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Altered cellular metabolism is a fundamental adaptation of cancer during rapid proliferation as a result of growth
factor overstimulation. We review different pathways involving metabolic alterations in cancers including aero-
bic glycolysis, pentose phosphate pathway, de novo fatty acid synthesis, and serine and glycine metabolism. Al-
though oncoproteins, c-MYC, HIF1a and p53 are the major drivers of this metabolic reprogramming, post-
transcriptional regulation by microRNAs (miR) also plays an important role in finely adjusting the requirement
of the key metabolic enzymes underlying this metabolic reprogramming. We also combine the literature data

gﬁ:/:rrd& on the miRNAs that potentially regulate 40 metabolic enzymes responsible for metabolic reprogramming in can-
Metabolism cers, with additional miRs from computational prediction. Our analyses show that: (1) a metabolic enzyme is fre-
MicroRNA quently regulated by multiple miRs, (2) confidence scores from prediction algorithms might be useful to help
Oncogene narrow down functional miR-mRNA interaction, which might be worth further experimental validation. By com-

Transcriptional regulation network bining known and predicted interactions of oncogenic transcription factors (TFs) (c-MYC, HIF1« and p53), sterol

regulatory element binding protein 1 (SREBP1), 40 metabolic enzymes, and regulatory miRs we have established
one of the first reference maps for miRs and oncogenic TFs that regulate metabolic reprogramming in cancers.
The combined network shows that glycolytic enzymes are linked to miRs via p53, c-MYC, HIF1«, whereas the
genes in serine, glycine and one carbon metabolism are regulated via the c-MYC, as well as other regulatory or-

ganization that cannot be observed by investigating individual miRs, TFs, and target genes.
© 2016 Pinweha et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Overall metabolic reprograming in cancers

In response to overstimulation of growth factor signaling, cancer
cells reprogram their metabolism in order to accommodate a high
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demand for macromolecules during rapid proliferation [1-4]. The hall-
mark of the above metabolic reprograming is the shift from oxidative
phosphorylation to aerobic glycolysis, known as the “Warburg effect”
[5]. This phenomenon provides some advantages to the tumors because
aerobic glycolysis allows them to survive under hypoxic conditions,
while an acidic environment selects a highly aggressive population of
cancers to survive and metastasize to distal tissues or organs [3,6].
Cancers are also highly anabolic because they require lipids, protein
and nucleic acids as constituents of the structural components of the
newly divided cells [2]. This highly anabolic phenotype is partly attrib-
uted to the Warburg effect because inhibition of pyruvate entering into
the mitochondria results in the redirection of glycolytic intermediates
to the pentose phosphate pathway (PPP), which provides biosynthetic
precursors for nucleotides and lipids [4]. Furthermore, mitochondrial
metabolism of cancers is also reprogrammed toward cataplerosis
where substantial amounts of tricarboxylic acid (TCA) cycle intermedi-
ates are used as the biosynthetic precursors of lipids and amino acids
[2]. Therefore, it is not surprising to see up-regulate expression of key
enzymes that catalyze the above biosynthetic pathways in several
types of cancers. Fig. 1 shows the overall metabolic reprogramming
pathways in cancers together with the key regulatory enzymes.
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Fig. 1. Metabolic pathways in cancers. Glucose and glutamine are two major carbon sources that are metabolized through these biochemical pathways.

Here we review the altered metabolic pathways and the relevant en-
zymes in cancers inferred from experimental and computational based
data[7-9]. We also review the oncogenic transcription factors (TFs) and
miRNAs that regulate those metabolic pathways. In addition, using
known and predicted miRNA-target gene interaction, we establish and
analyze the network of oncogenic miRNA-metabolic target gene net-
works that interplay and regulate metabolic reprograming in cancers.

1.1. miRNASs regulate metabolic pathways

Post-transcriptional regulation by microRNAs (miRNAs) has long
been known as a mechanism to silence gene expression. miRNAs are
short double stranded RNAs, comprising 15-25 nucleotides. They are
first transcribed in the nucleus as the primary miRNAs, consisting of
multiple stem loop structures, which are then subsequently digested
to precursor miRNAs (pre-miRNAs) by Drosha, an RNase III family en-
zyme [10]. Pre-miRNAs are then transported to the cytoplasm where
the hairpin structure is further removed by a dicer enzyme, yielding ap-
proximately 21 base pairs miRNA duplex. The miRNA duplex is subse-
quently incorporated in the Argonaute protein which digests one
strand of the duplex miRNA, generating a single stranded miRNA. This
single stranded miRNA is further brought to their target mRNAs by an
RNA-induced silencing (RISC) complex. Binding of single stranded
miRNAs to their targets is mediated by hybridization of 7-8 nucleotides
of the miRNAs (known as seed match) to their complementary nucleo-
tides in the 3’-untranslated regions of their targets. Such hybridization
results in translational inhibition or degradation of target mRNAs, thus
providing a means to inhibit gene expression. Furthermore, one
miRNA can bind to more than one species of mRNA targets due to a
non-stringent hybridization of the seed match region, allowing simulta-
neous down-regulation of multiple target mRNAs. In the same way,
multiple species of miRNAs can bind to the same mRNA targets and en-
hance translational inhibition [11]. It is estimated that 45,000 miRNA

target sites are found in the human genome, and these miRNAs control
expression of up to 60% of human genes [12].

miRNAs are implicated in the regulation of various biological pro-
cesses. Biochemically, miRNAs also regulate cellular metabolism either
directly by targeting key enzymes of metabolic pathways or indirectly
by modulating the expression of important transcription factors. Multi-
ple studies have revealed that the altered metabolic pathways in can-
cers are tightly regulated by miRNAs [13]. In the first half of the
review, we describe the metabolic pathways and key enzymes that
are altered in various cancers and regulated by miRNAs. This will be
followed by the second half on the regulatory networks between meta-
bolic enzymes, regulatory miRNAs and oncogenic transcription factors.

