihood, the calibration 

estimator has several important differences compared to the generalized empirical likelihood 

literature. In econometrics, generalized empirical likelihood is often employed for estimating 

a p-dimensional parameter by specifying a q-dimensional estimating equation, where q > p ≥ 

1. However, we are not estimating the target parameter τ by directly solving an 

overidentified estimating equation. The calibration conditions in (5) and (6) can be regarded 

as a K-dimensional moment restriction with a degenerate parameter of interest, and (8) and 

(9) are essentially degenerate cases of generalized empirical likelihood with only the 

auxiliary parameters λ and β appearing but not the target parameter τ. Even though the 

generalized empirical likelihood estimation problem is undefined because the moment 

restrictions are not functions of target parameters, implied weights can still be constructed. 

In econometrics, the generalized empirical likelihood estimators are usually solutions to 

saddlepoint problems and can be difficult to compute. In our case, λ̂ and β̂ are solutions to 

unconstrained convex maximization problems rather than a saddlepoint problem and can be 

computed by a fast and stable Newton-type algorithm. Moreover, the generalized empirical 

likelihood literature mainly deals with a fixed number of moment restrictions, but the 

dimension K of moment restrictions increases with N in our present consideration. 

Furthermore, the moment restrictions are misspecified for finite K in our case, but most 

theoretical results for generalized empirical likelihood are derived under a correct model 

specification and are therefore inapplicable.

 2.3. Philosophical differences and practical implications

Although the calibration weights in Section 2.2 are also constructed from moment balancing 

conditions as in certain propensity score methodologies, there is a fundamental difference in 

the modeling philosophy that leads to important practical implications in the estimation of 

average treatment effects. Philosophically, the calibration weights are constructed without 

any reference to a propensity score model. It ignores the explicit link between the weights in 

the treated and the control groups that are present in propensity score modeling. Practically, 

it leads to an exact three-way balance between the treated, the controls and the combined 

group for finite samples as well as asymptotically, whereas finite-sample exact three-way 

balance is not guaranteed for propensity score modeling in general. Furthermore, calibration 

can be viewed as a unification of the existing globally efficient estimations that are 

constructed from different modeling strategies as discussed in the online supplementary 

material.

To illustrate the first idea, we consider a general class of weighting estimators 

. If the true propensity score π(X) is known, we 

set w1(X) = (π(X))−1 and w0(X) = (1 − p(X))−1, so that the corresponding weighting 

estimator is an unbiased estimator for τ based on (1). The propensity score setting confines 

the weight functions w1(x) and w0(x) in the following relationship:
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(10)

When a propensity score model π(x; γ) is assumed, and γ̂ is an estimate of γ, the Horvitz-

Thompson estimator sets w1(x) = π−1(x; γ̂) and w0(x) = (1 − π(x; γ̂))−1. It follows that (10) is 

satisfied. Under model misspecification,  and 

 can be very different from 1, therefore it has been 

suggested that w1(x) = [C1π(x; γ̂)]−1 and w0(x) = [C0(1 − π(x; γ̂))]−1 which are ratio-type 

inverse probability weighting estimators. However, these weight functions do not satisfy (10) 

unless C1 = C0 = 1. In fact, the ratio-type inverse probability weighting estimator is a special 

calibration estimator that requires propensity score modeling to be discussed in Section 6. 

The class of calibration estimators in Section 2.2 does not rely on propensity score modeling 

in the first place, and the weights w1(x) = ρ′(γ̂TuK(x)) and w0(x) = ρ′(β̂TuK(x)) do not satisfy 

(10) in general. We note that one of the two weights can correspond to the inverse 

probability weight from a propensity score model, but it is generally impossible to have both 

sets of weights to be consistent with a single propensity score model. Therefore, for any 

fixed K, the calibration estimator for the average treatment effects cannot be locally 

efficient. Despite this seemingly undesirable property, we shall show that τ̂ is globally 

semiparametric efficient when K is allowed to increase with N. Existing globally efficient 

estimators are all locally efficient for any fixed dimension of approximation, but the 

calibration estimator sacrifices local efficiency by ignoring the link (10), while achieving 

exact three-way balance in finite samples. Note that the true propensity score attains the 

exact three-way balance in (4), but the estimated propensity scores typically do not achieve 

exact three-way balance in finite samples. While the Horvitz-Thompson estimator with 

maximum likelihood weights is globally efficient and three-way balance should hold for 

extremely large samples, the balance can be quite poor for practical sample sizes. In our 

current proposal, the exact three-way balance holds for finite samples as well as 

asymptotically, which is a reason why our asymptotic results for the point and variance 

estimators hold well even for finite samples.

