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ABSTRACT
Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size
within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is
unknown if altered nuclear morphology contributes to pathology, and answering this question
requires a better understanding of the mechanisms that control nuclear size and shape. In this
review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear
morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum,
the cell cycle, and potential links between nuclear size and size regulation of other organelles. We
then discuss the functional significance of nuclear morphology in the context of early embryonic
development. Looking toward the future, we review new experimental approaches that promise to
provide new insights into mechanisms of nuclear size control, in particular microfluidic-based
technologies, and discuss how altered nuclear morphology might impact chromatin organization
and physiology of diseased cells.
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Introduction

Size and shape are distinctive aspects of nuclear
structure. Within a given cell type, nuclear size is
generally maintained within a defined range. Changes
in stereotyped nuclear morphologies are associated
with a wide range of disease states. In each of these
instances, it is unclear if altered nuclear size or shape
contributes to the pathology or is a secondary effect
of disease. In order to answer these questions, we
require a better understanding of the basic cell bio-
logical mechanisms that contribute to the mainte-
nance of normal nuclear size and shape. In this
review, we discuss recent studies that have provided
new insights into mechanisms of nuclear size regula-
tion. While the primary focus of this review is
nuclear size, we also include some discussion of fac-
tors that affect nuclear shape, as altered nuclear shape
may reflect changes in nuclear size. In particular, it
has been proposed that changes in nuclear size may
manifest as altered nuclear shape, so as to preserve a
constant ratio of nuclear-to-cytoplamic (N/C) volume
that is important for proper cell function.1,2 We end
the review with some thoughts on the potential

functional significance of nuclear morphology in nor-
mal development and disease.

Nucleocytoplasmic transport and nuclear
morphology

Proteins moving between the nucleoplasm and cyto-
plasm pass through the nuclear pore complex (NPC),
which is important for selective nucleocytoplasmic
transport and nuclear permeability. The NPC is com-
posed of »30 nucleoporins (Nups) present in multiple
copies, with Nups typically organized into sub-com-
plexes.3-5 The cylindrical NPC core spans the nuclear
envelope (NE) through a pore formed by the fusion of
the inner nuclear membrane (INM) and outer nuclear
membrane (ONM).6,7 Nucleocytoplasmic transport
involves nuclear transport factors, including importins
that bind cargos that contain a nuclear localization
signal (NLS) and exportins that bind cargos with a
nuclear export signal (NES). Certain Nups influence
nuclear morphology. For example, Nup1 and Nup60
contain amphipathic helices that impart curvature to
the INM, and overexpression of Nup1/Nup60 amphi-
pathic helices in yeast led to deformation of the NE.8
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Overexpression of Nup53 in yeast caused formation of
intranuclear double membrane lamellae that lined the
INM.9 In Xenopus, depletion of Nup188 increased
nuclear size through increased import of INM pro-
teins,10 and Arabidopsis thaliana deficient for Nup136
exhibited spherical rather than ellipsoid nuclei.11

Changes in NPC composition can impact nucleocy-
toplasmic transport and nuclear size. NPC differences
in macronuclei (MAC) and micronuclei (MIC) of the
ciliated protozoan Tetrahymena thermophila deter-
mine the differential nuclear import of MAC-specific
or MIC-specific linker histones. MAC and MIC are
2 morphologically and functionally distinct nuclei
within the same cell. MIC is smaller, transcriptionally
inert, and contains a diploid genome originating from
the zygote. MAC, on the other hand, is much larger
and generated by programmed DNA rearrangements
and amplifications. Loss of MAC- or MIC-specific
linker histones leads to nuclear enlargement of the
MAC or MIC, respectively, demonstrating that
reduced chromatin compaction increases nuclear size
in a nucleus-specific manner.12 Four Nup98 homologs
showed differential localization in MAC and MIC
nuclei, with 2 being specifically targeted to the MIC
and 2 to the MAC. MacNup98A and MacNup98B
possess typical FG-repeats, specifically repeats of the
amino acid sequence GLFG, which interact with
nuclear transport factors. In place of these GLFG
repeats, MicNup98A and MicNup98B contain atypical
importin docking repeats consisting of the amino acid
sequence NIFN or SIFN. Nucleoporin domain swap-
ping experiments were performed to test the model
that GLFG repeats block import of MIC cargos while
NIFN repeats block import of MAC cargos. When the
N-terminal GLFG repeats of MacNup98A were fused
to the C-terminal domain of MicNup98A (BigMic),
the chimera localized to the MIC nucleus, reduced
micronuclear linker histone import, and increased
MIC size. Conversely, a fusion protein consisting of
the C-terminus of MacNup98A joined to the N-termi-
nal NIFN repeat domain of MicNup98A (BigMac)
was targeted to the MAC nucleus, macronuclear linker
histone import was reduced, and MAC size increased.
Collectively, these data suggest that GLFG/NIFN
repeats help to prevent misdirected protein transport
to a given nucleus, thereby impacting nuclear size in
T. thermophila.13 Interesting questions that arise from
these studies are if linker histones are the only impor-
tin cargos necessary to induce these nuclear size

