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Heart rate variability (HRV) has become a marker for various health and disease conditions. Photoplethysmography (PPG) sensors integrated
in wearable devices such as smart watches and phones are widely used to measure heart activities. HRV requires accurate estimation of time
interval between consecutive peaks in the PPG signal. However, PPG signal is very sensitive to motion artefact which may lead to poor HRV
estimation if false peaks are detected. In this Letter, the authors propose a probabilistic approach based on Bayesian learning to better estimate
HRV from PPG signal recorded by wearable devices and enhance the performance of the automatic multi scale-based peak detection (AMPD)
algorithm used for peak detection. The authors’ experiments show that their approach enhances the performance of the AMPD algorithm in
terms of number of HRV related metrics such as sensitivity, positive predictive value, and average temporal resolution.
1. Introduction: The heart rate variability (HRV) is a measure of
variation in time duration between consecutive heart beats. HRV
has used widely as an indicator for stress, health, and various
disease conditions [1, 2]. This Letter presents a probabilistic
approach for estimating HRV from photoplethysmography (PPG)
signal recorded by wearable devices.

PPG sensors integrated in wearable devices such as smart
watches and phones are widely used nowadays to provide a con-
venient way to measure heart activities. Average heart rate can be
measured by many commercial wearable gadgets. However,
motion artefact still presents a challenging problem in estimating
the heart rate variability in PPG signals collected by wearable
devices [3–7]. This problem motivates researchers to propose algo-
rithms that enhance the accuracy of HRV measured by those wear-
able PPG sensors, and enable reliable assessment of the health
conditions and provide correct diagnoses.

In a PPG signal, the location of a peak represents the instant of time
at which a heartbeat occurs. Thus, the computation of HRV requires
accurate identification of the location of peaks in the PPG signal,
which consequently leads to precise computation of time intervals
between consecutive heartbeats. Many relevant features can be
derived from the HRV measurements such as the number of interval
differences of successive NN intervals greater than 50ms (pNN50),
and the square root of the mean squared differences of successive
NN intervals (RMSSD). Researchers have shown that these features
can imply valuable information about various health conditions [8].
These features, however, are sensitive to any small error in identifying
the correct location of peaks. Hence, accurate peak detection in the
PPG signal collected by a portable device is crucial.

The nature of a PPG signal makes HRV measurements a challen-
ging problem, especially when using a portable PPG sensor. As
shown in Fig. 1, the first wave in the PPG waveform is called sys-
tolic peak and the second one is called diastolic peak. Aortic notch
or dicrotic notch is a small downward deflection in the arterial pulse
that separates systolic and diastolic phase. The first peak (systolic)
represents the instant of time corresponding to a heartbeat, also
known as R-peak. A small motion artefact can result in the diastolic
peak having a higher amplitude than the systolic peak (e.g. Fig. 8),
which may lead to erroneous HRV estimation if the diastolic peak is
detected as the instant of heartbeat.

In this Letter, we present an adaptive real-time probabilistic ap-
proach that employs Bayesian learning to estimate HRV from
PPG signal recorded by wearable devices. In particular, our
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approach uses an algorithm called automatic multi scale-based
peak detection (AMPD) [9] along with a probabilistic method to
enhance its performance and provide a better HRV estimation.
The proposed approach provides a soft decision on every sample
in the PPG signal. We adopt a probabilistic approach that allows
us to compute the probability of having a peak at every sample,
and make a decision whether a peak exists in that sample by com-
paring the computed probability with a configured threshold. Our
experiments show that the proposed algorithm enhances the
AMPD algorithm with respect to a number of HRV related perform-
ance metrics such as sensitivity, positive predictive value, and
average temporal resolution (ATR).

2. AMPD algorithm background: This section explains briefly
the algorithm proposed by Scholkmann et al. [9]. The algorithm
is called automatic multi scale-based peak detection (AMPD),
and aims to detect signal peaks by analysing the local maxima
scalogram (LMS) of periodic or quasi-periodic signals.