1.2. Glycolytic and pentose phosphate pathways

The Warburg effect is a primary event of metabolic reprogramming
during tumorigenesis. This effect includes induced expression of en-
zymes such as GLUT1, hexokinase 2 (HK2), phosphofructokinase 2
(PFK2) and pyruvate dehydrogenase kinase 1 (PDK1) [3]. Up-
regulation of the expression of the first three targets results in a rapid
uptake of glucose and increased glycolytic rate, while increased expres-
sion of PDK1 inactivates pyruvate dehydrogenase, restricting the con-
version of pyruvate to acetyl-CoA in the mitochondria and thus
uncoupling glycolysis from subsequent mitochondrial oxidation. In-
creased expression of lactate dehydrogenase and monocarboxylic acid
transporter 4 (MCT4) further sequesters pyruvate toward lactate pro-
duction, lowering the pH of the extracellular environment [14]. The
muscle-specific pyruvate kinase M (PKM) isoform has also been impli-
cated in metabolic reprogramming in certain cancers [15]. PKM exists
in two isoforms, PKM1 and PKM2 that have arisen from alternative
splicing of exons 9 and 10 [16]. The activities of these two enzymes
are determined by their conformers. PKM1 has a tendency to form tet-
ramers that possess high enzymatic activity while PKM2 shows relative-
ly low activity due to its main conformer being dimers. PKM1 is the
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most abundant isoform in skeletal muscle while PKM2 is highly
expressed during embryonic development. In many cancers, PKM2 is
selectively expressed, resulting in the accumulation of phosphoenolpyr-
uvate, and thus redirecting the flow of glycolytic intermediates toward
the pentose phosphate pathway (PPP) [15]. This mechanism provides
a great benefit for cancers because PPP provides the ribose-5-
phosphate and NADPH required for the synthesis of nucleotides and
fatty acids. PKM2 also plays a non-metabolic role in which it can act as
a co-activator of TFs including HIF1q, STAT3, Oct4 and B-catinin
which regulate expression of certain oncogenes [16,17]. Therefore
PKM2 switching can reprogram metabolic pathways and alter the pro-
gram of gene expression in cancers.

In response to PKM2 activation or by other mechanisms, PPP activity
has been reported to be elevated in many cancers [18]. Therefore it
is not surprising to see up-regulation of key enzymes in this
pathway including glucose-6-phosphate dehydrogenase (G6PD),
6-phosphogluconate dehydrogenase (6-PGD) and transketolase-
like enzyme [19-21]. NADPH produced by PPP is also crucial for
maintaining the proper glutathione-redox loop that cancers use to
counter the reactive oxygen species formed especially during
epithelial-mesenchymal-transition (EMT) or anoikis resistance
[22,23]. Inhibition of PPP via the use of specific enzyme inhibitors
or siRNAs targeted to their corresponding enzymes retards growth
and biosynthesis of lipid and nucleotides in many types of cancers
[21,24,25].

1.3. Mitochondrial metabolism

The tricarboxylic acid cycle (TCA cycle) provides both catabolic and
anabolic functions for living cells. In normal cells, the TCA cycle func-
tions as a central oxidation hub where acetyl-CoA derived from oxida-
tions of glucose, amino acids and fatty acids enters for complete
oxidation. However in dividing cells or cancers, the TCA cycle is used
as an anabolic hub because its intermediates are used as biosynthetic
precursors of amino acids, nucleotides and lipids, in a process known
as “cataplerosis” [26]. Mutations of certain TCA cycle enzymes such as
isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH) and
fumarate hydratase (FH) can contribute to tumorigenesis [27,28]. In
certain cancers especially glioma, mutations of the cytosolic (IDH1) or
mitochondrial (IDH2) enzymes create a novel function in which they
can further convert a-ketoglutarate to 2-hydroxyglutarate (2-HG)
[29]. 2-HG is an oncometabolite because it acts as an inhibitor of
a-ketoglutarate-dependent dioxygenase involved in DNA and histone
demethylation. Inhibition of such a process can lead to tumorigenesis
[2,29]. Similarly, mutations of the genes encoding succinate dehydroge-
nase (SDH) and fumarate hydratase (FH) result in the accumulation of
succinate or fumarate, respectively. These two metabolites are inhibi-
tors of prolyl hydroxylase (PHD), which hydroxylates hypoxia-
inducible factor 1o (HIF1av), resulting in its degradation by proteolysis.
Therefore elevated levels of both metabolites stabilize HIF1a, activating
glycolysis in cancers [27].