differences, and whether linker histones impact
nuclear size by altering chromatin structure or chang-
ing gene expression.

NPC number and density could theoretically
impact nuclear size as well. However, comparing dif-
ferent cell types and organisms revealed an inverse
relationship between NPC density and nuclear vol-
ume,14 with NPC number being controlled indepen-
dently of nuclear volume and surface area.15 Studies in
Xenopus showed that increased nuclear expansion
rates could be uncoupled from increased NPC num-
bers.10 Furthermore, NPC assembly and nuclear
expansion are independently regulated in mammalian
tissue culture cells, as blocking interphasic NPC
assembly in HeLa cells did not alter nuclear expansion
or size.16,17 On the other hand, mutations that cause
NPC clustering and/or mislocalization frequently give
rise to altered nuclear morphology.18-21 Taken
together, NPC composition seems to contribute more
to the regulation of nuclear size than NPC number or
density.

Nuclear lamins and nuclear morphology

Structural elements of the NE play important roles in
defining nuclear size. The nuclear lamina, a meshwork
of lamin intermediate filaments that lines the INM, is
one of the major structures implicated in the regula-
tion of nuclear morphology in metazoans.22-26 The
nuclear lamina is important for chromatin organiza-
tion, DNA metabolism, and providing mechanical
strength to the nucleus. Four major lamin isoforms
constitute the nuclear lamina in vertebrate cells – lam-
ins A and C (alternatively spliced products of the
LMNA gene), lamin B1 (encoded by LMNB1), and
lamin B2 (encoded by LMNB2). Lamins B3 and C2
are found in germline cells and are products of alter-
native splicing of the LMNB2 and LMNA genes,
respectively.27

General lamin structure includes an N-terminal
globular head domain, a central a helical rod domain,
and an immunoglobulin like C-terminal domain with
NLS.28,29 Lamin monomers interact through their cen-
tral coiled coil a helical domains to form 50 nm long
dimers,30,31 which in turn interact in a head-to-tail
manner to form higher order lamin polymer struc-
tures.32-36 Although the nuclear lamina is apposed to
the INM, »10% of A-type lamins localize to the
nuclear interior and interact with the chromatin and
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nucleoplasmic proteins, such as pRB and PCNA,
rather than assembling into large polymers.37-40 In
addition, interphase phosphorylation of lamin A indu-
ces its redistribution from the NE to nucleoplasm,41,42

and how a nucleoplasmic pool of lamins might influ-
ence nuclear morphology is an open question. Lamins
also play a role in resisting dynein-mediated clustering
of NPCs via the dynein adapter BICD2,43 thus lamins
may indirectly contribute to proper nuclear morphol-
ogy by preventing NPC aggregation that has been
linked to aberrant nuclear membrane structures.18

Lamin expression and nuclear size are often corre-
lated. Changes in lamin isoform expression during
frog, chicken, and mouse development coincide with
reductions in nuclear size.44-46 During granulopoiesis,
lamin A/C expression is downregulated in neutro-
phils, leading to more deformable nuclei that facilitate
cell passage through narrow constrictions.47 Nuclear
volume also influences cell migration efficiency,48 and
expression of certain lamin mutants or altering lamin
expression levels affect nuclear deformability and cell
migration.49-52 Knocking down lamin B1 in HeLa cells
led to an increase in lamina meshwork size, formation
of NE blebs enriched in lamin A/C, and increased
nucleoplasmic lamin A mobility.53 Reduced lamin B1
levels are frequently associated with altered nuclear
and cell shape and increased cellular senescence.54-60