Let X = [x1, x2, …, xN] be a uniformly sampled signal containing
the components of a PPG signal. The AMPD algorithm calculates
the LMS uses a moving window approach, whereby the window
length wk is varied (wk = 2k|k=1,2,…,L), where k is defined as a
scale in which the PPG signal is analysed (analysis resolution). A
scale could be mapped to a frequency for convenience. L represents
the number of scales in the scalogram and should be defined to
cover the range of frequencies that are useful for the PPG signal
analysis (typically, L = 2fs, is sufficient to include HR as low as
30 bpm, where fs is the sampling frequency). In other words, the
moving window wk is varied at every scale k to cover different reso-
lutions of the PPG signal. Then, a comparison criterion is per-
formed at every scale k on the PPG signal for i = k + 2, …, N− k
+ 1 to search for local maxima as follows:

mk,i = 1 xi−1 . xi−k−1 and xi−1 . xi+k−1

0 otherwise

{
(1)

This operation results in a matrix M, where

M =

m1,1 m1,2 · · · m1,N

m2,1 m2,2 · · · m2,N

..

. ..
. . .

. ..
.

mL,1 mL,2 · · · mL,N

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠ = (mk,i) (2)
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Fig. 1 Typical PPG waveform
where the kth row contains the value for the window length wk. The
ones in matrixM represent locations of local maxima (or the indices
where potential PPG R-peaks exist) at every scale k. A PPG sample
is decided to be a peak when there exists 1’s for every scale k at a
specific instance of time (a column in the matrix M).
3. Algorithm description: The proposed algorithm consists of two
sections. Section 3.1 uses a slight modification to the output of the
AMPD algorithm explained in Section 2 and exploits a model that
has been built using a previous historical knowledge about R-peaks,
while Section 3.2 further enhances the performance of AMPD using
a probabilistic approach based on Bayesian learning. Details of the
two sections are presented in the following subsections and
demonstrated in Figs. 2 and 3.
Definition of used notations: Let us start by denoting tj as the

instant of time at which the jth R-peak occurred. We can also
define the process r as the inter-arrival time between two consecu-
tive peaks (also known as RR-intervals), namely

rj = t j+1 − tj (3)

Another way to represent PPG peaks is by considering a process d
given by the difference between consecutive RR-intervals, i.e.

dj = r j+1 − rj (4)
Fig. 2 Description of the algorithm design of Section 3.1
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The latter definition is helpful for estimating the occurrence of a
next peak as will be seen next.
3.1. AMPD output modification and prior probabilistic knowledge:
The AMPD algorithm works well even when a white noise is
presented in a signal. Applying the algorithm to a PPG signal,
which has a quasi-periodic nature, provides promising results.
However, the AMPD performance degrades when the signal is
corrupted with motion artefact. This is because the probabilistic
characteristics of such artefact differ from the white noise.

In the AMPD algorithm, a sample is decided to be a peak if there
exist ones for every scale k (i.e. all the elements in column i = 1).
We modify this condition by computing p1 of sample i as a ratio
of the number of ones in column i in the matrix M to the total
number of rows L, i.e.

p(i)1 =
∑L

k=1 mk,i

L
(5)

An enhancement could be achieved by calculating the probability of
having a peak at sample i by incorporating historical previous
knowledge about R-peaks. In [10], the authors show that the
Laplacian model exhibits the best fit for analysing the d process.
Based on their results, the probability p2 of sample i to be a peak
using Laplacian distribution is given by

p(i)2 = 1

2b
exp − |di − m|

b

( )
(6)

Since the decision is not yet made whether sample i is a peak, di
definition in (6) slightly differs from the general one in (4). It is
defined here as di = ri− rlast, where ri represents the difference
between sample i and the last detected peak, while rlast represents
the last recorded RR-interval from the last cycle. μ in (6) is
defined as the median. From the observed historical data of PPG
signals, it is reasonable to assume that μ equals to zero. b in (6)
is a scalar parameter calculated as

b = 1

K

∑K
j=1

|dj − m|, (7)

where K is the number of records of the process d. To that end, one
can build the decision criterion by considering the two parameters
p1 and p2, based on the maximum probability of all samples that
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fall within the range of interest, i.e.

Peak = argmax
i

[p(i)1 p
(i)
2 ] (8)

However, we can enhance the accuracy of a peak detection by
accounting for the variation of the heart rate. To consider such
cases, the constructed model should be dynamic and updated on
the fly. For that reason, a Bayesian inference is proposed in the fol-
lowing subsection.

