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Abstract

The perceived speed of moving objects has long been known to depend on image contrast. 

Lowering the contrast of first-order motion stimuli typically decreases perceived speed – the well-

known “Thompson effect”. It has been suggested that contrast-dependent biases are the result of 

optimal inference by the visual system, whereby unreliable sensory information is combined with 

prior beliefs. The Thompson effect is thought to result from the prior belief that objects move 

slowly (in Bayesian terminology, a “slow speed prior”). However, there is some evidence that the 

Thompson effect is attenuated or even reversed at higher speeds. Does the effect of contrast on 

perceived speed depend on absolute speed and what does this imply for Bayesian models with a 

slow speed prior? We asked subjects to compare the speeds of simultaneously presented drifting 

gratings of different contrasts. At low contrasts (3–15%), we found that the Thompson effect was 

attenuated at high speeds: at 8 and 12 deg/s, perceived speed increased less with contrast than at 1 

and 4 deg/s; however, at higher contrasts (15–95%), the situation was reversed. A semi-parametric 

Bayesian model was used to extract the subjects’ speed priors and was subsequently improved by 

combining it with a model of speed tuning. These novel findings regarding the dual, contrast-

dependent effect of high speeds help reconcile existing conflicting literature and suggest that 

physiologically plausible mechanisms of representation of speed in the visual cortex may need to 

be incorporated into Bayesian models to account for certain subtleties of human speed perception.
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 1. Introduction

Perception has long been known to be susceptible to illusions and biases. Research on visual 

motion perception in particular has revealed several types of those illusions and biases, such 

as motion-induced blindness (Bonneh, Cooperman, & Sagi, 2001; Ramachandran et al., 

1991), a preference for cardinal directions (Rauber & Treue, 1998; the motion equivalent of 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
*Corresponding author. 

HHS Public Access
Author manuscript
Vision Res. Author manuscript; available in PMC 2016 June 21.

Published in final edited form as:
Vision Res. 2014 April ; 97: 16–23. doi:10.1016/j.visres.2014.01.012.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by/3.0/


the oblique effect, Appelle, 1972), illusory “infinite regress” (Tse & Hsieh, 2006) and the 

dependence of perceived speed on stimulus contrast (Blakemore & Snowden, 1999; 

Hawken, Gegenfurtner, & Tang, 1994; Hürlimann, Kiper, & Carandini, 2002; Stocker & 

Simoncelli, 2006; Stone & Thompson, 1992; Thompson, 1982; Thompson, Stone, & Swash, 

1996, among others). The effect of contrast on perceived speed has been extensively studied 

in both first (Brooks, 2001; Hawken, Gegenfurtner, & Tang, 1994; Hürlimann, Kiper, & 

Carandini, 2002; Stone & Thompson, 1992; Thompson, 1982) and second-order (Ledgeway 

& Smith, 1995) motion; in luminance-based and color-based (Cavanagh, Tyler, & Favreau, 

1984; Hawken, Gegenfurtner, & Tang, 1994) motion; using narrowband (Müller & Greenlee, 

1994; Thompson, 1982; Thompson, Brooks, & Hammett, 2006) and broadband (Blakemore 

& Snowden, 1999; Stocker & Simoncelli, 2006) artificial (such as gratings) as well as 

natural stimuli (such as a virtual environment simulating the viewpoint of a driver of a road 

vehicle Snowden, Stimpson, & Ruddle, 1998). The majority of these studies have found that 

decreases in contrast cause decreases in perceived speed: a high-contrast stimulus moving at 

the same speed as a low-contrast one appears faster.

While the effect of contrast on speed could be a limitation or an artifact of the visual system, 

several researchers propose that this (and other) biases may in fact be the result of optimal 

inference by the visual system in the face of uncertainty and internal and/or external noise. 

In particular, it has been suggested that perception can be thought of as unconscious 

inference whereby incomplete or noisy sensory information is combined with internal 

expectations and thus disambiguated. If these expectations match the statistics of the 

environment, perception is optimal, in the sense that it is the best guess about the immediate 

external world. This old idea (von Helmholtz, 1962) has been used to explain various 

phenomena in motion perception. For example, in order to explain his findings on the so-

called aperture problem, Wallach postulated that the visual system expects objects to move 

slowly or be still (Wuerger, Shapley, & Rubin, 1996). The view of perception as unconscious 

inference has recently been formulated into the “Bayesian brain” hypothesis (Knill & 

Pouget, 2004; Ma, Beck, Latham, & Pouget, 2006), according to which the brain represents 

prior probabilities (expectations) and likelihoods (sensory input) and combines them into 

posterior distributions (percept) according to Bayes’ rule. In this framework, Wallach’s 

intuition is formalized by assuming a prior probability distribution that favors slow speeds. 

