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Introduction
According to traditional belief, mammals do not produce 
new neurons from precursors (neurogenesis) into adult-
hood. In 1965, Altman and Das published groundbreak-
ing anatomical evidence indicating the existence of adult 
neurogenesis in rats.1 Since then, the research field of adult 
neurogenesis has exploded. It is now widely accepted that 
neurogenesis occurs in limited regions such as the subgran-
ular zone (SGZ) of the hippocampal dentate gyrus (DG) 
and the subventricular zone (SVZ) of the lateral ventricle/
striatum in adult humans and rodents.2–5 These adult-born 
neurons function and integrate into the rest of the brain cir-
cuit.6 Furthermore, the number of newborn neurons has been 
qualified and demonstrated to be significant.7 The physi-
ological functions of adult neurogenesis include learning, 
emotions, and memory such as pattern separation, temporal 
separation, high-resolution memory, fear conditioning, and 
synaptic plasticity.8,9 Abnormal adult neurogenesis has also 
been linked to diseases such as Alzheimer’s disease (AD), 
Parkinson’s disease (PD), Huntington’s disease (HD), demy-
elinating disease, stroke, epilepsy, and depression.8,10 This 
review article discusses the molecular factors that affect adult 
neurogenesis and current evidence of associations between 
adult neurogenesis and human brain diseases.

Molecular Mechanisms of Adult Neurogenesis
Adult neurogenesis generally includes the following four 
key stages:

1.	 Maintenance and proliferation of quiescent adult neural 
stem cells (NSCs).

2.	 Fate specification.
3.	 Differentiation, maturation, and survival of the imma-

ture neurons.
4.	 Integration into the existing brain circuit.

Here, the quiescent NSCs are slow-growing, multipotent 
cells with unlimited self-renewal. After NSCs become acti-
vated, they divide asymmetrically and produce transit ampli-
fying cells (TACs) in the SVZ and transient intermediate 
progenitors (TIPs) in the SGZ. The TACs and TIPs are rapidly 
dividing cells with the potential to differentiate into neurons 
with limited ability for self-renewal. After a limited number 
of cell divisions, the TACs and TIPs give rise to the neuro-
blasts. The proliferating neuroblasts then exit the cell cycle, 
and a subpopulation survives and differentiates into newborn 
neurons that will then be integrated into the neuronal network 
in the brain (Fig. 1).11–13 Various molecular players were found 
to regulate specific stages of adult neurogenesis in mammals. 
In this section, we focus on five groups of molecular players 
that play critical roles in adult neurogenesis: morphogens, 
growth factors, neurotransmitters, transcription factors, and 
epigenetic factors.

Morphogens. Morphogens are extracellular signaling 
molecules well known for their roles in embryonic pattern-
ing and axis formation during development.14 In adult neuro
genesis, a number of morphogens were found to be critical 
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in establishing/regulating the stem cell niche, including 
Notch, sonic hedgehog (Shh), Wnts, and bone morphogenetic 
proteins (BMPs).

Notch signaling has been reported to regulate NSC 
maintenance, neurogenic niche, and newborn neuron survival 
and maturation in postnatal life. Inducible Notch1 loss-of-
function mice had increased progenitors exiting the cell cycle, 
while the mice overexpressing the intracellular portion of the 
Notch receptor (Notch intracellular domain) had decreased 
progenitors exiting the cell cycle in the adult hippocampus.15 
Inactivation of the Notch ligand Jagged1 during adult SGZ 
neurogenesis resulted in defective neural stem cell maintenance 
and proliferation in mice.16 Deletions of RBPj (recombination 
signal binding protein for immunoglobulin kappa J region), 
a downstream mediator of all Notch receptors, resulted in loss 

of neurogenesis accompanied by depletion of neural precursors 
in both SVZ and SGZ.17,18 In the lateral ventricular walls of 
adult mouse brain, Notch via its downstream target EphB2 
was implicated in maintaining the identity and plasticity of 
neurogenic niche cells.19 Notch signaling is also implicated in 
the later stages of neurogenesis such as dendrite morphology15 
and synaptic plasticity20 in newborn neurons.