To further illustrate the balancing properties of estimators, suppose that π(γTx) is a 

propensity score model. The expression (4) leads to

(11)

(12)
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(13)

Suppose we estimate γ by solving each of the just-identified system of estimating equations 

defined by moment conditions (11), (12) and (13), and denote the corresponding estimators 

to be γ̂
1, γ̂

2 and γ̂
3; that is, γ̂

j satisfies , for j = 1, 2, 3. Note 

that, however,  for j ≠ j′. The covariate balancing propensity 

score of Imai and Ratkovic (2014) shares the same spirit of γ̂
3, and the inverse probability 

tilting method of Graham et al. (2012) shares the same spirit of γ̂
1. In general, matching one 

set of moment conditions creates two-way balance, but does not guarantee three-way 

balance between the treated, the controls and the combined group. However, a lack of three-

way balance can adversely affect the quality of the final estimate since the average treatment 

effects is defined for the combined population, and the data for Y (1) and Y (0) are only 

available for the treated and controls respectively. We shall further illustrate this point by the 

simulation studies in the online supplementary materials. On the other hand, four-or-more-

way balance is not necessary because asymptotic efficiency is attained by three-way balance 

as shown in Theorem 1 in Section 2.4.

Since b3 = b1 − b2, balancing any two systems out of (11), (12) and (13) can lead to a 

balance of the remaining system. Therefore, by considering an overidentified combined 

system of estimating functions b1 and b2, one can estimate γ by using generalized method of 

moments or empirical likelihood, and we denote the corresponding estimator by γ̂
12. 

However, it is typical that

because the generalized method of moment estimator does not solve that corresponding 

overidentified system exactly, and therefore the exact three-way balance is typically not 

achieved.

For the calibration estimator, however,

by construction, and exact three-way balance can naturally be achieved.

Several remarks are in order. First, when the propensity score model is misspecified, which 

is likely in practice, γ̂
j converges in probability to , j = 1, 2, 3, which are different in 
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general. Therefore, covariate balancing based on one of (11), (12) or (13) can lead to very 

different results. For balancing an over-identified system of equations using the empirical 

likelihood, there is no guarantee that the γ estimate is -consistent (Schennach; 2007) 

under a misspecified propensity score model. Calibration is similar to using γ̂
1 for 

reweighting the treated and γ̂
2 for reweighting the controls when the propensity score model 

is misspecified, but our proposed non-parametric calibration method does not involve 

propensity score estimation.

Despite the dissimilarities in the weighting aspects compared to propensity score 

methodologies, calibration can be viewed as a unification of the existing globally efficient 

estimation that are constructed from two very different strategies: weighting and prediction. 

Let m̃1(X) and m̃0(X) be weighted least square estimators for Y against uK(X) among the 

treated and controls with weights p̂K(X) and q̂K(X) respectively. It follows that

The first equality holds from the score equation of weighted least squares, and the second 

equality holds because of the exact three-way balance. Therefore, our proposed calibration 

unifies the weighting and the prediction estimators by a rather unexpected way of relaxing 

the estimation of propensity score and outcome regression functions.

 2.4. Large sample properties of calibration estimators

To show the large sample properties, we need the following technical assumptions in 

addition to Assumption 1.

Assumption 2. [Y (1)2] < ∞ and [Y (0)2] < ∞.

Assumption 3. The support  of r-dimensional covariate X is a Cartesian product 
of r compact intervals.

Assumption 4. π(x) is uniformly bounded away from 0 and 1, i.e. there exist some 

constants  such that

where  is the support of X.

Assumption 5. π(x) is s-times continuously differentiable, where s > 13r.

Assumption 6. m0(x) and m1(x) are t-times continuously differentiable, where .

Assumption 7. K = O (Nν) and .
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Assumption 8. ρ ∈ C3(ℝ) is a strictly concave function defined on ℝ i.e. ρ″(γ) < 0, 

∀γ ∈ ℝ, and the range of ρ′ contains [η2, η1] which is a subset of the positive real 
line.