Cancers also require the replenishment of TCA cycle intermediates
after their removal for biosynthetic purposes. In order to prevent a dis-
continuity in the supply of biosynthetic precursors, there is a biochem-
ical pathway known as “anaplerosis” which is composed of two main
reactions, glutaminolysis [30] and pyruvate carboxylation [31].
Glutaminolysis is the conversion of glutamine to glutamate by gluta-
minase (GLS) before glutamate is further converted to a-ketoglutarate
in the TCA cycle by glutamate dehydrogenase. The second anaplerotic
reaction is the carboxylation of pyruvate to oxaloacetate by pyruvate
carboxylase (PC). Different cancers use these two different anaplerotic
reactions to certain extents, to support biosynthesis by up-regulation
of either or both enzymes during tumorigenesis [32-35]. Inhibition of
these two enzymes results in impaired growth of cancers accompanied
with marked reduction in biosynthesis of lipids, nucleotides and amino
acids [33-36]. Recent studies show that a gluconeogenic enzyme,

phosphoenolpyruvate carboxykinase (PEPCK) also plays an important
role in supporting biosynthesis of tumors [37-39]. PEPCK catalyzes a
further conversion of oxaloacetate to phosphoenolpyruvate (PEP).
This enzyme occurs in two isoforms: the cytosolic (PEPCK1 or PEPCK-
C) and the mitochondrial (PEPCK2 or PEPCK-M) isoforms. Colon cancer,
for instance, uses PEPCK1 [39] while non-small cell lung cancer uses
PEPCK2 [37,38] to supply PEP to support their growth, respectively.
However, PEP formed by both enzymes is not only converted to glucose
but also used locally as a biosynthetic precursor of serine and glycine.
Furthermore, elevated levels of PEP also drive the flow of the upstream
glycolytic intermediate glucose-6-phosphate to enter the PPP for the
synthesis of ribose sugar required for nucleotide synthesis [37,39]. In-
terestingly, this function becomes more obvious when the nutrient
that supports the growth of a tumor is shifted from glucose to glutamine
[37,39]. This adaptive mechanism enables cancers to grow and survive
under glucose-limited conditions.

1.4. Amino acid synthesis

Amino acids serve as not only the building blocks of polypeptides,
but also the precursors of nucleotides. As cancers require large amounts
of proteins and nucleic acids, it is not surprising that up-regulation of
key enzymes involved in biosynthesis of certain amino acids were ob-
served in cancer cells. Serine and glycine are essential for synthesis of
nucleotides as deprivations of these two amino acids endogenously or
exogenously, retard growth of many cancers [40]. De novo synthesis of
these two amino acids is started from 3-phosphoglycerate (3-PG), an
intermediate in the glycolytic pathway. 3-PG is then converted to
serine via a three-step reaction, in which 3-PG is first converted to 3-
phosphohydroxypyruvate by phosphoglycerate dehydrogenase
(PHGDH). 3-phosphohydroxypyruvate is further converted to serine
by another two reactions catalyzed by phosphoserine aminotransferase
(PSAT) and phosphoserine phosphatase (PSPH) [40]. As only 10% of 3-
PG in the glycolytic pool enters serine and glycine biosynthesis, this
seems paradoxical with such a high demand for both amino acids dur-
ing the rapid proliferation of cancers. However, many cancers cope
with this limitation via an aberrant activation of the serine biosynthetic
pathway by increasing the copy number of the PHGDH gene or up-
regulating its mRNA expression, resulting in much a higher rate of ser-
ine synthesis [41,42]. Serine is further converted to glycine by the serine
hydroxymethyl transferase (SHMT), a folate-dependent pathway [40].
SHMT is comprised of two isoforms, SHMT1 which is expressed in the
cytoplasm whereas SHMT2 is expressed in mitochondria. It remains
unclear about the functional redundancy of these two isoforms as
inhibiting activity of either isoform or suppressing their expression re-
tards growth in different cancer models [43-45]. Nevertheless, both
SHMT1 and SHMT2 are associated with the folate cycle, which is in-
volved in one-carbon metabolism including synthesis of methionine
and nucleotides, and in histone methylation. Thus, disruption of both
SHMT isoforms can potentially perturb these metabolic processes [40].

1.5. Lipid biosynthesis

Fatty acids especially in phospholipids are important components of
the plasma membrane. In cancers, fatty acids are mainly synthesized
through the de novo pathway either from glucose or glutamine via gly-
colysis or glutaminolysis, respectively. However, the latter pathway
plays a more significant role in this process [46]. As mentioned earlier,
glutamine enters the TCA cycle via glutamate before being converted
to a-ketoglutarate by glutamate dehydrogenase. This glutaminolytic
flux increases TCA cycle intermediate pools, enabling citrate to leave
the mitochondria to enter the cytosol where it is decarboxylated to ox-
aloacetate and acetyl-CoA by the ATP-citrate lyase (ACL). It has been re-
ported that ACL expression and activity are elevated in many cancers.
Thus, inhibition of its activity impairs lipid synthesis and is accompanied
by reduced cell growth and survival [47,48]. The cytosolic acetyl-CoA
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then serves as a precursor for long chain acyl-CoA synthesis, which is
highly regulated by two enzymes, acetyl-CoA carboxylase 1 (ACC1)
and fatty acid synthase (FAS). ACC1 catalyzes the carboxylation of
acetyl-CoA to form malonyl-CoA, a building block that donates two car-
bon units for fatty acid synthesis. ACC1 activity can be modulated by a
reversible phosphorylation. Among other kinases, the AMP-activated
protein kinase (AMP) can phosphorylate ACC1, transforming it into an
inactive form while protein phosphatase 1 dephosphorylates ACC1
back to an active form [49]. The phosphorylated ACC1 is subjected to a
second mode of regulation through interaction with a DNA repair pro-
tein, BRCA1 which is highly expressed in breast tissue [49]. This interac-
tion sequesters phosphorylated ACC1 from being dephosphorylated
thereby blocking fatty acid synthesis [50,51]. A high incidence of the on-
cogene BRCA1 mutations is associated with breast cancer because these
mutations not only result in the loss of BRCA1 function as a DNA repair
protein but also perturbs its interaction with phosphorylated ACC1,
freeing it to be dephosphorylated and subsequently stimulate lipogene-
sis in breast tissue [51,52]. ACC1 is one of the anti-cancer drug targets
because inhibiting its expression or activity induces apoptosis in many
cancers [53-55]. FAS has also been reported to be aberrantly activated
in many cancers [56-58]. Like ACC1, inhibition of FAS expression or
activity markedly reduces cancer growth [52,59,60].