Such a prior has been successfully employed to explain a multitude of phenomena in motion 

perception (Bogadhi et al., 2011; Hedges, Stocker, & Simoncelli, 2011; Hürlimann, Kiper, & 

Carandini, 2002; Montagnini, Mamassian, Perrinet, Castet, & Masson, 2007; Stocker & 

Simoncelli, 2006; Weiss & Adelson, 1998; Weiss, Simoncelli, & Adelson, 2002), including 

the decrease in perceived speed as contrast decreases: at low contrasts, the sensory evidence 

is weak (the likelihood function is broader than at high contrasts) and therefore the influence 

of the prior on the final speed estimate (the mean or mode of the posterior distribution) is 

stronger.

However, a small number of studies have presented evidence for the opposite effect: in 

certain cases, low contrast results in an increase in perceived speed. In these studies, subjects 

are asked to match the speed of two drifting gratings of different contrasts presented either 

simultaneously or sequentially. The ratio of the actual speeds of the high- and low-contrast 

grating at the point of subjective equality (PSE) will be less than 1 if low contrast decreases 
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perceived speed (the high-contrast grating will have to move more slowly in order to have 

the same apparent speed). Thompson (1982) found that this ratio was indeed less than 1 for 

temporal frequencies below 8 Hz; above that, the ratio becomes greater than 1 and contrast 

has the opposite effect. By conducting his experiment at a variety of spatial frequencies, he 

concluded that this “null point” is invariant with temporal frequency and not speed (which is 

the ratio of temporal to spatial frequency): regardless of the spatial frequency used, the null 

point was at 8 Hz. In a later study however, Stone and Thompson (1992) could not replicate 

this switchover at 8 Hz: in all cases, lower contrast resulted in lower perceived speed. They 

speculated that their earlier result was a methodological artifact (subjects making judgments 

other than on speed), supported by the observation that the task became very difficult at high 

temporal frequencies. In an attempt to settle the issue, Thompson, Brooks, and Hammett 

(2006) performed a similar experiment and found evidence for a null point; however, it was 

invariant in neither temporal frequency nor speed: at a spatial frequency of 2 cycles/deg, the 

null point was 6–8 Hz (i.e. at a speed of 3–4 deg/s) whereas at a spatial frequency of 8 

cycles/deg, the null point was 10–14 Hz (or 1.25–1.75 deg/s). Meanwhile, data from other 

labs also suggested the existence of a null point at 8 Hz (Blakemore & Snowden, 1999; 

Hawken, Gegenfurtner, & Tang, 1994). Both studies used 1 cycle/deg gratings, 

corresponding to a speed of 8 deg/s. At this rate of movement, low contrast slightly 

increased perceived speed for all four subjected tested by Hawken, Gegenfurtner, and Tang 

(1994), where as Blakemore and Snowden (1999) only found this to be the case in one of the 

three subjects tested, although in another subject judgments were more veridical (low 

contrast did decrease perceived speed but less so).

Despite the wealth of data on the effect of contrast on perceived speed, the issue is not 

satisfactorily resolved. Is this effect a function of speed? For Bayesian models that assume a 

monotonically decreasing speed prior, a null point would prove problematic as it would 

imply a prior that increases beyond that point, at higher speeds. Can such a prior be 

recovered from human subjects? Furthermore, if the null point were invariant to temporal 

frequency and not speed, the role of a stimulus-independent speed prior for predictions 

would be limited.

To address these questions, we performed a speed matching experiment very similar to that 

by Thompson, Brooks, and Hammett (2006) using more subjects, each providing a larger 

number of PSE measurements than in previous studies. Experimental parameters were 

similar to those used in existing literature in order to allow direct comparisons. Using the 

Bayesian model of Stocker and Simoncelli (2006), we also extracted the priors and 

likelihood widths of our subjects. Furthermore, we explored the “ratio model” put forth by 

Thompson, Brooks, and Hammett (2006) as a non-Bayesian alternative that explains their 

null point findings. We found that the ratio model alone cannot account for our data but a 

combination of the Bayesian and ratio model offers an improvement over the Bayesian 

model alone.
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 2. Psychophysical experiment

 2.1. Methods

Six subjects participated in a 5-day experiment similar to Stocker and Simoncelli (2006): a 