Assumptions 1–7 or their analogues also appeared in Hahn (1998), Hirano et al. (2003) and 

Imbens et al. (2006). Assumption 1 is required for the identification of the average treatment 

effects. Assumption 2 is required for the finiteness of asymptotic variance. Assumptions 3 

and 4 are required for uniform boundedness of approximations. Assumption 4 is an overlap 

condition that is necessary for the nonparametric identification of the average treatment 

effects in the population. If there exists a region of X such that the probability of receiving 

treatment is 0 or 1, the treatment effects cannot be identified unless some extrapolatory 

modeling assumptions are imposed. In that case, one could define a subpopulation with a 

sufficient overlap so that the average treatment effects can be estimated nonparametrically 

within this subpopulation. Assumptions 5 and 6 are required for controlling the remainder of 

approximations with a given basis function. They are standard assumptions for multivariate 

smoothing where the order of smoothness required increases with the dimension of X. There 

is usually no a-priori reason to believe that the π(x), m1(x) and m0(x) are not smooth in x. 

Also the dimension of X is not restricted by the assumptions, unlike in the kernel estimation 

of π(x) discussed in Chen et al. (2013), in which their assumptions imply that the dimension 

of X cannot be greater than 4. Assumption 7 is required for controlling the stochastic order 

of the residual terms, which is desirable in practice because K grows very slowly with N so 

that a relatively small number of moment conditions is sufficient for the proposed method to 

perform well. Assumption 8 is a mild assumption on ρ which is chosen by the statisticians 

and includes all the important special cases considered in the literature. In contrast, the 

theoretical results for Hahn (1998), Hirano et al. (2003), Imbens et al. (2006) and Chen et al. 

(2008) were developed only for linear or logistic models for propensity score.

Define μ0 ≜ [Y (0)], μ1 ≜ [Y (1)],  and , 

which are finite by Assumption 2. We have the following theorem.

 Theorem 1—Under Assumptions 1–8, we have

a.

;

b.

, where

 attains the semi-
parametric efficiency bound as shown in Robins et al. (1994) and Hahn (1998).

A detailed proof of Theorem 1 will be provided in the supplementary materials. We note that 

our global efficiency result is substantially more general than existing results in the 

literature, in which global efficiency for weighting estimators has only been established for 

two particular estimators for the propensity score: the series least square estimator (Hahn; 

1998; Chen et al.; 2008), and the maximum likelihood series logit estimator (Hirano et al.; 
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2003; Imbens et al.; 2006). The proof of lemma B.2 in Chen et al. (2008) relies crucially on 

the least square property of the projection of T on the approximation basis. The validity of 

the result in Hirano et al. (2003) requires a key fact about the least square projection of 

 onto a transformed approximation basis 

, where π*(x) is defined in terms of the limit of a maximum 

likelihood estimator under a logistic regression model. Their projection argument yields an 

asymptotically negligible residual term only when the series maximum likelihood logit 

estimator is used. We are able to establish the global efficiency results for any strictly 

concave ρ satisfying Assumption 8 because we employed a different and more delicate 

projection argument. We studied a weighted least square projection of − (Y (1)|X = x) and 

− (Y (0)|X = x) onto the original approximation basis uK(x), where ρ only enters the 

weights of the projection, but not the approximation basis. Our projection argument yields 

an asymptotically negligible residual term when the weights of the projection are bounded 

from above and below, which was established under our regularity conditions. Theorem 1 

holds even when the ρ functions used for computing p̂K and q̂K are different. However, we 

do not recommend this in practice, because each ρ(v) corresponds to a measure of distance 

D(v) from the unit weight, and usually there is not any justifiable reason for choosing a 

different measure for the two treatment groups.

 3. A nonparametric variance estimator

By Theorem 1, the proposed estimator attains the semiparametric efficiency bound with the 

following asymptotic variance: . 

Since the variance involves unknown functions π(x), m1(x) and m0(x), plug-in estimators 

typically involve nonparametric estimation of functions other than π(x), as in Hirano et al. 