1.6. Metabolic pathway crosstalk contributing to tumorigenesis

Although the crosstalk of signaling pathway is well implicated in tu-
morigenesis [61], only a few examples of metabolic pathway crosstalk
are reported in certain cancers. As mentioned earlier, accumulation of
succinate in cancers bearing mutations of succinate dehydrogenase
gene not only results in the inactivation of HIF1q, contributing to War-
burg effect but this also promotes tumorigenesis by attenuating the pro-
duction of glutathione, an important redox protein which functions in
detoxifying reactive oxygen species (ROS). Several cancers overproduce
ROS in order to enhance PI3K, MAPK and NF-kB signaling pathways that
support cellular proliferation [1]. Elevated levels of fumarate are found
to react with glutathione to form succinated glutathione thereby reduc-
ing the NADP/NADPH-couple regeneration system required to elimi-
nate ROS [62]. Similar reduction of glutathione levels was also
observed in glioma bearing IDH1 or IDH2 mutation which accumulates
2-HG, suggesting that this oncometabolite may support ROS formation
through attenuating the anti-oxidant system [63]. Warburg effect may
also enhance tumorigenesis via conversion of fructose-6-phosphate
into hexosamine biosynthetic pathway, yielding O-linked N-
acetylglucosamine that can enhance mitogenic signaling pathway [64].

1.7. Coordinate regulation of metabolic reprogramming in cancers by
oncogenic transcription factors

Having outlined different pathways and mechanisms of metabolic
reprogramming in cancers, an important question remains: what con-
trols this metabolic reprogramming in cancers? Three major TFs, name-
ly c-MYC, hypoxia inducible factor 1o (HIF1at) and p53 are responsible
for simultaneous up-regulation of the above key metabolic enzymes
[65]. Aberrant expression of c-MYC is observed in more than 50% of can-
cers and it is one of the most amplified oncogenes. The c-MYC regulates
various biological processes including proliferation, apoptosis and met-
abolic reprogramming [66]. Elevated c-MYC levels in turn bind to its tar-
get gene promoters, which contain a canonical E-box (CANNTG)
element, resulting in increased mRNA transcripts. In normal situations,
c-MYC expression is tightly regulated i.e., its expression is high during
cell division but rapidly declines during cell cycle arrest [67]. In situa-
tions of metabolic alterations, c-MYC targets expression of genes
encoding GLUT1, HK2, PDK1 and GLS1 [65,66,68].

The hypoxia-inducible factor (HIF1at), another key oncogenic TF, is
functionally coordinated with c-MYC in controlling metabolic
reprogramming in cancers [69]. HIF1« exists into two forms: the non-

hydroxylated and the hydroxylated forms. In the presence of oxygen,
HIF1ae undergoes hydroxylation by prolyl hydroxylase, making it
prone to proteolysis. However, when oxygen concentration is low,
HIF1a escapes hydroxylation, allowing it to enter to the nucleus
where it is hetero-dimerized with HIF1@3 and binds to the hypoxia-
responsive element (HRE) in the promoters of genes whose products
are involved in angiogenesis and metabolism [3]. HIF1a's metabolic tar-
gets appear to overlap with those of c-MYC, including GLUT1, GLUT3,
HK1, HK2, aldolase A, phosphoglycerate kinase (PGK), lactate dehydro-
genase (LDH), monocarboxylic acid transporter 4 (MCT4), PDK1 and
PKM2 [65,70].

Unlike c-MYC and HIF1q, p53 functions as a tumor suppressor pro-
tein. Expression of p53 is highly regulated as its expression is essentially
low in unstressed cells whereas it becomes highly expressed under
stress conditions such as oxidative damage, nutrient limitations and
DNA damage [67]. De-regulation of p53 expression caused by mutations
is associated with more than half of all cancers [71]. As a transcription
factor, p53 binds to the promoter of other tumor suppressor genes
such as those involved in cell cycle arrest, DNA repair, apoptosis and
metabolism. In addition, p53 can regulate turnover of many proteins in-
dependently of transcription [67]. In regard to its regulatory roles on
metabolism, p53 inhibits expression of GLUT1, GLUT3, GLUT4, phospho-
glycerate mutase 1 (PGM 1), and thus blocking excessive entry of glu-
cose through glycolytic flux [67,72]. p53 inhibits expression of MCT1
and PDK2 while activates expression of PDH1a subunit of PDH complex
thereby coupling glycolysis with oxidative phosphorylation [73]. The
p53 also down-regulates biosynthesis by decreasing the activity and
abundance of glucose-6-phosphate dehydrogenase (G6PD) [74] and de-
creasing expression of malic enzymes ME1 and ME2 [67,73]. As these
three enzymes provide NADPH for biosynthesis, reducing their expres-
sion or activities would favor oxidative rather than biosynthetic path-
ways. In addition to controlling pathways that provide NADPH, p53
can also regulate de novo fatty acid synthesis via down-regulating the
expression of the sterol regulatory protein 1c (SREBP1c), which is a
key transcriptional factor controlling expression of ACL and FAS genes
[73]. Therefore, loss-of-function mutations of p53 in cancers literally
shift their metabolic phenotype from an oxidative fate to aerobic glycol-
ysis and anabolism. The p53 protein also targets degradation of PEPCK
and G6Pase in non-small cell lung cancer [75,76].