Abnormal lamin localization and expression correlate
with aberrant nuclear size in various disease states,
notably cancer.61 For example, lamin B1 expression is
elevated in prostate cancer, and lamin B1 expression
levels directly correlate with tumor stage in hepatocel-
lular carcinoma.62,63 Reduced lamin A/C levels are
detected in small-cell lung carcinoma (SCLC) relative
to non-SCLC, which might contribute to the differen-
ces in nuclear morphology between these 2 can-
cers.64,65 LAP2b, a lamina associated protein that
connects the lamina and chromatin, is highly
expressed in colorectal adenocarcinoma and SCLC,
potentially contributing to nuclear enlargement in
these cancers.66

Nucleocytoplasmic transport and lamin import
regulate nuclear size in Xenopus. The eggs, cells, and
nuclei of X. laevis are larger than those of X. tropica-
lis, and nuclear import rates differ in egg extracts
from these 2 species, with X. tropicalis nuclei exhibit-
ing slower import rates than X. laevis nuclei. The lev-
els of 2 nuclear transport factors, importin a and
NTF2, differ between the 2 extracts, and altering the

levels of these 2 proteins was almost sufficient to
account for the differences in nuclear size and import
between these 2 species.67 Lamin B3, the major lamin
type found in the egg, was found to be one of the
imported cargos accounting for these differences in
nuclear size, which is consistent with the observation
that depletion of lamin B3 from egg extract blocks
nuclear growth.67-69 Ectopic addition of lamin B3 to
Xenopus egg extract increased the rate of nuclear
growth,67 with the lamin immunoglobulin fold being
required for post-mitotic lamina assembly and NE
growth.23 It has recently been shown that nuclear
size is sensitive to the total lamin concentration in
Xenopus egg and embryo extracts, with low and high
concentrations increasing and decreasing nuclear
size, respectively. Recombinant lamin B1, B2, B3, and
A similarly affected nuclear size when tested individ-
ually or in combination. Altering lamin levels in vivo,
both in Xenopus embryos and mammalian tissue cul-
ture cells, also influenced nuclear size in a concentra-
tion-dependent manner.22

Developmental nuclear scaling in Xenopus
embryos also depends on nuclear import capacity
and lamins. Early Xenopus embryonic development is
a robust system to study cellular scaling mechanisms
in the absence of DNA ploidy changes because cell
division is rapid with no overall change in the size of
the embryo itself. The 1.2 mm fertilized egg under-
goes 12 rapid synchronous cell divisions (each
approximately 30 min) to produce several thousand
50 mm cells at the midblastula transition (MBT).70

Nuclear size decreases throughout early embryonic
development in both X. laevis and X. tropicalis.67,71,72

Nuclear size reductions prior to the MBT correlate
with reduced bulk import rates and levels of cyto-
plasmic importin a. Ectopic importin a expression
was sufficient to increase nuclear size in pre-MBT
embryos, while expression of both importin a and
lamin B3 was required to increase nuclear size in
later developmental stages.67,71 Experiments in C. ele-
gans similarly demonstrated the involvement of
nuclear transport and lamins in nuclear size
regulation.73,74

In pre-MBT Xenopus embryos, nuclei expand
throughout interphase, while at the MBT and beyond
nuclei reach a steady-state size that is smaller than
nuclei in pre-MBT embryos. A 3-fold decrease in NE
surface area occurs between the MBT and gastrulation
(stages 10.5–12).67,71 When large nuclei assembled in
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Xenopus egg extract were incubated in gastrula stage
embryo extract, they became smaller. This nuclear
shrinkage was dependent on conventional protein
kinase C (cPKC) activity and correlated with removal
of lamins from the NE. Based on these data, it was
proposed that nuclear recruitment of cPKC leads to
interphase phosphorylation of lamins that alters their
residence time at the NE and contributes to reductions
in nuclear size. This activity might account for the
post-MBT developmental scaling of nuclear size in
Xenopus embryos, as cPKC activity and nuclear locali-
zation increase in embryos after the MBT.75,76