(2003). One of the advantages of our proposed point estimator is that we do not need to 

directly estimate those functions, and it would be nice to have a variance estimator that also 

does not involve any additional estimates of nonparametric functions. Moreover, existing 

nonparametric estimators that require estimation of π(x) often fail in practice, as illustrated 

in Table 4 of the online supplementary materials. A particular thorny issue is that the 

asymptotic variance estimators often depend on the squared inverse of estimated propensity 

score, and the instability caused by extreme inverse weights is even magnified. In this 

section, we shall study a consistent asymptotic variance estimator that can be computed 

easily from the point estimator and avoids the problem of extreme weights.

Define

Chan et al. Page 14

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where θ ≜ (λ, β, τ)T. Also define θK̂ ≜ (λ̂
K, β̂

K, τ̂
K)T,  and 

. Note that θ̂K satisfies

Taylor series expansion on the left hand side at  yields

(14)

where θK̃ = (λK̃, β̃
K, τ̃

K)T lies on the line joining θ̂K and . We shall show in the 

supplementary materials that

(15)

where

and
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However, note that we are only interested in the limiting behavior of , 

which is the last element of  when N ↑ ∞, this leads us to consider the 

last row of  which is

where

Since  (the zero vector), by (3.55) in the supplementary materials we 

can get:

(16)

where . This motivates us to define our estimator 

for the asymptotic variance by:

where
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Although the construction of the proposed variance estimator did not start with a direct 

approximation of the influence function, the variance estimator can be written as 

 where

which is an estimator of the efficient influence function:

(17)

Comparing φeff and φ̂
CAL, the proposed variance estimator would have a good performance 

if −LKgK1(T, X; λ̂)+RKgK2(T, X; β̂) is a good but indirect approximation of (T −π(X))β(X). 

This is particularly true because of approximation results that are established in the proof of 

Theorem 1 for the terms (29) and (30) given in Appendix A. In summary, we have the 

following theorem:

 Theorem 2—Under Assumptions 1–8 with Assumption 2 being strengthened to 

(Y4(1)) < ∞ and (Y4(0)) < ∞, V̂
K is a consistent estimator for the asymptotic variance 

Vsemi.

The proof of Theorem 2 is given in the supplementary materials. The strengthened condition 

in Theorem 2 is mainly used in (3.71) in the supplementary materials so as to ensure the 

consistency of the asymptotic variance; and this condition is mild and naturally holds for 

practical samples. The results illuminated the advantages of using the proposed variance 

estimator for statistical inference. We note that the proposed variance estimator can pair with 

any globally efficient estimators for valid inference, since all of them are asymptotically 

equivalent. However, the computation of the proposed estimator only requires intermediate 

input from the calibration estimation and does not require direct estimation of propensity 

score or outcome regression function, therefore it pairs naturally with the calibration 

estimators.

 4. Related estimation problems

In this section we illustrate that calibration weighting can be easily extended to several 

related problems. All proofs of the main theorems in this section are very similar to that of 

Theorem 1, and they are omitted. The estimators for asymptotic variances in this section, 

namely , and Vjl for i, l ∈  = {0, …, J − 1}, J ≥ 2, and their 

corresponding consistent estimation results can be derived similarly by using the approach 

founded in Section 3.
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 4.1. Weighted average treatment effects

Our estimator can be easily extended to estimate a weighted average treatment effects

where g is a known function of the covariates. To estimate , we can define 

 and , with λ̂
K and β̂

K being replaced by 

maximizers of slightly different objective functions:

and

where . Therefore, p̂K and q̂K satisfies

(18)

and

Define . The following theorem states 

that  is efficient.

 Theorem 3—Under Assumptions 1–8, |g| is bounded from above and that [g(X)] > 0. 

Then we have

a. ;
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b. , where 

attaining the semi-parametric efficiency bound as shown in Theorem 4 of 
Hirano et al. (2003).

 4.2. Treatment effects on the treated

To estimate the average treatment effects among the treated subpopulations, we estimate

where the last equality follows from Assumption 1. Therefore, when the propensity score is 

known, τATT is a special case of τWATE with g(x) = π(x), and one can estimate τATT by 

. Following Theorem 3, we have the following results for .

 Corollary 4—Under Assumptions 1–8, we have

a. ;

b. , where 

attaining the semi-parametric efficiency bound as shown in Theorem 2 of Hahn 

(1998).