1.8. Expanding the repertoire of miRNA target of the alterative expressed
metabolic genes in cancer using computational prediction

It has now become clear that many cellular genes including those
encoding metabolic enzymes are regulated by miRNAs [13]. Several
studies have identified regulatory miRNAs of the key enzymes responsi-
ble for metabolic reprogramming while some miRNAs regulate the ex-
pression of oncogenic TFs (e.g. c-MYC, HIF1a and p53), which in turn
regulate expression of those metabolic enzymes. Despite an increasing
number of studies on regulation of metabolic genes through miRNAs
in cancers, it is clear that the list of studies on miRNA-regulated meta-
bolic enzymes in cancers is nowhere close to the completion. Further-
more, it is still not known whether some key metabolic enzymes e.g.
HK1, Aldolase, MCT4, SHMT2, ACC1, can be regulated by certain
miRNAs. Thus, here we sought to explore the repertoire of miRNAs
that target expression of key enzymes involved in metabolic
reprogramming in cancers by combining known interactions from liter-
ature (Table 1) and computational prediction (Supplementary Tables S1
and S2). One of the most important challenges of computational predic-
tion of miRNA is the specificity of the prediction algorithms, which are
known to give a large number of false positives. To this end, we exam-
ined whether the prediction miRNAs are consistent with the functional
validation shown in Table 1, and the predicted miRNA-mRNA interac-
tions that would potentially be worth following up experimentally.

The most frequently used algorithms and webtools currently avail-
able for miRNA prediction include miRanda-mirSVR [77,78], DIANA-
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Table 1
A list of 40 metabolic enzymes that are involved in metabolic reprogramming in cancers.
Enzyme Full name Gene miRNA References
Aerobic glycolysis, Warburg effect
GLUT1 Glucose transporter 1 NM_006516 miR-1291 [123] [124-126]
GLUT2 Glucose transporter 2 NM_000340 N/A [124]
GLUT3 Glucose transporter 3 NM_006931 miR-195-5p [127], [124,129,125,126]
miR-106-5p [90,128]
GLUT4 Glucose transporter 4 NM_001042 N/A [124,130,125]
HK1 Hexokinasel NM_000188 N/A [3]
HK2 Hexokinase2 NM_000189 miR-143 [131] [132] [133,3]
Aldolase A Aldolase A NM_000034 N/A [134]
PGAM1 Phosphoglycerate mutase 1 NM_002629 N/A [135]
PKM2 Pyruvate kinase 2 NM_002654 miR-122, miR-133a, [139,140]
miR-133b,miR-326
[136-138]
LDHA Lactate dehydrogenase A NM_005566 miR-21 [141] [142,143]
MCT1 Monocarboxylate transporter 1 NM_003051 miR-124 [144] [145]
MCT4 Monocarboxylate transporter 4 NM_004696 N/A [145,146]
Pentose phosphate pathway
G6PD Glucose-6-phosphate dehydrogenase NM_000402 miR-206, miR-1 [120] [20]
TKTL1 Transketolase-like1 NM_012253 miR-206, miR-1 [120] [19]
Gluconeogenesis
PCK1 Phosphoenolpyruvate carboxykinase 1 NM_002591 N/A [39]
PCK2 Phosphoenolpyruvate carboxykinase 2 NM_004563 N/A [38,37]
Tricarboxylic acid (TCA) cycle
PDK1 Pyruvate dehydrogenase kinase 1 NM_002610 N/A [147]
PDH Pyruvate dehydrogenase NM_003477 miR-26a [148] [149]
IDH1 Isocitrate dehydrogenase 1 NM_005896 N/A [28]
IDH2 Isocitrate dehydrogenase 2 NM_002168 miR-183 [150] [28]
SDH-B Succinate dehydrogenase complex iron sulfur subunit B NM_003000 N/A [27]
SDH-C Succinate dehydrogenase complex subunit C NM_003001 N/A [27]
SDH-D Succinate dehydrogenase complex subunit D NM_003002 miR-210 [151] [27]
FH Fumarate hydratase NM_000143 N/A [27]
ME1 Malic enzyme 1 NM_002395 N/A [152]
Glutaminolysis
GLS1 Glutaminase 1 NM_014905 miR-23a, miR-23b [118] [32]
GLS2 Glutaminase 2 NM_013267 miR-23a, miR-23b [118] [153,154]
Serine, Glycine and one carbon metabolism
SHMT2 Serine hydroxymethyltransferase 2 NM_005412 miR-193b [90,155] [156]
SHMT1 Serine hydroxymethyltransferase 1 NM_004169 miR-198 [157] [156]
MTHFD2 Methylenetetrahydrofolate dehydrogenase NM_006636 miR-9 [158] [156]
MTHFD1L Methylenetetrahydrofolate dehydrogenase 1-like NM_015440 miR-9 [158] [156]
PHGDH Phosphoglycerate dehydeogenase NM_006623 N/A [41]
PSAT1 Phosphoserine aminotransferase 1 NM_021154 miR-340 [159] [160,161]
PSPH Phosphoserine phosphatase NM_004577 N/A [161]
GNMT Glycine-N-methyltransferase NM_018960 N/A [162]
de novo fatty acid synthesis
CIC Citrate carrier NM_005984 N/A [163]
ACLY ATP citrate lyase Y NM_001096 N/A [152,164]
ACC1 Acetyl-CoA carboxylase 1 NM_198836 N/A [152,165]
FASN Fatty acid synthase NM_004104 miR-320 [166] [58,56,57]
SCD Stearoyl-CoA desaturase NM_005063 N/A [152]