2-AFC task where subjects were asked to compare the speeds of two drifting gratings, a 

reference and a test one, that were presented on a Samsung 2043BW LCD monitor on either 

side of a central fixation point on a uniform midgray background. Each grating was viewed 

through a circular aperture of 3 degrees of visual angle in diameter. The aperture centers 

were 6 deg to the left and right of the fixation point. The speed of the reference grating was 

held constant in each condition tested while the speed of the test grating was adjusted 

through a QUEST staircase procedure (Watson & Pelli, 1983) until the gratings appeared to 

move at the same speed. Each staircase terminated after 35 trials, at which point the best (the 

mode of the posterior pdf of the QUEST algorithm) estimate of the speed of the test grating 

at the point of subjective equality (PSE) was recorded. The position (left/right) of the 

reference grating varied randomly but was kept fixed throughout a single staircase (to 

minimize adaptation effects). The spatial frequency of the gratings was fixed at 2 cycles/deg 

– the lowest of the two values used by Thompson, Brooks, and Hammett (2006) (2 and 8 

cycles/deg). Gratings had one of 3 contrast levels (3%, 15%, 95% Michelson contrast). The 

reference grating had one of 4 speeds (1, 4, 8 and 12 deg/s). Each condition corresponded to 

a unique combination of (reference and test) contrasts and reference grating speeds. Thus 

there were 12 conditions in total: 3 contrast level pairs (3%/15%, 3%/95% and 15%/95% for 

reference/test grating, respectively) times 4 reference speeds. 6 of these conditions – the 

ones corresponding to the lowest two speeds 1 and 4 deg/s – were grouped in a block of 420 

trials in total. The remaining conditions – corresponding to the highest two speeds – were 

grouped in a block of 1680 trials. Thus in each of the 5 sessions, each subject performed 2 

staircases for each condition in the low-speed block and 8 staircases for each condition in 

the high-speed block. Each trial started with a 200 ms fixation period where only the fixation 

point was visible, followed by a 500 ms stimulus presentation, followed by a response 

period in which the screen was blank (gray) until the subject pressed the left or right arrow 

on the keyboard to indicate which of the two gratings appeared to be moving faster. Subjects 

were offered an optional short break every 10 min into the experiment and a mandatory 5-

min break every 20 min. The total duration of a session (day) was approximately 1 h.

The reason that high-speed trials were presented 4 times more often is twofold. First, 

previous research as well as pilot data indicated that speed judgments are harder at speeds 

above 8 deg/s and thus there is more variability in subject responses (Stocker & Simoncelli, 

2006; Stone & Thompson, 1992), therefore more data is necessary to obtain an accurate 

estimate. Second, by presenting high speeds more often, we wished to examine whether the 

prior favoring slow speeds would gradually change to accommodate the stimulus statistics – 

i.e. moving some probability mass towards higher speeds, in a similar fashion to our 

previous work (Sotiropoulos, Seitz, & Seriès, 2011).

 2.2. Results

We analyzed the PSE threshold from each staircase and report the average PSEs for each 

condition of each day in Fig. 2.1. Since in each trial the reference grating had a lower 
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contrast than the test grating, we will refer to the latter as the “high contrast” grating. If 

lower contrast results in higher perceived speed, the ratio of speeds of the high and low-

contrast grating (hereafter referred to as contrast-dependent bias – CDB) should be greater 

than one (because the high-contrast grating would have to move faster in order to appear as 

fast as the low-contrast one).

We first examined whether there was any notable effect of experience on CDB. A 3-way 

analysis of variance (ANOVA) on CDB with factors session number, contrast condition and 

reference speed showed that session had an effect on CDB (p < 0.04) in all but one subject. 

Data from two subjects that exhibited the highest effect of session is shown in 

Supplementary Fig. 1. However, the effect of session was nonspecific and nonmonotonic: 

there was no consistent change in CDB across sessions and certainly not an increase towards 

unity. Furthermore, when only the trials with the lowest two reference speeds are considered 

(where one would expect the greatest effect of exposure to the more frequent high speeds, as 

in Sotiropoulos, Seitz, and Seriès (2011)), ANOVAs on individual subjects’ data failed to 

show an effect of session (p > 0.1) except in one subject (where F4,30 = 3.59, p = 0.017). 

Therefore we concluded that there was no consistent perceptual change and thus data from 

all sessions was pooled, providing a rich data set for subsequent analysis and modeling.