Note that (Y(1)|T = 1) is estimated by  where p̂K satisfies (18) with g(x) 

= π(x), and this estimate is more efficient than the estimator  when π(x) 

is known, because one can calibrate the treated subpopulation to  and use the full data to 

improve estimation efficiency.

When π(x) is unknown, however, the weighted average treatment effects estimator cannot be 

used. Since we want to estimate the subpopulation of the treated, it is natural to calibrate the 

control group to the treated by redefining the objective function:

where . The calibration estimator for estimating the treatment 

effects on the treated is . The next 

theorem states that τ̂
ATT is globally efficient when the propensity score is unknown.

Chan et al. Page 19

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Theorem 5—Under Assumptions 1 to 8, we have

a. ;

b. , where 

attaining the semi-parametric efficiency bound as shown in Theorem 1 of Hahn 

(1998).

 4.3. Multiple treatment groups

The calibration methods can also be easily generalized to situations with multiple treatment 

groups. Let Ti ∈  = {0, …, J − 1} where J ≥ 2 is an integer. Define μj = [Y(j)], mj(x) = 

[Y(j)|X = x], πj(x) = (T = j|X = x),  , j ∈ , and τjl = μj − μl which 

is the average treatment effects between treatments j and l. Calibration weights can be 

defined for any j ∈  by

where  maximizes the objective function:

That is, we calibrate moments of uK(X) for each group to the full data. Estimators for μj, j ∈ 

 are defined as

and the estimator for the average treatment effects between treatment j and l is τ̂
jl ≜ μ̂

j − μ̂
l.

 Theorem 6—Under Assumptions 1 to 8 with π(x) and (m1(x), m0(x)) replaced by πj(x) 

and mj(x) for j ∈ , respectively,

a.

;
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b.

, where 

.

Estimators for the weighted average treatment effects and the treatment effects of the treated 

can also be easily extended to multiple treatment groups.

 5. Data analysis

 5.1. A childhood nutrition study

We studied the performance of various weighting estimators using the 2007–2008 National 

Health and Nutrition Examination Survey (NHANES), which is a study designed to assess 

the health and nutrition statuses of children and adults in the United States. We studied 

whether participation of the National School Lunch or the School Breakfast programs 

(hereinafter, “school meal programs”) would lead to an increase in body mass index (BMI) 

for children and youths aged at 4 to 17. The school meal programs are intended to address 

the problem of insufficient food access of children in low-income families. However, a 

potential unintended consequence of the program is excessive food consumption which may 

cause childhood obesity. We analyzed 2330 children and youth at ages between 4 and 17, 

with a median age of 10, with 1284 (55%) participated in school meal programs.

Covariates in the data include: child age, child gender, race (black, Hispanic versus others), 

families above 200% of the federal poverty level, participation in Special Supplemental 

Nutrition Program for Women, Infants and Children, participation in the Food Stamp 

Program, a childhood food security measurement which is an indicator of two or more 

affirmative responses to eight child-specific questions in the NHANES Food Security 

Questionnaire Module, health insurance coverage, and the age and sex of survey respondents 

(usually an adult in the family). The estimated average difference in BMI between 

participants and non-participants, together with standard error estimates and imbalance 

measures, are all given in Table 1. Direct comparison showed that the mean BMI of 

participants was significantly higher than that of non-participants, indicating that the 

program may lead to excessive food consumption. This particular finding has a policy 

implication in that there is a need to redesign the school meal programs to promote a 

healthier diet. Using a logistic propensity score model with a linear covariate specification, 

the Horvitz-Thompson estimators using maximum likelihood estimation and the covariate 

balancing propensity score estimates of Imai and Ratvokic (2014) both yielded a consistent, 

but opposite conclusion that the participation in school meal programs led to a significantly 

lower BMI and possible malnutrition. This particular finding has policy implications in that 

current school meal programs may fail in reducing the health disparities for poorer children. 

The inverse propensity score weighted estimates (IPW) were much closer to zero than the 

corresponding Horvitz-Thompson estimators, yielding a non-significant difference in BMI 

between the participants and the non-participants. The use of different propensity score 

weighting estimators leads to an inconclusive finding. The calibration estimators gave a 

consistent result that there is a negligible mean BMI difference between the participants and 
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the non-participants. A policy implication is that the current school meal programs are 

implemented in an appropriate manner that provides assistance for the needed without an 

unintended consequence of increasing childhood obesity.