Abbreviation: not available (N/A).

microT-CDS [79], TargetScan [80,81], Pictar [82], miRDB [83], and RNA22
[84], which use common features such as seed match and sequence con-
servation across the species [85]. In brief, the seed match is a perfect
pairing between miRNA and the 3’-UTR of mRNA targets, which usually
starts at the 5’ end of miRNA at the positions 2 to 8. There are four main
classes of canonical seed matches including (1) 6-mer (6 perfect nucleo-
tide matches between miRNA at positions 2 to 7 and mRNA target),
(2) 7mer-A1 (perfect match of miRNA at positions 2 to 7 with an A oppo-
site position 1 of mRNA target), (3) 8-mer (perfect seed paring of miRNA
at positions 2 to 8 with an A opposite position 1 of mRNA target) [86] and
(4) 7mer-8mer (perfect match of miRNA at positions 2 to 8 and mRNA
target) [87,88]. However, these different seed matches do not reflect the
degrees of gene expression suppression by miRNAs [89].

With an aim to explore other potential miRNAs that may regulate
key metabolic enzymes listed in Table 1, we choose two widely-used

miRNA prediction tools that utilize different features to predict miRNA
of the target mRNAs of interest, TargetScan7.0 and miRanda-mirSVR.
The former predicts the miRNAs targeting a given gene based on the
seed match and sequence conservation across the species, whilst the
latter uses free energy binding between miRNA and mRNA targets,
and the site accessibility for miRNA target prophecy [85]. The
context ++ scores and mirSVR scores were used as the parameters to
indicate the confidence of predictions from the TargetScan7.0 and mi-
Randa-mirSVR, respectively. The context 4+ score is the sum of contri-
bution from 14 features [81], such as site-type, 3’ pairing, the local AU
content [89], target site abundance, seed-pairing stability [80]. The
mirSVR scores, on the other hand, can also rank the empirical probabil-
ity of down-regulation using supervised machine learning of mRNA ex-
pression changes as a result of specific microRNA transfection [78]. In
short, the more negative context 4+ scores and mirSVR scores from
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the predictions reflect the higher “likelihood” that the mRNA is targeted
by miRNA, and thus down-regulated gene expression.

As shown in Fig. 2A, TargetScan7.0 predicted that 40 metabolic en-
zymes shown in Table 1 are regulated by 299 miRNAs (blue circle). Six-
teen out of 40 metabolic enzymes were predicted to be regulated by 113
miRNAs. However, only 8 out of these 113 miRNAs have been reported
to functionally regulate expression of these enzymes, leaving the other
105 miRNAs (yellow) whose functional verification is yet to be elucidat-
ed. We also noted that there are 14 miRNAs (red) that have been
experimentally verified to regulate this set of metabolic genes but
elude prediction by TargetScan7.0, suggesting a considerable degree of
false negatives. TargetScan7.0 also predicted 186 additional miRNAs
that are likely to regulate another 24 metabolic enzymes, whose regula-
tory miRNAs have not been studied. The list of miRNAs that are
predicted to regulate theses 40 metabolic enzymes can be found in
Supplementary Table S1.

In a similar trend but not identical, miRanda-mirSVR predicted that
there are 395 miRNAs that can potentially regulate these metabolic en-
zymes (Fig. 2B). One hundred and seventy three miRNAs were predict-
ed to regulate 16 metabolic enzymes while the other 222 miRNAs
(gray) were predicted to target another 24 metabolic enzymes which
are currently unknown to be regulated by any miRNAs. Within those
16 metabolic enzymes regulated by 173 miRNAs, only 14 miRNAs
were independently reported to regulate expression of these metabolic
enzymes while the functional verifications of the other 159 miRNAs
(pink) are yet to be elucidated. Similar to the TargetScan7.0 prediction
but with fewer number of false negatives, eight additional miRNAs
have been reported to functionally regulate expression of these 16
metabolic enzymes but were not detected by the miRanda-mirSVR
prediction.

Due to the issues of sensitivity and specificity of miRNA prediction
algorithms mentioned earlier, we generated boxplots of the
context ++ scores (Fig. 2C) and mirSRV scores (Fig. 2D), in three
miRNA groups: (1) experimentally verified miRNAs with prediction,
(2) miRNAs predicted for target genes with other verified miRNAs, but
their own functions are yet to be validated, and (3) the predicted

A
TargetScan7.0 prediction

miRNA functional validation

186 105
C
0.2

0 -
-0.2
-0.4

-0.6 -

Context++scores

-0.8

-1 -

miRNAs of metabolic enzymes whose functions have not be validated
for any miRNA before (as outlined in the Venn diagrams). We did in-
deed observe a modest trend that the validated miRNAs have lower
context + + scores, than predicted miRNAs without validation; howev-
er, the number of miRNAs in each group is likely to be too small to give a
statistical significant result. Similarly, the same can be said about the
scores assigned to mirSVR prediction, indicating that confidence scores
from the prediction might be useful as an extra indicator to extract the
predicted miRNA that are likely to be “real” functional miRNAs, and
would be worth further experimental validation.