We then examined whether CDB differed as a function of reference speed. Unlike in some 

previous reports, CDB did not exceed unity in the majority of subjects and conditions; the 

only exception was one subject (S5) at the lowest contrasts (3% and 15%) and highest speed 

(12 deg/s), although CDB was not significantly different from unity (t39 = 1.62, p = 0.114, 

two-tailed t-test). In all other cases, CDB was less than one, meaning that lowering contrast 

resulted in a decrease in perceived speed. In other words, apart from the aforementioned 

single case, there was no “null point” – a result that conflicts with that of Thompson, 

Brooks, and Hammett (2006).

It is worth noting the variability across subjects, especially with regards to the effect of 

contrast difference on perceived speed. Furthermore, when data from all subjects is pooled, 

there is a tendency towards more veridical perception as speed increases in the lowest-

contrasts condition, seen as the positive slope of the black line in the leftmost panel of Fig. 

2.1. However, the opposite tendency is seen in the highest-contrasts condition (negative 

slope of the black line in rightmost panel of Fig. 2.1). The aforementioned 3-way ANOVA 

showed that there is a marginally significant effect of speed alone (F3,1440 = 2.77, p = 

0.0402) but a highly significant interaction effect of speed and contrast condition (F6,1440 = 

9.11, p < 0.0001).

In summary, at contrasts below 15%, our results are in qualitative agreement with the finding 

of Hawken, Gegenfurtner, and Tang (1994) that as reference speed increased, the effect of 

contrast on perceived speed diminished and in one case even reversed. However, our results 

at higher contrasts (where both gratings had contrasts at least 15%) show the opposite effect: 

as reference speed increased, low contrast decreased perceived speed even more strongly.
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 3. Modeling

 3.1. Methods

To model the relationship between perceived and actual speed under various contrasts and 

reference speeds and to extract the priors and likelihoods of our subjects, we used the 

Bayesian model of Stocker and Simoncelli (2006). Briefly, in each trial, an ideal observer 

computes estimates of the speed of each grating and chooses the grating that has a higher 

estimated speed. Perceived speed is assumed to be the mode of the posterior probability 

density function (pdf) that results from the combination of prior and likelihood. The 

functional form of the prior is log-linear:

(3.1)

a is the local slope of the logarithm of the prior: the log-prior is approximated by a straight 

line within a narrow speed range but the slope a varies with speed across larger scales (such 

as across points on a log scale). To reflect the dependence of the slope on speed, we will 

hereafter denote it by a(ν). The likelihood is Gaussian with mean equal to the true stimulus 

speed and width (standard deviation) separable in speed and contrast:

(3.2)

where the dependence on contrast, h(c), obeys a physiologically motivated inverse power 

law (Sclar, Maunsell, & Lennie, 1990; Stocker & Simoncelli, 2006):

(3.3)

The posterior distribution of the estimated speed  is shown to be Gaussian with mean and 

variance

(3.4)

(3.5)

where ν is the true stimulus speed, a(ν) is the slope of the logarithm of the prior around ν 

and σ is the standard deviation of the likelihood function, which depends on both speed and 

contrast. The term a(ν)σ2(ν, c) is the prior-induced bias of the estimated speed.

The model contains 10 free parameters: 4 for each of a (ν) and g(ν) (which are not assumed 

to be any particular function of speed and thus require one parameter for each reference 
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speed used in the experiment) and 2 for h(c). With 10 free parameters, optimization is not 

trivial and local minima cannot be avoided entirely. Stocker and Simoncelli (2006) exploit 

the trial-to-trial variability in the data to sufficiently constrain their model by assuming that 

in each trial the observer samples from the two posterior pdfs and chooses the stimulus 

whose sample has the highest speed value. They thus derive an expression for the 

psychometric function

(3.6)

where  are the estimated speeds of the two gratings (reference and test). Eq. (3.6) is fit 

to the entire dataset via a maximum-likelihood procedure.