 5.2. A job training study

We further demonstrate the performance of various weighting estimators by estimating the 

treatment impact of a labor training program data previously analyzed in Lalonde (1986) and 

Dehejia and Wahba (1999), among many others.

The National Supported Work (NSW) Demonstration was a randomized experiment 

implemented in the mid-1970s to study whether a systematic job training program would 

increase post-intervention income levels among workers. Both intervention and control 

groups were present in the original NSW study. Lalonde (1986) examined the extent to 

which analyses using observational data sets as controls would agree with the unbiased 

results of a randomized experiment. His nonexperimental estimates were based on two 

observational cohorts: the Panel Study of Income Dynamics (PSID) and Westat’s Matched 

Current Population Survey –Social Security Administration File (CPS). Detailed description 

of the two data sets was given in Lalonde (1986) and Dehejia and Wahba (1999).

Dehejia and Wahba (1999) and others had analyzed the data set using different propensity 

score methodologies. Since calibration estimators are weighting estimators, we again limit 

our comparison only to other weighting estimators based on propensity score modeling. We 

combined the three data sets and created a group variable G having four categories: G = 1 

for the treated in the NSW data (N = 185), G = 2 for the controls in the NSW data (N = 260), 

G = 3 for the PSID data (N = 2490) and G = 4 for the CPS data (N = 15992). Categories 2, 3 

and 4 all served as control data because individuals in those groups did not participate in the 

job training program offered in NSW. However, Categories 2, 3, 4 had substantially different 

covariate distributions. We considered the four categories in the combined data to illustrate 

that the calibration methodology can be applied to handle multiple treatment groups. We 

studied whether PSID and CPS can be used as the controls in the original NSW data, and we 

compared the estimates for the average treatment effects in the NSW study population, 

which was treatment effects on the treated. We noted that the treated and the control groups 

in the NSW data should have the same covariate distribution because of randomization. 

Using this information, we calibrated the weights of the four groups to the combined 

covariate distribution of groups 1 and 2. We also compared our results to calibration 

estimators with weights calibrated to the treatment group G = 1 only. Since there were four 

nominal group categories, we used the multinomial logit model for propensity score 

modeling. Two covariate configurations were considered, where the calibration estimators 

matched the same variables as in the propensity score models. The first (linear) specification 

included age, an indicator for black race (black), an indicator for Hispanic race (hisp), years 

of education (ed), an indicator for being married (married), an indicator for not having an 

academic degree (nodegr), income in 1974 (re74), income in 1975 (re75), an indicator for 

zero income in 1974 (u74), and an indicator for zero income in 1975 (u75). The second 

specification included all variables in the linear specification with the following additional 

higher-order variables: age2, age3, ed2, re742, re752, ed×re74 and u74×black. These 
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variables were included in the final models for either PSID or CPS data in Dehejia and 

Wahba (1999).

We estimated the average difference of income in 1978 between the treatment group (G = 1) 

and the control groups (G = 2, 3, 4). We further examined the evaluation bias defined as the 

estimated mean difference of outcome between the NSW control group (G = 2) and the 

observational control groups (G = 3, 4). The results are shown in Table 2. Direct 

comparisons were known to be severely biased, and had a huge evaluation bias. All 

weighting estimators greatly reduced the estimated evaluation bias, but the Horvitz-

Thompson and inverse probability weighted estimator can yield very different estimates 

under the same model. Also, the estimates can change dramatically in comparing the two 

specifications of propensity score models. The calibration estimators yielded very similar 

estimates for both model specifications. Calibration to the combined NSW group had lower 

estimated standard errors compared to calibration only to the treated group. However, the 

estimates for the two calibration procedures were slightly different, probably because they 

were referring to two slightly different populations. This was possibly due to the fact that the 

analysis file of Dehejia and Wahba (1999) removed observations with a missing 1974 

income, and the missingness may be different in the treatment and control groups. Hence, 

the NSW treated and controls may not have the same covariate distribution. In general, the 

standard errors of the propensity score estimators were much larger than that of the 

calibration estimators.

An advantage of using weighting estimators is that statisticians can graphically assess 

whether covariate balance is achieved. Figure 1 shows the weighted distributions of the four 

continuous covariates age, education (ed), income in 1974 (re74) and income in 1975 (re75). 