The endoplasmic reticulum and nuclear morphology

The endoplasmic reticulum (ER) plays an impor-
tant role in NE formation and regulating nuclear
size and shape. The ER is an interconnected lipid
bilayer membrane network, consisting of ER
tubules and sheets, that is continuous with the NE.
Post-mitotic NE reformation is initiated by the tar-
geting of ER tubules to chromatin, through the
action of ER-resident DNA binding proteins. This
is followed by flattening of ER membranes around
the developing nucleus,77 with final sealing of the
NE accomplished by ESCRT-III.78,79 In mammalian
tissue culture cells, the INM proteins MAN1,
Lap2b, and lamin B receptor contribute to NE for-
mation by anchoring ER membranes at the chro-
matin surface, promoting membrane spreading
onto the chromatin.80 Subsequent expansion of the
NE requires an intact ER network, as detachment
of ER membranes from the NE by shear mechani-
cal stress hampered nuclear growth in Xenopus
extract, and withdrawing mechanical stress resulted
in recovery of NE growth.77 Impairing the function
of the AAA-ATPase p97, generally required for ER
network maintenance, also inhibited NE expan-
sion.81 Conversely, selective macroautophagy of ER
and nuclear membranes has recently been observed
in S. cerevisiae. Atg39, a perinuclear-localized
autophagy receptor, regulates autophagic sequestra-
tion of NE. Under nitrogen starvation conditions,
cells lacking Atg39 exhibited lobulated and dis-
torted nuclei with a concomitant loss of viability.82

Structural proteins of the ER network contribute to
NE morphology by affecting the proportion of ER
tubules to ER sheets. Reticulon (Rtn) proteins are
responsible for shaping the ER tubules and stabilizing

membranes with high curvature by inserting a hydro-
phobic wedge into lipid bilayers.83-85 In tissue culture
cells, Rtn overexpression increased ER tubulation and
reduced NE surface area, while Rtn depletion by
siRNA knockdown reduced ER tubulation and
increased nuclear size (Fig. 1A).86 NE formation was
inhibited in Xenopus egg extract supplemented with a
neutralizing Rtn4 antibody,77 and ectopic Rtn4
expression in early Xenopus embryos led to altered
nuclear size.71 Furthermore, ectopic addition of
recombinant Rtn4b to Xenopus egg extract decreased
the rate of nuclear expansion, leading to an »2.4-fold
reduction in nuclear cross-sectional area (Fig. 1B).
These observations suggest a tug-of-war relationship
between membranes of the ER and NE.80,86,87 Other
ER structural proteins like Climp63 and atlastins,
which set ER sheet width and generate 3-way junc-
tions, respectively, might also impact nuclear mor-
phology. For example, Climp63 levels might affect the
relative amounts of ER sheets versus tubules,88 and
atlastins might control expansion of the NE by regu-
lating the extent of ER tubule branching.89,90 Also of
potential relevance are members of the conserved
Lunapark protein family that reside at ER 3-way junc-
tions in yeast and mammalian cells, reducing ER 3-
way junction dynamics and preventing ER tubule
fusion.91 Membrane biogenesis can also impact
nuclear morphology. Lipin is a phosphatidate phos-
phatase important in glycerolipid biosynthesis, and
inactivation of lipin or genes that regulate lipin leads
to disorganization of peripheral ER structures with
concomitant defects in NE morphology in C. elegans
and yeast.2,92-94

The interplay between the ER and nuclear lamina
may be important in determining steady state nuclear
size. During interphase, nuclei expand and import
nuclear lamins into the forming NE, strengthening the
lamina meshwork. The increased mechanical force
exerted by the expanding lamina might resist the abil-
ity of the ER network to extract membrane from the
NE, so that optimal lamin import promotes NE
growth.22 As already discussed, lamins are phosphory-
lated during interphase,42,95-97 and increased phos-
phorylation of lamins by cPKC may result in
increased loss of lamins from the NE and/or altered
nuclear lamina dynamics. This phenomenon might be
compensated for by retraction of NE membrane back
into the ER, resulting in decreased NE surface area
and constant nuclear lamina density, potentially
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contributing to the steady-state regulation of nuclear
size.75

Interestingly, Rtn levels are sometimes altered in
different cancers, potentially contributing to cancer-
associated abnormalities in nuclear morphology.
Rtn4a overexpression has been observed in malignant
brain tumor cells, and sufficiently high Rtn expression
levels could have a dominant negative effect leading to
increased nuclear size, as observed in Xenopus.71

Downregulation of Rtn4 Interacting Protein 1
(Rtn4IP1) has been observed in thyroid cancers,98,99

potentially decreasing the efficiency with which Rtn4

shapes tubulated ER and leading to an increase in
nuclear size.100 As another example, Rtn1 is upregu-
lated in malignant pancreatic carcinoma, diffusely
infiltrating gliomas, and neuroendocrine tumors,98,101-
103 again possibly influencing ER and nuclear mor-
phology in these cancers.