We adopt a different, computationally cheaper, approach: given the PSE for a particular 

condition, the means of the posterior for each grating are equal and thus from Eq. (3.4):

(3.7)

Since ν is known for both gratings, a(ν), g(ν) and h(c) can be fit to the data but because a(ν) 

and σ (ν, c) appear in a product in Eq. there are no unique best-fit values for them, i.e. the 

model is not sufficiently constrained as it is. However, our data consists of multiple 

staircases for each condition and the staircase-to-staircase variability can be exploited to 

constrain the model. In each session, there are 2 staircases for each of the low reference 

speeds and 8 for each of the high reference speeds. Since session number did not have a 

consistent observable effect on speed perception, data can be pooled, yielding 10 staircases 

for each of the low-speed conditions and 40 for each of the high-speed conditions. The 

squared standard error (equivalent to sample variance)  of the PSE across the 10 (or 40) 

staircases is informative: it can be shown to be proportional to the variance of the 

distribution of the test speed ν2 at the PSE and inversely proportional to the number of trials 

in a single staircase (see Appendix A.3). The pdf of the distribution of ν2 (conditioned on 

the reference speed ν1 and the fact that  at the PSE) is Gaussian with variance equal to 

the sum of variances of the likelihoods of the two gratings. In particular (see Appendix A.1):

(3.8)

where σ(ν1, c1) is written as σ1 to reduce clutter. Thus the following equation holds:

(3.9)

where N is the number of trials in a staircase (40 throughout our experiment) and α is a 

constant of proportionality. By comparing our fitting method against that of Stocker and 

Simoncelli (2006), using an independent large dataset (21 subjects) obtained with an 
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identical stimulus and task configuration and staircase procedure (Berbec, 2013, see 

Appendix A.2), α was found approximately equal to 6.6. Eq. (3.9) thus becomes

(3.10)

Using Eqs. (3.7) and (3.10), the model was fit with a least-squares procedure (lsqnonlin 

function, MATLAB). The (unnormalized) priors were reconstructed as in Stocker and 

Simoncelli (2006), by numerical integration of the fitted local slope values, according to the 

following equation (see Appendix A.4 for a derivation):

(3.11)

where a(ν) (the slope as a function of speed) was linearly interpolated using the slope values 

at the 4 reference speeds. The maximum and baseline firing rates (rmax and rbase) in Eq. (3.3) 

were set to 1 and 0.2, respectively.

 3.2. Results

The Bayesian model fits the data reasonably well; however, as seen in Fig. 3.1, the model is 

unable to capture the differential effect of speed on CDB (the interaction between contrast 

condition and speed described in Section 2.2). This is most evident with subject S5 (magenta 

triangles), who shows the strongest interaction effect: the model fit is satisfactory in the last 

two contrast conditions (middle and rightmost panels of Fig. 3.1) but not in the first contrast 

condition (leftmost panel of Fig. 3.1).

The extracted priors and likelihood widths (Fig. 3.2) are quantitatively similar to Stocker and 

Simoncelli (2006). The biggest difference is in the values of g (ν), which are somewhat 

lower for all our subjects, compared to the two representative subjects shown in Fig. 4 of 

Stocker and Simoncelli (2006); however, g(ν) and h(c) always appear in a product (Eq. 

(3.2)) and therefore there is no unique set of values for either of these functions – in other 

words, there is some degeneracy in the likelihood model. Discrepancies between our 

extracted components and those of Stocker and Simoncelli (2006) may also be due to the 

small differences in the stimuli (mainly the different trial duration and spatial bandwidth of 

the gratings) between our experiment and that of Stocker and Simoncelli (2006). It is also 

interesting to note the differences in extracted priors among subjects. In particular, S5 

exhibits a much shallower prior than S3. Finally, as in Stocker and Simoncelli (2006), the 

priors for some subjects (S1 and S5) tend to flatten at the lowest and highest speeds.

The Bayesian model of Stocker and Simoncelli (2006) provides a reasonable fit to the data 

(R2 = 0.78, SSE = 0.354) but fails to account for the observed interaction effect: in the 

model, the effect of speed on the ratio  is qualitatively the same across all contrasts 

conditions. For example, if the ratio increases with speed in one contrast condition, then it 

has to also increase in the other contrast conditions. This is because the same prior is used 

across all contrasts. Clearly, the model needs to be modified to account for the interaction. 
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One approach is the use of a different speed prior depending on contrast level: a prior for 

high-contrast stimuli that has a smaller slope at low speeds than the prior for low-contrast 

stimuli (and vice versa at high speeds). However, there is no good theoretical or empirical 

justification for such a non-parsimonious approach and its many necessary assumptions.