1.9. MicroRNAs and oncogenic transcriptional regulatory networks

To observe the overall interplay of oncogenic TFs, metabolic en-
zymes, and regulatory miRNAs, we combined the experimentally vali-
dated (Table 1), the experimentally validated miRNA-target data from
miRTarBase [90] and predicted interactions (from the two algorithms
as shown in Fig. 2) into a regulatory network of TFs-metabolic enzymes
and miRNA-TFs using Cytoscape [91], as shown in Figs. 3 and 4. Fig. 3 fo-
cuses on the known miRNAs that regulate expression of metabolic en-
zymes via controlling the expression of oncogenic TFs, whereas we
expand the network to cover both validated and predicted miRNA-
mRNA interactions in Fig. 4. The predicted interactions shown here are
the overlaps of the two algorithms used: TargetScan7.0 and miRanda-
mirSVR, shown as gray dashed edges, whereas the functional verified
miRNA-gene targets from the Table 1 and miRTarBase database [90]
are shown in black solid lines. The edges' colors (blue, red, green and
purple) represent the miRNAs that regulate expression of metabolic
enzymes through the expression of oncogenic TFs (HIF1a, c-MYC,
P53, SREBP1, respectively), as in Fig. 3. The colors of node genes in Fig.
4 are classified by metabolic pathways: pale blue color for anaerobic gly-
colytic genes; white for enzymes involved in serine, glycine and one car-
bon metabolism; orange for GLS; blue-green nodes for enzymes in the
TCA cycle; pink nodes for enzymes in the de novo fatty acid synthesis;
gray nodes for gluconeogenic enzyme, and purple nodes for enzymes
in the pentose phosphate pathway.

miRanda-mirSVR prediction

N miRNA functional validation

lw)

mirSVR scores
)
s
—_
—

=
n
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Fig. 2. Venn diagrams and boxplots representing the association between miRNA prediction scores and their functional validation. The Venn diagrams of TargetScan7.0 (Fig. 2A) and
miRanda-mirSVR (Fig. 2B) show the numbers of validated and predicted miRNAs that regulate metabolic enzymes in cancers. Boxplots illustrate the association of between
context ++ scores (Fig. 2C) or miRanda-mirSVR scores (Fig 2D), and three miRNA groups: (1) experimentally validated miRNAs with prediction (2) miRNAs predicted to target
metabolic enzymes with other verified miRNAs (3) the predicted miRNAs of altered metabolic enzymes whose functions have not been validated for any miRNA before.
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Fig. 3. Regulatory network of experimentally verified miRNAs and oncogenic transcription factors controlling metabolic reprogramming in cancers. The figure shows the integration of

experimentally validated regulatory network of TFs-cancer metabolic genes and miRNAs-TFs.

Overall, our miRNAs and oncogenic transcriptional regulatory net-
work depicts individual “modules” of post-transcriptional regulation
by miRNA via major drivers of metabolic reprogramming in cancers,
acting as hubs that link multiple incoming miRNAs (yellow nodes,
Fig. 3) that can bind and suppress transcription of these oncogenes, to
their downstream metabolic gene targets (blue nodes). For instance,
the expression of c-MYC (red node in Fig. 3, and interaction between
miRNA and targeting metabolic genes via c-MYC are in red lines in
Fig. 4) is regulated by let-7a in Burkitt Lymphoma [92], miR-145 in
non-small cell lung cancer [93], let-7g and miR-744 in hepatocellular
carcinoma cells [94,95], miR-34 in prostate cancer cells [96], miR-135b
in osteosarcoma cells [97], miR-155 in gastric carcinoma cells [98],
miR-320b in colorectal cancer [99] and miR-451 in head and neck squa-
mous cell carcinoma [100]. Suppression of these miRNAs contributes to
overexpression of key metabolic enzymes in these tumors. Similarly,
HIF1a ( dark blue node) expression is regulated by several miRNAs in-
cluding miR-17-92 in lung cancer cells [101], miR-519c and miR-18a in
breast and lung cancer cells [102,103], miR-22 in colon cancer cells
[104], miR-199a in non-small cell lung cancers [105] and miR-429 in
human endothelial cells [106]. Ectopic expression of these miRNAs re-
duces the expression of vascular endothelial growth factor (VEGF), a
crucial transcriptional target of HIF1a, thereby decreasing angiogenesis,
a process of blood vessel formation required for tumor growth and
metastasis [107]. Likewise, p53 (green node), a tumor suppressor
is also post-transcriptionally regulated by several miRNAs such as
miR-25 and miR-30d in myeloma cells [108], miR-125a in breast and
hepatoblastoma cells [109], miR-125b in neuroblastoma and lung
fibroblalst cells [110], miR-504 in breast and colon cancer cells [111],
miR-1285 in neuroblastoma, hepatoblastoma and breast cancer cells
[112], miR-33 in hematopoietic stem cells [113] and miR-380 in neuro-
blastoma cells [114]. Tight regulation of these miRNAs results in
substantial expression of p53 which then leads to cell cycle arrest,
thus maintaining cells in the non-proliferative state [115]. In contrast,

an aberrant overexpression of these p53-target miRNAs results in the
down-regulation of p53, causing malignancy. Because this group of
miRNAs exerts its effect on the oncogenic transformation, they are gen-
erally now classified as the “oncomiR” miRNAs [116].