We compared the IPW and the calibration weighted distributions for the PSID and CPS data, 

with the empirical distributions of the combined NSW sample. Propensity score modeling 

and calibration were done using the non-linear model specification as in Dehejia and Wahba 

(1999). The calibration weighted distributions in both PSID and CPS data were close to the 

empirical distributions from the NSW data. However, the IPW weighted distributions 

showed a substantial difference for some variables, such as age, re74 and re75 in the PSID 

data and ed in the CPS data. Even when we matched a small number of moment constraints, 

the calibration weights performed well in matching the full covariate distributions between 

the non-experimental groups and the NSW data.

We further examined the performance of the proposed standard error estimators by 

comparing them to bootstrap estimates based on 1000 replications and standard error 

estimates that treat the weights as given and fixed. The corresponding results for the 

calibration estimator under the linear specification are given in Table 3. The proposed 

standard error estimates were very close to the bootstrap standard errors, but the standard 

error estimators which treated the weights as if they were fixed can greatly underestimate the 

variability of the calibration estimators. For instance, when we ignored the variability of the 

estimated weights, the standard error estimates for the CPS data were much smaller because 

of their large sample sizes. However, the true estimation variability can be more than 6 times 

larger because the weights were constructed by calibrating to the combined NSW data which 

had a much smaller sample size. Therefore, ignoring estimation variability of calibration 
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weights can lead to a misleading inference. For a correct inference, one cannot rely on 

variance estimates that treat the weights as fixed, which was suggested in Section 3.4 of 

Hainmueller (2012).

 6. Discussions

We studied a large class of calibration estimators for efficient inference of the average 

treatment effects. Calibration weights removes imbalance in pretreatment covariates among 

the treated, controls and the combined group. By directly modifying the misspecified 

uniform weights, we do not directly model or estimate the propensity score. We show that 

balancing covariate distribution alone can achieve global semiparametric efficiency, and we 

also propose a consistent asymptotic variance estimator which outperforms other estimators 

that involve direct approximation of the influence function.

While we considered calibration estimators that modify the uniform weights, calibration can 

be constructed to modify the Horvitz-Thompson weights. However, this formulation requires 

an additional direct modeling and estimation of propensity score. If π̂(x) is an estimated 

propensity score function, a class of calibration weights can be defined by

where λ̂
K ∈ ℝk maximizes the objective function

and

where β̂
K ∈ ℝK maximizes the objective function

This type of calibration procedure is discussed in detail in Chan and Yam (2014). We now 

focus on the special case that K = 1 and u ≜ uK ≡ 1, together with λ and β being set as 

scalar parameters. The balancing equation for the treated becomes
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Therefore,  and the corresponding calibration weight is 

. Similarly, 

. This yields the ratio-type IPW 

estimator. Therefore, the construction of IPW from HT estimators can be viewed as a 

calibration procedure. When π̂ is a series logit estimator, Hirano et al. (2003) and Imbens et 

al. (2006) show that the ratio-type IPW estimator is globally asymptotically efficient. Note 

that u is one-dimensional regardless of sample sizes. Therefore, when π is estimated by a 

series logit estimator, global efficiency can be achieved when uK has a fixed dimension. 

However, our global efficiency results require uK to have an increasing dimension with N 
because propensity score was not directly estimated.

In practice, we suggest to choose uK(X) to be the first and possibly higher moments of 

candidate covariates. When the covariate distributions of the treated and the controls differ 

only by a mean shift, matching the first moment of X would be sufficient for removing 

imbalance. When the variances differ, one can also match the second moment. Matching 

moments of covariate distributions are intuitive to non-statisticians. We can also graphically 

check whether the choice of uK(X) is sufficient as in Figure 1. A noticeable difference in the 

weighted distributions comparing the treated and the controls would suggest that additional 

moment conditions are needed. Furthermore, we can choose K by a graphical method or by 

cross-validation. Since the parameter K controls the number of moment conditions for 

matching to eliminate the bias from confounding, the choice of K is therefore analogous to 

the selection of number of confounders in regression modeling, for which a graphical 

method was discussed in Crainiceanu et al. (2008). Inspired by that paper, we propose the 

following graphical method for choosing K. From the unweighted sample, we calculate the 

total standardized imbalance measure for each candidate uK(X), and rearrange them in a 