Another approach is to model the interaction at the level of the speed measurement, which 

corresponds to the likelihood mean in the Bayesian model. In particular, an interaction effect 

would be possible if the average value of the speed measurements depended on the physical 

stimulus speed and contrast in a nonlinear fashion, such as through a product. One possible 

choice of such a nonlinearity would be the modification of Eq. (3.4) to

(3.12)

where f (ν, c) is no longer the true stimulus speed but a nonlinear function of true speed and 

contrast. Such a nonlinearity has been proposed by opponents of Bayesian models of speed 

perception in an attempt to explain the speed-dependent effect of contrast on perceived 

speed (Thompson, Brooks, & Hammett, 2006). In their “ratio model”, itself an extension of 

the Weighted Intersection Model (WIM) of Perrone and Thiele (2002), perceived speed is 

given by the ratio of a low-pass and a band-pass temporal filter. Since these filters were 

originally proposed to model speed tuning as a result of motion-sensitive neurons in V1, it is 

natural to apply them at an earlier stage than the Bayesian computations (thought to be 

carried out in area MT, Stocker & Simoncelli, 2006). Such an early stage naturally 

corresponds to modifying the actual stimulus speed used as input to the Bayesian model – 

that is, modifying the mean of the likelihood.

The two filters proposed by Thompson, Brooks, and Hammett (2006), low-pass and band-

pass, are inseparable functions of temporal frequency (ω) and contrast (c) and their 

responses are given, respectively, by:

with

τ1 and τ2 are time constants, and sp and sm are semi-saturation constants of the filters. 

Perceived speed, as a function of temporal frequency and contrast, is then given by
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(3.13)

Eq. (3.13) thus provides the nonlinearity f (ν, c) used in Eq. (3.12).

To avoid adding new free parameters to the model, we used a nested optimization procedure 

to find the best-fitting values for these parameters and fixed them across all subjects and 

conditions before fitting the parameters of the Bayesian model. We found that the best-

fitting value for both sp and sm is 0.5, which is within the range of values used in 

(Thompson, Brooks, & Hammett, 2006). The other 3 parameters, τ1, τ2 and k, which in 

Thompson, Brooks, and Hammett (2006) (who followed Perrone & Thiele (2002)) were 

fixed to 0.0072, 0.0043 (both in units of seconds) and 4 (dimensionless), respectively, had to 

be changed for out data. In particular, k was set to 0.55 and the time constants was scaled by 

4.9, yielding 0.0353 and 0.0211 for τ1 and τ2, respectively. With these parameter values, the 

output of the ratio model is equal to the true stimulus speed at all contrasts, except at low 

speeds (up to 2 deg/s), where speed mildly decreases with contrast (Fig. 3.3, left panel).

By incorporating the ratio model of Thompson, Brooks, and Hammett (2006) in the 

Bayesian model of Stocker and Simoncelli (2006), we were able to provide a better 

description of our data (Fig. 3.4), partially accounting for the interaction effect of speed and 

contrast and yielding a 31% improvement in the fits (R2 = 0.85, SSE = 0.243). This is 

remarkable given that the number of free parameters in the combined model is the same as 

in the Bayesian model (namely 10). Note that treating the rest of the ratio model parameters 

as free resulted in minimal further improvement in fits – too small to justify the increased 

model complexity.

It should also be noted that the ratio model on its own is not able to account for our data, 

even if all of its parameters are free. The main reason for this is that there is no set of 

parameter values that results in a increase in perceived speed with increasing contrast, as is 

found in our data: up to a certain (low) stimulus speed, which corresponds to the null point 

reported by Thompson, Brooks, and Hammett (2006), the output of the ratio model 

(corresponding to perceived speed) is an increasing function of contrast but beyond that 

speed the model output is a decreasing or constant function of contrast, across the entire 

parameter space. In the Bayesian and combined models, however, perceived speed increases 

with contrast across all stimulus speeds, as seen in our data (Fig. 3.3).

The opposite effects that the ratio model and the prior of the Bayesian model have on 

perceived speed at low stimulus speeds (around 1 deg/s) are responsible for the improved 

performance of the combined model. At high contrasts, the prior-induced decrease in 

perceived speed is attenuated at low speeds due to the ratio model, matching the data better 

(Fig. 3.4, right panel). This attenuation could not be provided solely by the prior because it 

would have to apply to all contrast conditions and thus would not fit the data well.
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The extracted priors under the combined model are quantitatively similar to those of the 

original Bayesian model, with the exception of one subject (S1), whose prior is significantly 

steeper under the combined model (Fig. 3.5).

 4. Discussion

Qualitatively, our results replicate the majority of existing literature in finding that lower 

contrast decreases perceived speed in all conditions tested. Only in one of the five subjects, 

at the highest speed (12 deg/s) and only at the lowest contrasts (3% and 15% Michelson 

contrast for the two gratings) tested was there an inversion of this relationship, although this 

did not reach significance.