3.2. Probabilistic analysis and Bayesian inference formulation of
the problem: Let us start by assuming that the probability of
having a peak at sample i is θi. θi can be initially calculated using
(6) (i.e. ui = p(i)2 ). However, having a decision merely using θi
may not be the best thing to do, given that we can learn from the
incoming data. Thus, we can formulate the problem using
Bayesian inference as follows

posterior(i) = P(ui|AMPDoutput(i))

= P(AMPDoutput(i)|ui) · P(ui)prior
(9)

Considering the term P(θi)prior in (9), it is the prior probability
distribution of θi. We aim at finding a distribution to model
P(θi)prior that initially considers the probability computed in (6) as
the expected value for this distribution and can be easily updated
during the learning process. We used the Beta function to achieve
this goal. To see why the Beta function is good to model P(θi),
one can observe that such model results in a positively skewed
probability distribution (skewed to the left) when θi is low (which
is the case for a sample i that is close to the last detected peak),
while it is negatively skewed probability distribution (skewed to
the right) when θi is high (which is the case when sample i is
close to next expected peak). Samples that are in the middle of
consecutive expected peaks result in a probability distribution for
θi that is close to the uniform distribution. Such Beta function
behaviour is illustrated in Fig. 4. We observe that such statistical
behaviour of the Beta distribution can be used to model P(θi)prior
very well. Hence, we can consider

P(ui)prior =
G(a+ b)

G(a)G(b)
ua−1
i (1− ui)

b−1 (10)

where Γ is the Gamma function, and can be obtained in a tabular
form corresponding to the Gamma probability distribution. Note
that (Γ(α + β)/Γ(α)Γ(β)) is a normalised constant to ensure that
Fig. 3 Description of the algorithm design of Section 3.2

138
This is an open access article published by the IET under the
Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)
the total probability integrates to 1. α and β are called
hyper-parameters that control the shape of the distribution. We
need to set those parameters such that they properly characterise
a prior probability distribution for every sample i. We know that

E[ui−prior] = a/a+b, (11)

when ui−prior follows the Beta probability distribution. We initially
set this expectation value to be E[ui−prior] = p(i)2 . Further, we
assume that (α + β) is constant, where the constant can be
configured according to the implementation design. By plugging
the values of p(i)2 and the constant (α + β) into (11), we get the
desired parameters α and β that characterise the Beta distribution
for a specific sample i. To summarise the discussion above, the
P(ui)prior � B(a, b) with an expectation value of ui−prior equals

to p(i)2 .
Going back to (9), let us consider the likelihood P(AMPDoutput(i)|θi),

where AMPDoutput(i) is considered here as a binary variable repre-
senting outputs from the AMPD algorithm. In other words,
AMPDoutput(i) is 1 when p(i)1 in (5) equals to 1 and zero otherwise.
Since we assume independent θi for every sample i (i.e. θi’s are iid),
we can think of the binary output of the AMPD algorithm at each
sample i as an outcome of a Bernoulli experiment, wherein each
sample i has its own θi. Thus, we can write

P(AMPDoutput(i)|ui) = uni (1− ui)
1−n, for n [ {0, 1} (12)

Substituting (10) and (12) into (9), we get the posterior probability
distribution of θi as a new Beta distribution B(α′, β′), i.e.

posterior(i) = B(a′, b′) = un+a−1
i (1− ui)

b−n (13)

In other words, if the binary output of the AMPD algorithm at
sample i equals to n = 1, then α′ = α + 1 and β′ = β, while if n = 0,
then α′ = α and β′ = β + 1. It turns out that this is a simple and
compact way to update the parameters of posterior(i) at every cycle.

3.3. Learning procedure: We define a cycle as the time interval
between two peaks. During that cycle, the task is to search for
the next peak. In the very first cycle of the PPG sampled data,
prior probability distribution for θi are initiated for every sample
falls within the range of interest exploiting information acquired
from (6). In the next cycle, the posterior probability distribution
for θi (posterior(i)) is computed by updating the Beta function
with +1 for α or β depending on the AMPDoutput(i) for that
specific sample. Practically, having α′ = α + 1 results in shifting
Healthcare Technology Letters, 2016, Vol. 3, Iss. 2, pp. 136–142
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Fig. 4 Modelling for the prior probability distribution (P(θi)prior) as Beta function
the Beta function curve to the right (increases the confidence for
that sample being a peak), while having β′ = β + 1 results in
shifting the Beta function curve to the left (decreases the
confidence for that sample being a peak). Since this procedure is
repeated for every cycle, those samples corresponding to the most
probable peak locations will have a higher expected value as the
distribution of their posteriors will be skewed to the right.
Demonstration of this learning procedure is depicted in Fig. 5.