Wnt/β-catenin signaling uses both paracrine and auto-
crine canonical mechanisms and regulates adult hippocampal 
neurogenesis in vitro and in vivo.21–23 Their actions span multi-
ple steps of neurogenesis, including maintaining multipotency 
of neural stem cells, enhancing neuroblast proliferation, and 
promoting neuronal fate specification.24,25 Most importantly, 
their actions on these biological processes are linked to the 
functions of the adult hippocampus. Blocking Wnt signaling 
in the DG impaired spatial and object recognition memory in 
adult rats.26

BMPs are necessary for maintaining the quiescence 
of NSCs through BMPR-IA27 in the adult DG as well as 
the differentiation and maturation of granule cells through 
BMPR-II.28

Growth factors. Growth factors are extracellular pep-
tides that function as stimulants during tissue growth and 
development.29 Lines of evidence support the critical roles 
for adult neurogenesis of the following growth factors: brain-
derived neurotrophic factor (BDNF), insulin-like growth 
factor-1 (IGF-1), and fibroblast growth factor 2 (FGF-2).

BDNF overexpression via various methods resulted in 
increased neurogenesis in adult DG30 and SVZ.31,32 Condi-
tional loss of TrkB, the membrane receptor of BDNF, resulted 
in decreased proliferation of NSCs and impaired neurogenesis 
in adult DG.33 Moreover, BDNF/TrkB signaling is required 
for survival, dendritic arborization, and integration of new-
born neurons in the adult DG.34 Research demonstrates 
that an enriched environment enhances neurogenesis in the 
adult hippocampus. Interestingly, this enhancement was not 
observed in BDNF heterozygous knockout mice.35

IGF-1 regulates various processes during adult neuro
genesis including progenitor cell proliferation, neuronal dif-
ferentiation, and maturation.36–40 Peripheral infusion of 
IGF1  increased progenitor cell proliferation and increased 
production of new neurons in the adult rat hippocampus.40 
IGF-1 overexpression in NSCs in transgenic mice increased 
NSC proliferation in the SGZ and SVZ via MEK/ERK 
pathway, and at the same time it induced differentiation of 
NSCs via the PI3K/Akt pathway.36 Blocking IGF-1 using 
antibodies in adult NSC cultures inhibited differentiation 
into neurons.38 Interestingly, an in vitro study showed that the 
diverse actions of IGF-1 could be dosage dependent. At high 
dose (100  ng/mL), it increased adult rat hippocampal pro-
genitor cell proliferation and decreased differentiation, while 
at low dose (1  ng/mL), it stimulated differentiation.39 The 
expression of endogenous IGF-1  in the adult hippocampus 
naturally decreases with age and the rate of neurogenesis. 

Quiescent NSCs

Proliferation
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Integration
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Figure 1. Key stages of adult neurogenesis. The quiescent neural 
stem cells (NSCs) start to proliferate to generate the transit amplifying 
cells (TACs). The TACs undergo fate specification and give rise to the 
neuroblasts. The neuroblasts differentiate into immature neurons. The 
immature neurons migrate and get integrated into the brain circuit to 
become fully mature neurons.
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Research demonstrates that restoration of IGF-1 levels by 
intracerebroventricular infusion increased the rate of neuro-
genesis by approximately threefold. This suggests that changes 
in endogenous IGF-1 levels may underline age-related decline 
of neurogenesis.37 A recent study identified another IGF – 
IGF2 – as a novel adult neurogenesis regulator. Transcriptome 
analysis showed that IGF2 was expressed in the DG NSCs at 
a significantly higher level than in immature neurons in adult 
mice, and it governs NSC proliferation in vitro and in vivo via 
AKT-dependent pathway.41