Nuclear and organelle scaling relative to cell size

Cell growth and division influence the sizes of intra-
cellular organelles, but mechanisms responsible for
regulating how organelle size scales relative to cell size
are largely unknown.104 It is well established that
nuclear size varies as a function of cell size and that
the N/C volume ratio is a tightly regulated cellular fea-
ture. Varying the sizes of S. cerevisiae cells by muta-
tion or differing growth conditions demonstrated that
large cells possess large nuclei and smaller cells exhibit
smaller nuclei, maintaining a constant N/C volume
ratio.105 Similar studies were performed in fission
yeast S. pombe, where a constant N/C volume ratio
was maintained over a 35-fold range of cell sizes. A
16-fold increase in DNA amount did not change
nuclear size, demonstrating that ploidy has little effect
on nuclear size in this system.106 Interestingly, nucleo-
lar size scaled proportionately with nuclear and cell
sizes in these yeast studies as well. Nucleolar size also
exhibited a positive correlation with cell/nuclear size
in early C. elegans embryos. Surprisingly, when
embryo size was altered by various RNAi treatments,
nucleolar size showed an inverse scaling relationship,
in which large nucleoli assembled in small cells/nuclei
and vice versa. The model proposed to explain this
observation is that oocytes are maternally loaded with
a fixed number, rather than a fixed concentration, of
nucleolar components. As a result, the concentration
of nucleolar proteins is higher in RNAi-treated
embryos with small cells/nuclei, thus giving rise to
larger nucleoli.107 Nucleolar assembly that depends on
an intracellular phase transition could explain this
behavior, and such concentration-dependent phase
transitions might be a useful paradigm for under-
standing size scaling of other intracellular
structures.108

Limiting component models have been invoked to
explain size scaling of a variety of different organelles
and intracellular structures.109 As these models may
be relevant to nuclear size scaling, it is worth briefly
touching on what is known about size scaling of other

Figure 1. Reticulon expression levels affect ER structure and
nuclear size. (A) In the left panel, the ER is visualized in U2OS cells
with a Sec61-GFP construct. Knockdown of Rtn1, Rtn3, and Rtn4
by siRNA (labeled 3 Rtn siRNA) leads to less ER tubulation and
more ER sheets, with a concomitant increased rate of post-mitotic
nuclear formation. The scale bar is 20 mm. In the right panel,
nuclei in U2OS cells are visualized with GFP-NLS at 160 minutes
after nuclear formation. In cells overexpressing V4-Rtn4, nuclei
are smaller due to slower nuclear expansion. Images used with
permission from.86 (B) Nuclei were assembled in Xenopus laevis
egg extract for 45 min. The extract was then supplemented with
67 nM recombinant purified Rtn4b protein and incubated for
another 45 min. Nuclei were fixed, spun onto coverslips, and
stained with mAb414 to visualize the NPC and NE (red) and
Hoechst to visualize the DNA (blue). Nuclear cross-sectional areas
were quantified. Exogenous addition of Rtn4b led to an »2.4-
fold reduction in nuclear cross-sectional area (our unpublished
data).
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organelles. Centrosome size scales linearly with cell
size in early embryonic stages of C. elegans develop-
ment. A limiting component hypothesis has been sug-
gested in which centrosome size is determined by
cytoplasmic volume, which dictates the total amount
of centrosomal components available for assembly.110

The size of mitochondrial networks directly correlates
with cell size in S. cerevisiae, with aging mother cells
showing a continual reduction in the mitochondria-
to-cell size ratio over successive generations.111 How
mitotic spindle size might influence nuclear size, and
vice versa, is a particularly intriguing question. As dis-
cussed later in this review, microfluidic encapsulation
of mitotic X. laevis egg extracts demonstrated that
changes in cytoplasmic volume are sufficient to drive
spindle length scaling that occurs during early X. lae-
vis development.112-114 These data suggest that spindle
scaling might be explained by limiting amounts of
cytoplasmic components, acting in concert with other
mechanisms that affect the activity of microtubule reg-
ulatory factors.115-117 For example, in early stages of
Xenopus development, the kinesin-13 microtubule
depolymerase kif2a is inhibited by importin a, but
becomes activated later in development when the
cytoplasmic importin a concentration decreases
through redistribution to a membrane pool, thus giv-
ing rise to smaller spindles.118 As nuclear transport
has been clearly implicated in nuclear size control,
this function for importin a provides a potential link
between size scaling of the spindle and nucleus.