3.4. R-peak decision criterion: The decision of a new peak is made
by considering two terms. First, the ratio p(i)1 acquired from the
AMPD algorithm in (5). Second, the confidence value p(i)3 of the
corresponding posterior of sample i, where p(i)3 is calculated as

p(i)3 =
∫1
threshold

posterior(i) dui =
∫1
threshold

Beta(a′, b′) dui, (14)

where threshold can be configured empirically. p(i)3 value represents
the confidence that sample i is R-peak. Note that posterior(i) follows
Beta function with a pdf that sums to one. The proposed algorithm
makes a decision on R-peak by applying (15) below for all
considered samples within the range of interest as follows:

Peak = argmax
i

[p(i)1 p
(i)
3 ] (15)

Fig. 6 illustrates the approach of calculating the value p3 of sample i.
We note that by incorporating information from the AMPD algo-

rithm in Section 3.1, we are adding an independent source of infor-
mation as input to the decision criterion. Moreover, the output from
AMPD helps the proposed algorithm to avoid error propagation,
which may happen since the decision on the next peak relies on
the previously detected peak.

4. Evaluation: For the purpose of evaluating the proposed
approach, an ECG signal was recorded using Zephyr
BioHarness3 chest strap with sampling rate 250 Hz, from which
we computed the instants of time at which we have heartbeats.
The ECG results are used as a ground-truth to PPG signal
algorithms under comparisons. The PPG signals were collected
from an Empatica PPG sensor with a sampling rate 64 Hz.

4.1. Experimental setup and performance metrics: The recorded
PPG data were processed and analysed using MATLAB
simulation environment, wherein the authors of this Letter were
Healthcare Technology Letters, 2016, Vol. 3, Iss. 2, pp. 136–142
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the subjects of the experiments. We evaluated the performance in
two cases. In the first case, we considered 5 min recording of
artefact free PPG signal. Fig. 7 shows a sample of the PPG signal
used in this experiment. To simulate the artefact in PPG signals,
we considered a spike signal that follows Poisson arrivals with
mean 0.25 arrival/seconds and signal amplitudes that vary with
different signal-to-noise ratios (SNRs). In the second case, we
considered 8 min PPG signal recording, wherein the subjects
were performing different activities including: resting, walking
and slow hand movement in vertical, horizontal and circular
directions. This kind of physical motion results in some artefact
in the PPG signal and a baseline wander.

We compared our proposed algorithm against the AMPD algo-
rithm in terms of three performance metrics: sensitivity (Se), posi-
tive predictively (+P), and ATR. Se and +P metrics were proposed
by Advancement of Medical Instrumentation (AAMI) [11]. The
two metrics assess the performance in terms of two expected
errors: missing peaks or detecting non-existed peaks (phantoms),
respectively. The two metrics are defined as follows

Se = TP

TP+ FN
(16)

and

+ P = TP

TP+ FP
(17)

These metrics are evaluated within an acceptance range, where the
acceptance range is defined as half the time lapses between a peak
and its predecessor and successor peaks in the PPG signal. When
peaks are detected within the acceptance interval, they are consid-
ered as true positives (TPs). Detection of false peaks (phantoms)
are referred to false positives (FPs). Missed peaks within the accept-
ance interval are marked as false negatives (FNs). In this sense, sen-
sitivity (Se) indicates the percentage of true peaks that were
correctly detected by the algorithm over all peaks, while positive
predictive value (+P) indicates the percentage of true peaks that
were correctly detected, but are not phantoms. By temporal reso-
lution, we refer to the time accuracy where the detection of a
peak using the proposed approach is compared to the ground
truth peak, which is acquired from electrocardiography signal. In
other words, the difference between the instant in which a peak is
detected using the proposed approach (T1) and the ground truth
value (T2) is computed. Taking into consideration that the PPG
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Fig. 5 Explanation of the learning procedure
signal contains numerous peaks, the ATR is computed as shown in
the following equation

ATR =
∑N

j=1 |T1(j) − T2(j)|
N

, (18)

where N is the total number of peaks in the signals.

4.2. Results and discussion: The results of the first case are shown
in Figs. 9–11, while the results of the second case are shown in
Table 1.