When we quantitatively examine the data, however, we see that at the lowest tested 

contrasts, CDB decreases as speed increases (Fig. 2.1, leftmost panel): lowering contrast 

does not decrease perceived speed as much when speeds are high. Interestingly, the situation 

is reversed at the highest tested contrasts (15% and 95% Michelson contrast) and CDB 

becomes more prominent at high speeds.

Does, then, this differential effect of contrast at high speeds depend on absolute contrast 

levels? Data from existing literature are mixed. Among the studies that have shown evidence 

that decreasing contrast increases perceived speed (Blakemore & Snowden, 1999; Hawken, 

Gegenfurtner, & Tang, 1994; Thompson, 1982; Thompson, Brooks, & Hammett, 2006), only 

that of Hawken, Gegenfurtner, and Tang (1994) used contrasts as low as the lowest ones 

used in our study. In the other 3 studies, a reference grating of either 25% (Thompson, 

1982), 64% (Blakemore & Snowden, 1999) or 70% (Thompson, Brooks, & Hammett, 2006) 

was matched against test gratings of lower contrasts. Since these three studies contradict our 

findings at comparable levels of contrast, a natural question is: are there systematic 

differences in experimental parameters (other than speed and contrast) between these 3 

studies and the rest of the literature (including the present study) that shows evidence of a 

decrease in perceived speed with decreasing contrast?.

We suggest that temporal frequency is not such a parameter; we used temporal frequencies 

at least as high as those used by all studies that found an increase in perceived speed with 

decreased contrast (Blakemore & Snowden, 1999; Hawken, Gegenfurtner, & Tang, 1994; 

Thompson, 1982; Thompson, Brooks, & Hammett, 2006). If there were a “null point” in the 

temporal frequency axis, our experiment ought to have hit it. Spatial frequency is likely not a 

factor either – we used the same value as in one of the conditions in Thompson, Brooks, and 

Hammett (2006) (2 cycles/deg). The same holds for other stimulus parameters, such as the 

type, location and drift direction of the gratings – all these parameters were similar in 

conflicting studies.

Procedural differences are also unlikely to explain why we failed to find the null point. One 

possible factor could be the different methods of determining the PSE. However, most 

studies utilized staircase procedures, often very similar – e.g. Blakemore and Snowden 

(1999) used the same maximum-likelihood-based procedure (Watson & Pelli, 1983) that we 

did. Another possible factor is the task design: the two gratings could be presented 
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simultaneously or successively and there are reports that such manipulations are important 

(Blakemore & Snowden, 1999; Stone & Thompson, 1992); indeed, two of the studies that 

conflict with ours used successive presentations (Blakemore & Snowden, 1999; Thompson, 

Brooks, & Hammett, 2006). However, the other two conflicting studies used simultaneous 

presentations (Hawken, Gegenfurtner, & Tang, 1994; Thompson, 1982).

It is possible that biases and strategies not directly related to speed perception have an effect, 

which may also be interactive with the experimental design: certain biases/strategies may be 

employed only on certain experimental setups. For example, when subjects are highly 

uncertain about the relative speed of two gratings, they may be inclined to pick the grating of 

the higher contrast as being the faster one (because it is also the most salient). Similar biases 

have been observed in 2-AFC experiments of orientation discrimination (Eero Simoncelli, 

personal communication). Furthermore, differences in the way subjects are instructed to 

perform the task may also play a role. For example, we have seen in our lab that subjects 

sometimes differ in the strategies and response biases they might use when dealing with 

uncertainty, even if the experimental conditions are identical, and in some cases this was due 

to subtle differences in instructions. There could also be a “threshold” effect of stimulus 

uncertainty: at very low contrasts and high speeds (high uncertainty), subjects may switch to 

a semi-random response strategy, for example by alternating “left” and “right” keypresses.

In regards to modeling, we have presented in this work a significantly faster model fitting 

procedure than that used by Stocker and Simoncelli (2006); instead of using every trial of 

every staircase per condition, we used just the final estimate of the staircase plus the 

variability of this estimate across staircases. Effectively, we fit the model using just 1=Nth of 

the data, where N is the number of trials in a single staircase (40 in our case). Using an 

independent large dataset (Berbec, 2013, see Appendix A.2), we compared our fitting 

method to that of Stocker and Simoncelli (2006) and, like them, we used the likelihood of 

the data under the best-fitting model as a performance metric, whereby 100% corresponds to 

the likelihood of the data when separate Weibull functions for each condition are fit to it and 

0% the likelihood under the random (coin-flipping) model. Over the entire dataset, the 

performance of our fitting method is 87%, compared to 93% of the method of Stocker and 

Simoncelli (2006). The extracted prior and likelihood components were also very similar 

between the two methods. Therefore our method can be useful during model selection/

design, allowing rapid iteration between fitting and design, until a suitable model is found, 

which can then be fit with the method of Stocker and Simoncelli (2006) for slightly more 

accurate quantitative predictions. Our method could also be used in cases where not every 

trial of the staircase is available, such as when modeling data from existing literature (where 

usually only the PSE is reported).