Conditional overexpression of an activated FGF receptor 
in adult neural precursor cells increased the production of new 
neurons, whereas conditional deletion of the FGF receptors 
in these cells decreased NSCs, progenitor cells, and immature 
neurons in mice. Interestingly, overexpression of the activated 
FGF receptor in older mice was able to restore the age-related 
decline in neurogenesis.42 Similarly, intracerebroventricular 
FGF-2 infusion increased production of new dentate granule 
cells and their dendritic growth in the hippocampus in middle-
aged rats.43

Neurotransmitters. A number of neurotransmitters are 
involved in adult neurogenesis including gamma-aminobutyric 
acid (GABA), dopamine, glutamate, and serotonin.44

GABA, an inhibitory neurotransmitter, was shown to 
be a critical niche signal regulating activation and prolifera-
tion of quiescent adult NSCs, granule cell maturation, and 
migration. It is secreted from neuroblasts, and its receptor 
GABAA ion channel is present on NSCs and their progeny. 
The neuroblast-derived GABA inhibits NSC proliferation, 
forming a negative-feedback mechanism in maintaining 
neurogenesis homeostasis.45,46 Similarly, GABA derived 
from local parvalbumin-expressing interneurons in the DG 
restored quiescence of NSCs following proproliferative neu-
ronal activities such as social isolation.47 GABAA receptor 
loss-of-function caused NSCs to rapidly exit from quiescence 
and start symmetrical self-renewal.47 In the anterior SVZ, 
GABA was also released from astrocyte-like cells, which sur-
round the migrating neuroblasts. Here, it slowed down neu-
roblast migration en route to the olfactory bulb (OB) through 
the same receptor.48

Transcription factors. A number of transcription fac-
tors including sex-determining region Y-box 2 (Sox2), Orphan 
nuclear receptor TLX, forkhead box O proteins (FoxOs), pros-
pero homeobox 1 (Prox1), neuronal differentiation (NeuroD), 
Kruppel-like factor 9, paired box protein (Pax6), and neurogenin 
2 (Neurog2) were found to regulate adult neurogenesis.44

TLX is required for NSCs to self-renew and maintain 
undifferentiated state in both adult SVZ49 and hippocampus50 
through the canonical Wnt pathway.51 Furthermore, deletion 
of TLX resulted in impaired spatial learning in adult mice.52

Sox2 regulates different stages of adult neurogenesis 
including precursor cell proliferation, neuronal maturation, 
and migration. Sox2 null mutant mice had impaired pre-
cursor cell proliferation with a decreased production of new 

neurons.53 Sox2 knockdown mutant mice had impaired 
neuronal maturation, abnormal morphology and migration, 
and diseased number of GABAergic neurons.54

Epigenetic factors. Epigenetic factors are molecules 
that modify gene expression via mechanisms such as DNA 
methylation and histone modification. Those modifications 
are heritable but do not involve DNA mutations and are 
therefore termed epigenetic.53 Various epigenetic factors were 
reported to regulate adult neurogenesis including methyl-
CpG-binding domain protein 1 (Mbd1), MYST family 
histone acetyltransferase Querkopf (Qkf), mixed-lineage leu-
kemia 1  (Mll1), polycomb complex protein (Bmi-1), histone 
deacetylase 2 (HDAC2), and microRNAs (miR124, 137, 184, 
185, and 491-3p).44,55–57

Mbd1 is critical for adult hippocampal neurogenesis 
and spatial learning by inhibiting proliferation and promot-
ing differentiation.58–60 Mbd1 functions through at least two 
arms. It directly binds to the FGF-2 promoter and induces 
its methylation. As a result, the mitogen FGF-2 expression 
was downregulated allowing for differentiation to occur.60  
The second arm involves the downregulation of miR-184 
by Mbd1. miR-184 is a microRNA that promotes prolifera-
tion and inhibits differentiation by inhibiting the expression 
of Numb1 (Numblike 1, a regulator of brain development). 
When miR-184 is downregulated by Mbd1, it results in inhi-
bition of proliferation.59