PPG signal is usually exposed to different types of noise and arte-
facts. Fig. 8 shows a typical PPG signal where noise exists at part of
the signal. Circle 2 represents a part of the signal where only one
peak exists within a cycle. Such peak can be easily detected by
several algorithms. On the other hand, Circle 1 shows a situation
where the peak is hard to be detected. Our approach overcomes
this problem by an applying Bayesian-based algorithm that utilises
prior knowledge about the instant of the occurrence for several pre-
vious peaks.
Fig. 6 Posterior probability distribution of θi for sample i. Every graph in the fig
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In the first case, the results show a comparable performance
between AMPD and our proposed algorithm in term of positive pre-
dictive value +P (Fig. 9). However, our proposed algorithm outper-
forms AMPD in terms of Se and ATR as shown in Figs. 10 and 11,
respectively. We can observe from Fig. 10 that as SNR value
decreases, the difference in Se (which is related to the number of
missed peaks) increases between the two approaches. Having a
high conservative algorithm when making a decision on a peak,
such as AMPD, results in selecting only peaks with high confi-
dence. Meaning that AMPD decides a sample i is a peak when
this detected peak represents a global maximum for all scales.
For this reason, the AMPD algorithm misses some ‘true peaks’.
Therefore, AMPD has high +P, but relatively lower Se.
Depending on the application at hand, +P metric may be very im-
portant, and in that case, a conservative approach for detecting
peaks such as AMPD may be desirable. In any case, our approach
provides a very comparable result for the case of +P, but significant-
ly enhances the performance of Se, yielding to superior overall per-
formance. In Fig. 11, the ATR values of AMPD increase as SNR
level decreases. The proposed approach shows better performance
for different SNR levels. It is observed that the difference
ure represents posterior(i) for sample i
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Fig. 7 Sample of PPG signal: artefact-free

Fig. 8 Sample of PPG signal: corrupted with some artefacts

Fig. 10 Performance evaluation: sensitivity

Fig. 11 Performance evaluation: ATR

Table 1 ATR: performance evaluation for case 2
between ATR values is decreasing as more noise is introduced to
the signal.
The results of the second case are shown in Table 1. The ATR

difference between the two approaches is around 38 ms, while the
Se and +P values are similar. Achieving better accuracy in temporal
resolution is important as this error represents the standard deviation
in heart rate that directly reflects the HRV. In [12], the authors
present a quantitative systematic review of normal values for short-
term heart rate variability in healthy adults. The authors showed in a
tabular form a summary data including the overall range in values
for each of the HRVmeasures. One of the important HRVmeasures
is the standard deviation of the RR intervals (SDNN). It is known
that SDNN is directly affected by the number of missed peaks
(which represents the Se), phantoms (which represents +P) and
the temporal accuracy of the detected peak (which is represented
by ATR). It has been shown in [12] that SDNN ranges between
(32 and 93) ms with mean 50 ms according to 27 studies surveyed.
Table 2 shows the impact of ATR on some HRV measures includ-
ing SDNN values. We can observe that, for example, SDNN com-
puted by AMPD is outside the range of SDNN of healthy adults
according to the survey in [12]. Thus, errors in peak detections
may provide SDNN value that yields to erroneous diagnoses and
physiological interpretation.
Fig. 9 Performance evaluation: positive predictive value

Table 2 HRV measurements for case 2

HRV metric ECG Our approach AMPD

SDNN 86.3 87.5 204.8
SDANN* 45.9 53.6 172.2
pNN50 18.7 24.2 63.3
RMSSD 54.6 62.7 265.9
SDNNi** 67.4 65 103.5
average HR 68.9 69 68.1

*Standard deviation of the averages of NN intervals in all 5 min segments
of the entire recording
**Mean of the standard deviations of all NN intervals for all 5 min
segments of the entire recording

Approach ATR

our proposed approach 6.8 ms
AMPD 45.2 ms

Healthcare Technology Letters, 2016, Vol. 3, Iss. 2, pp. 136–142
doi: 10.1049/htl.2016.0006

141
This is an open access article published by the IET under the

Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)



5. Conclusion: Our proposed approach uses a Bayesian learning
algorithm to estimate HRV from PPG signals. This approach
enhances the performance of the AMPD algorithm and enables
better HRV estimation when PPG is distorted with artefact. Our
experiments show that the proposed approach has a comparable
performance with the AMPD in terms of sensitivity and positive
predictive values. However, it outperforms the AMPD in terms of
ATR. In future work, we shall develop an accurate model for the
prior probability distribution using historical observations of
RR-intervals from a large dataset with different scenarios. We
shall also attempt to mathematically characterise the noise that is
typically associated with the PPG signals collected by wearable
sensors.
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