By incorporating the ratio model of Thompson, Brooks, and Hammett (2006) (which in 

itself is unable to describe our data, also see Fig. 3.3) as a pre-processing step in the 

Bayesian model of Stocker and Simoncelli (2006), we were able to provide an improved 

account of the interaction effect of contrast and speed. However, this improvement is 

restricted to low speeds (around 1 deg/s), where an increase in contrast causes a mild 

decrease in speed; there is no improvement at high speeds (around 12 deg/s). The observed 

interaction could be better accounted for by a model in which perceived speed (prior to the 
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Bayesian computations) decreases with contrast at low speeds but increases with contrast at 

high speeds. The simple ratio model of Thompson, Brooks, and Hammett (2006) can only 

produce the former effect – it cannot produce an increase in perceived speed with contrast at 

high speeds. It would be interesting to examine whether an extended version of the ratio 

model, for example one that incorporates band-pass filters tuned to various temporal 

frequencies, could better account for the interaction; this is left as future work. We also note 

that, unlike the Bayesian model, the ratio model seemingly constitutes a departure from a 

normative explanation of speed perception. However, the ratio model was proposed, in the 

form of the WIM model (Perrone & Thiele, 2002; Perrone, 2005), as a biologically plausible 

way of achieving variable speed tuning in MT neurons by using a small number of V1 

neurons tuned not to speeds but to a limited range of spatial and temporal frequencies. Thus, 

while the WIM model does not result in optimal perception, it can be be argued that this is 

due to biological constraints earlier in the visual hierarchy (V1) rather than an inherent 

suboptimality in the model, in much the same way as the Bayesian model is optimal under 

the assumption of noisy earlier measurements.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

 Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://

dx.doi.org/10.1016/j.visres.2014.01.012.
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Fig. 2.1. 
Mean ratio of speeds of the high (νHC) and low-contrast (νLC) gratings at the point of 

subjective equality (PSE), plotted as a function of speed, separately for each contrast 

condition. Colored points represent individual subjects; black points represent the combined 

data from all subjects. Error bars are standard error of the mean. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 3.1. 
Mean ratio of speeds of the high (νHC) and low-contrast (νLC) gratings at the point of 

subjective equality (PSE), plotted as a function of speed, separately for each contrast 

condition. Points represent experimental data (as in Fig. 2.1); lines represent predictions of 

the fitted Bayesian model. Color represents individual subjects; black represents the 

combined data from all subjects. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 3.2. 
Extracted prior (left panel); speed-dependent g(ν) (middle panel) and contrast-dependent 

h(c) (right panel) components of likelihood width σ(ν, c) in the Bayesian model. Colored 

curves are individual subjects; black curves are all subjects combined. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 3.3. 
Output of the ratio model as a function of stimulus speed for the 3 contrast values used in the 

experiment (left panel). Parameter values are from the combined (ratio + Bayesian) model 

that best fits the entire data. Inset shows the ratio model output with the parameter values 

used by Thompson, Brooks, and Hammett (2006); “perceived speed” of the best-fit Bayesian 

(middle panel) and combined (right panel) models as a function of stimulus speed. Diagonal 

dashed line corresponds to veridical perception.
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Fig. 3.4. 
Mean ratio of speeds of the high (νHC) and low-contrast (νLC) gratings at the point of 

subjective equality (PSE), plotted as a function of speed, separately for each contrast 

condition. Points represent experimental data (as in Fig. 2.1); lines represent predictions of 

the fitted combined (ratio + Bayesian) model. Color represents individual subjects; black 

represents the combined data from all subjects. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3.5. 
Extracted prior (left panel); speed-dependent g(ν) (middle panel) and contrast-dependent 

h(c) (right panel) components of likelihood width σ(ν; c) in the combined (ratio + Bayesian) 

model. Colored curves are individual subjects; black curves are all subjects combined. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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