Qkf is a MYST family histone acetyltransferase expressed 
in the SVZ of the adult brain. The Qkf-deficient mice had 
reduced adult neurogenesis. The number of interneurons in 
the OB decreased, accompanied by a reduction in the number 
of NSCs and migrating neuroblasts in the rostral migratory 
stream. Furthermore, NSCs isolated from Qkf-deficient mice 
exhibited reduced both self-renewal and the ability to differ-
entiate into neurons.61

Adult Neurogenesis in Brain Diseases
The association between adult neurogenesis and brain diseases 
is studied in both human and animal models. This section 
focuses on reports directly related to human, either by immuno
histochemical labeling of neurogenic markers in postmortem 
brain tissues or by magnetic resonance imaging (MRI).

Alzheimer’s disease. AD is characterized by widespread 
neurodegeneration throughout the basal forebrain, the cortex, 
and the limbic system. The hallmarks of AD include deposition 
of amyloid plaque and formation of neurofibrillary tangles.62,63 
Some studies have found reduction of neuronal progenitor 
proliferation with bromodeoxyuridine labeling in aging rats64 
and AD mouse models.65,66 However, to date, studies on 
postmortem brain tissues of AD patients using immunohisto
chemical staining against neurogenic markers showed alter-
nations in neurogenesis with inconsistent patterns. Elevated 
hippocampal expressions of neurogenic marker proteins, such 
as DCX, PSA-NCAM, TUC-4, and NeuroD, were found in 
particular in the granule cell layer of SGZ,67 suggesting higher 
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level of neurogenesis in AD. In another study, both Nestin and 
PSA-NCAM showed significantly higher immunoreactivities 
in patients, and the increase correlated with the progression of 
the disease.68,69 However, the neurogenic marker Musashi-1 
(Msi1) immunoreactivities were significantly lower in the 
AD patients,68,69 as well as choline-acetyltransferase, which is 
an indicator of a reduction of cholinergic activity.68 Another 
study showed that neurogenic markers Sox 2 and DCX were 
downregulated accompanied by an increase in NSC quies-
cence regulator BMP6.70 These discrepancies might be due to 
the differential expression of certain biomarkers but not others 
(for example, Msi1 vs. Nestin).63 The differences reflect partic-
ular stages of AD progression or glial and vascular-associated 
changes independent of modulation of neurogenesis.71,72 Fur-
thermore, a recent study identified proliferating cell nuclear 
antigen (PCNA)-positive cells within the CA regions that 
lacked amyloid beta pathology. These cells were not colabeled 
with astrocyte maker glial fibrillary acidic protein (GFAP) but 
with Iba1, a microglial marker, in the CA regions as well as 
the DG and SGZ.73 Iba1-positive cells often formed a concen-
tric ring around amyloid plaques and were found in proximity 
of plaque pathology.73

In general, microglia are activated by brain damage to 
release cytokines such as toll-like receptors (TLR-2 and 
TLR-4), tumor necrosis factor α, and interleukin 1 beta.74,75 
These cytokines activate astrogliosis.76,77 During AD pro-
gression, degradation of astrocytes and the migration and 
congregation of microglia within neuritic and dense-core 
plaques are commonly seen.78 The proliferation of microglia 
is likely to be a critical step to initiate these changes.79 In 
fact, the microglial activity could regulate neurogenesis in its 
own right.79,80