descending order of the imbalance measure. Then for k = 1, 2, …, we plot the point 

estimates and the 95% confidence intervals by matching the first k moment conditions. The 

bias would vanish when enough moment conditions are balanced, therefore the difference 

between consecutive point estimates will stabilize. Identify a region such that the the 

difference between consecutive point estimates is small, and within this region we can 

choose K such that the corresponding confidence interval is the shortest. Alternatively, K 
can be chosen by cross-validation. The moment conditions are matched in a training subset 

of the full data, while the weights are created in a complementary testing set and a total 

imbalance measure is calculated for the test data. This process is repeated over different 

partitions of data, and we choose K such that the average imbalance measure is minimized. 

While K can be chosen by the above methods, we would like to remark that Theorems 1 and 

2 hold for a broad ranges of K and our simulation results given in the online supplementary 

materials show that the performance of the calibration estimators are insensitive to the 
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choice of K when all relevant covariates are included. This is because our estimator involves 

the summation of linear functions of p̂K(Xi) and q̂K(Xi), and the summation of functions of 

nonparametric estimators are typically insensitive to the selection of the tuning parameter 

(Maity et al.; 2007), known as the double-smoothing phenomenon.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 Appendix A. Asymptotic expansion of the calibration estimators

The technical proofs for the lemmas and theorems are given in the supplementary materials. 

Here we present an asymptotic expansion of the empirical balancing estimator, which will 

be the key to these proofs.

Define

Now we have the following decomposition of our empirical balancing estimator in Theorem 

1(b),

(19)
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(20)

(21)

(22)

(23)

(24)

(25)

(26)
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(27)

(28)

(29)

(30)

(31)

(32)

Since  and  have a symmetric structure, 

we only need to consider the terms (19), (21), (23), (25), (27) and (29), and then apply the 

similar arguments to the terms (20), (22), (24), (26), (28) and (30). We shall show that the 

sum (31) + (32) asymptotically follows a normal distribution, while all the remaining terms 

are of order op(1). A key challenge of the proof is to show the asymptotic order of (29) and 

(30), because they link all the unknown functions (π(x), m1(x), m0(x)) with the calibration 

weights and balancing moment conditions. This is overcome by using a novel weighted 

projection argument.

 Appendix B. Dual formulation of calibration estimators

We derive the dual of the constrained optimization problem (5) by using the methodology 

introduced in Tseng and Bertsekas (1987); the dual of (6) follows by a similar argument. 

Define EK×N ≜ (uK(X1), …, uK(XN)), si ≜ 1 − TiNpi, i = 1, …, N, s ≜ (s1, …, sN)T and f(v) 

≜ D(1 − v), then we can rewrite the problem (5) as
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For every j ∈ {1, …, N}, we define the conjugate convex function (Tseng and Bertsekas; 

1987) of Tjf (·) to be

where the third equality follows by noting that Tf(1−TNpj) = Tf (1 − Npj), and  satisfies 

the first order condition:

By defining ρ(z) ≜ f((f′)−1 (z)) + z − z · (f′)−1 (z), then

By Tseng and Bertsekas (1987), the dual problem of (5) is

where Ej is the j-th column of EK×N, i,e., Ej = uK(Xj).

Since D is strictly convex, f″(v) = D″(1 − v), and hence f is also strictly convex and f′ is 

strictly increasing. Note that

differentiating with respect to v both sides of the latter equation yields:

which also implies
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since f″ > 0. Further differentiating with respect to v of the above equation, we get ρ″(f′(v)) f
″(v) = −1, which implies

By also working backward, the convexity of D is equivalent to the concavity of ρ.
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Fig. 1. 
Weighted covariate distributions for the Lalonde (1986) data

Solid lines ( ): Empirical distribution from the NSW data. Dashed lines (------): 

Calibration weighted distributions. Dotted lines (···········): Inverse probability weighted 

distributions. CDF: Cumulative distribution function.
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Table 3

Comparisons of standard error estimates for the Lalonde (1986) data.

(a) Treatment Effects

NSW data PSID data CPS data

Proposed 667 716 668

Bootstrap 672 737 666

Fixed 643 300 111

(b) Evaluation Biases

Proposed 556 487

Bootstrap 612 500

Fixed 254 92

Bootstrap estimates were based on 1000 replicates.
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