In addition to these three oncogenes, the sterol regulatory element
binding protein (SREBP1, purple node) is also involved in metabolic
reprogramming. SREBP1 is a TF that regulates expression of liver type-
pyruvate kinase (PKL) and lipogenic enzymes, ACL, ACC and FAS, thus
allowing de novo fatty acid synthesis from glucose in liver. Cancers
also use SREBP1 to up-regulate expression of these lipogenic enzymes
to support fatty acid synthesis. Similar to c-MYC, HIF1a and p53, ex-
pression of SREBP1 by itself is also regulated by miRNAs. miR-185 and
miR-342 play important role in regulation of SREBP1 expression by di-
rect binding to the 3’UTR of its mRNA [117]. Of particular interest,
most lipogenic enzymes are co-regulated by more than one TF. For
example ACL and ACC1 are regulated by both SREBP1 and p53, while
FASN is regulated by SREBP1, p53 and c-MYC. Expression of HK1 is co-
regulated by HIF1a and p53 while that of LDHA and PKM2 are co-
regulated by HIF1a and c-MYC. GLU1, HK2 and ALDOA are the only
three enzymes that are regulated by p53, HIF1ae and c-MYC. Interesting-
ly, the expression of certain miRNAs that regulate these metabolic en-
zymes can also be regulated by an oncogenic TFs. Gao et al. [118]
showed that c-MYC indirectly regulates GLS expression in B lymphoma
and prostate cancer by suppressing the expression of miR-23a/b that di-
rectly regulates the expression of GLS. Kim and coworkers also demon-
strated that p53 blocks the expression of HK1, HK2, glucose-6-
phosphate isomerase (GPI) and PDK1 by inducing miR-34a expression
which in turn, down-regulates the expression of the above four en-
zymes [119].

Looking at the expanded miRNA-mRNA interaction networks (Fig.
4), we observe a global overview of how metabolic genes involving can-
cer progression are regulated by miRNA through their direct interaction
(black lines for validated interactions and gray lines for those predicted
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Fig. 4. Regulatory network of miRNAs and oncogenic transcription factors controlling metabolic reprogramming in cancers. The figure shows direct and indirect miRNAs-metabolic genes
interaction. The miRNAs that have already verified their regulatory function show in solid edges whereas the dash edges represent the overlap miRNAs from predictions only. In addition,
direct interaction of experimentally verified miRNAs and gene targets are showed in black edges whilst the color edges (blue, green, red and purple) illustrate the interaction of miRNAs
and cancer metabolic genes via oncogenic transcription factors. Blue edges represent the regulation of miRNA mediated HIF1c, green edges represent the regulation of miRNA mediated
p53, red edges represent the regulation of miRNA mediated c-MYC and the purple edges represent the regulation of miRNA mediated SREBP1. The pale blue circle nodes show the
anaerobic glycolytic genes, white circle nodes show genes in serine, glycine and one carbon metabolism, orange circle nodes show genes in glutaminolysis, pink circle nodes show
genes in de novo fatty acid synthesis, purple circle nodes show genes in PPP pathways, gray circle node is PCK1 and the blue-green nodes show genes in TCA cycle. High resolution of

the figure with complete labels can be found in Fig. S1.

by TargetScan7.0 and miRanda-mirSVR), or through oncogenic TFs
(colored edges). We have seen notable miRNAs such as miR-23a/b
that directly control glutaminolysis, whereas the miR-1 and miR-206
are responsible for regulation of the PPP pathway genes, G6PD and
TKTL1 [118,120]. The overall network also highlights the “hub”
miRNA. miR-429, a tumor suppressor that down-regulates almost all
genes in anaerobic glycolytic pathway (e.g. GLUTSs) via the oncogenic
TF HIF1ow. The anaerobic glycolytic genes themselves are also targeted
by several other miRNAs such as miR-22, miR-199a, miR-17-92 via
HIF1a (blue edges), miR-30d, miR-25, miR-125a/b, miR-1285 via p53
(green edges), and miR-451, miR-155, let-7a, let-7g via c-MYC (red
edges). The network also demonstrates other relationships between
metabolic pathways and miRNA regulation via TFs. For instance, three
out of five genes in de novo fatty acid synthesis pathway (ACC1, ACLY,
and FASN) share regulation by miRNAs via p53 and SREBP1. The genes
in the serine, glycine and one carbon metabolism pathways (white
nodes) heavily rely on the regulation of miRNAs via c-MYC. Post-
transcriptional regulatory networks have demonstrated intricate regu-
lation of metabolic genes by different miRNAs [13,121,122]. Here, we
aim to provide a detailed regulatory network of metabolic genes
under direct control of miRNAs, or oncogenic TFs regulated by miRNAs.
The high resolution network with complete labels can be found in Sup-
plementary material (Fig. S1 and Table S3). Such overall organization of
metabolic gene expression regulation cannot be observed by studying
miRNAs, TFs, and target genes individually. Saying that, we note that
the current version of network relies on the accuracy of the two

prediction algorithms used in this study. The known interactions
taken from literature might also be biased toward well-characterized
oncogenes such as p53 or c-MYC.

In conclusion, our review not only provides the current status of un-
derstanding metabolic reprogramming in cancers but also establishes
the regulatory network of miRNA-oncogenic TF-cancer metabolic
genes that would provide benefits for research guidance in this emerg-
ing field the future.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.csbj.2016.05.005.
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