Parkinson’s disease. PD is a progressive, chronic neuro-
degenerative disorder that is associated with the degeneration 
of dopaminergic neurons of the substantia nigra located in the 
midbrain. The pathological hallmarks of PD are accumulation 
of alpha-synuclein and intracellular deposits to form inclusion 
bodies called Lewy bodies and filamentary Lewy neurites.81,82 
PD affects the neuronal activities at various regions of the 
brain such as the amygdala, hippocampus, and OB.83–85 With 
a limited number of studies using postmortem brain tissues of 
PD patients, the involvement of neurogenesis is largely unclear 
due to inconsistent results from different reports. In two stud-
ies, the number of cells expressing epidermal growth factor 
receptor (EGFR)86 and PCNA87 in the SVZ of PD patients 
significantly decreased compared with age-matched con-
trols. However, another study with older patients and shorter 
postmortem time observed a higher variation in the number of 
NSCs at SVG. The number of cells expressing PCNA or the 
mitotic marker phosphohistone H3 did not show significant 
differences in patients with PD pathology, with or without 
dopamine replacement therapy, compared to age- and sex-
matched controls.88 In particular, hyposmia, a reduced abil-
ity to smell and to detect odors, is one of the most prevalent 

symptoms of PD.89,90 Correspondingly, the total number of 
tyrosine hydroxylase-immunoreactive neurons in the OB was 
twice as high in the PD patients.91,92 However, the number 
of neural precursor cells decreased,87 with the OB volume 
unchanged in some studies83,84 but reduced in others.85,93,94 
Similar to AD, recent evidence also indicates that the prolif-
erating cells in the hippocampus of PD patients are predomi-
nantly microglia,95,96 probably due to the neuroinflammatory 
response to developing PD pathology.

Huntington’s disease. HD is a progressive neurode-
generative genetic disorder caused by autosomal-dominant 
mutations in the form of CAG repeats in the huntingtin 
gene located on chromosome 4.97,98 Increased cell prolifera-
tion defined by expression of PCNA in SVZ was identified 
in postmortem brains of HD patients, and the proliferating 
cells were colabeled by a neuronal marker beta III-tubulin or 
GFAP, suggesting increased neurogenesis.35 The degree of cell 
proliferation correlated with the disease severity and with the 
number of CAG repeats in the huntingtin gene.99 The thick-
ness of SVZ increased with a 2.6-fold increase in the number 
of new neurons in SVZ.100,101 Some PCNA-positive cells also 
expressed cannabinoid CB1 receptors, which are preferen-
tially lost in HD, but not with neuronal, glial, microglial, or 
oligodendrocyte markers, in SVZ of both adult normal and 
HD brains.102

Brain tumors. The multipotency and self-renewal ability 
of neural stem cells are very similar to brain tumor stem cells 
in human brain tumors. It is hypothesized and supported by 
accumulating research that NSCs within the SVZ transform 
give rise to brain tumors.103 Glioblastoma multiforme (GBM), 
the most common and most aggressive malignant primary 
brain tumor in humans, has been the focus of many studies. 
A study showed that in 93% of cases of GBM, the lesions con-
tacted at least one region of the lateral ventricular wall where 
adult neurogenesis occurs.104 Multiple MRI analyses of GBM 
cases showed that the subtypes in contact with the SVZ and 
involving the cortex were most likely to be multifocal at the 
time of initial diagnosis.105 These patients are also more likely 
to have recurrent tumors at locations distant to the initial 
lesion,105 with more rapid progression,106 and have decreased 
overall survival rate.106,107

Conclusion
Adult neurogenesis is regulated by both extracellular fac-
tors (morphogens, growth factors, and neurotransmitters) 
and intracellular factors (transcription factors and epigenetic 
factors). Their functions have been identified and related to 
specific stages of adult neurogenesis. As our understanding on 
the molecular mechanism of adult neurogenesis deepens, its 
association with a number of human diseases begins to emerge. 
Accumulating evidence has shown that adult neurogenesis is 
altered in various brain diseases such as AD, PD, HD, and 
brain tumors. However, the findings are highly variable and 
sometimes contradicting. This is most likely due to the use of 
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different approaches, different markers, or the examinations 
of different disease stages. More efforts with standardized 
methods and specific stages of the diseases are necessary to 
elucidate the associations between adult neurogenesis and 
these brain diseases.
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