Nuclear size in embryonic development

For a given cell type, nuclear size is generally main-
tained within a defined range, and the size of the
nucleus tends to scale as a function of cell size.119

How nuclear size might impact cell function and
physiology is an important question. As already
described, Xenopus development offers a useful ani-
mal model to investigate scaling relationships. Dur-
ing early X. laevis embryogenesis, nuclear volume
decreases on average »3-fold up to the MBT, while
cytoplasmic volume shows a much more dramatic
»70-fold reduction in volume. As a consequence,
the average N/C volume ratio increases abruptly
prior to the MBT (Fig. 2). The MBT is associated
with a dramatic increase in zygotic transcription
and acquisition of slower, asynchronous cell cycles.

Identifying the mechanisms that contribute to
proper MBT timing has been an area of active
research for decades. Experimentally increasing
nuclear volume in embryos by microinjecting dif-
ferent nuclear scaling factors, including import pro-
teins, lamins, and reticulons, increased the N/C
volume ratio in pre-MBT embryos and led to pre-
mature activation of zygotic gene transcription and
early onset of longer cell cycles. Conversely,
decreasing the N/C volume ratio delayed zygotic
transcription and resulted in additional rapid cell
divisions.71 Similarly, in early C. elegans embryonic
development, cell cycle duration is correlated with
the N/C volume ratio.120 These data show that
nuclear size and the N/C ratio can impact timing
of the MBT, providing insight into the physiologi-
cal significance of the relationship between cell and
nuclear size. These findings are potentially relevant
to cancer where deviations from normal N/C vol-
ume ratios are frequently observed.100

Another factor that contributes to proper MBT
timing in the Xenopus embryo is the ratio of DNA
to cytoplasm.121,122 By varying the DNA content or
cytoplasmic volume of early X. laevis embryos, it
was shown that increasing the ratio of DNA to
cytoplasm resulted in an earlier MBT.122,123 The
proposed mechanism is that the egg is loaded with
a fixed amount of DNA binding proteins that serve
to inhibit the MBT. As development proceeds, cell
number and total DNA amount increase exponen-
tially in the embryo. Once a threshold amount of
DNA is reached, there are insufficient numbers of
MBT inhibitory molecules to sufficiently bind all
DNA, thus leading to induction of the MBT.122,124

Several potential limiting DNA binding factors
have been identified: histones,125 phosphatase
PP2A,126 and DNA replication initiation factors.127

Another protein that acts though a limiting titra-
tion mechanism is RAD18, a ubiquitin ligase
responsible for monoubiquitination of PCNA. It
functions to silence the DNA damage checkpoint
in Xenopus embryos prior to the MBT.128 Impor-
tantly, none of these factors appear to fully account
for the proper regulation of MBT timing, so it
seems likely that redundant mechanisms are
involved, with both DNA amount and nuclear vol-
ume contributing. We propose that nuclear volume
may be relevant to the DNA titration model, by

172 R. N. MUKHERJEE ET AL.



regulating intranuclear concentrations of the limit-
ing DNA binding factors.71

Just as nuclear size affects MBT cell cycle length,
cell cycle progression also impacts nuclear morphol-
ogy. Identified in Xenopus, Dppa2 and REEP3/4 are
required to remove microtubules and ER membrane,
respectively, from chromatin at the end of mitosis to
ensure a nucleus of the proper size and shape forms in
the subsequent interphase.129,130 In C. elegans, partial
inactivation of polo-like kinase PLK-1 leads to defects
in NE breakdown giving rise to 2 nuclei that fail to
merge into one.131 In yeast, formation of NE flares
adjacent to the nucleolus in response to excess mem-
brane production or mitotic arrest is dependent on
polo kinase Cdc5.132,133 A question for future research

is precisely how kinases with well-established roles in
mitosis, including cyclin-dependent kinases, polo kin-
ases, and PKC, contribute to the maintenance of
proper nuclear morphology.

Given the potential impact of the cell cycle on
nuclear morphology, it is worth considering the inter-
play between size scaling of mitotic structures and the
nucleus. Scaling of mitotic spindle length as a function
of cell size during developmental progression is con-
served across metazoans,134 as has already been dis-
cussed in the context of early Xenopus embryogenesis.
Comparing nearly 100 natural isolates of C. elegans
showed that selection for cell size, that impacts spindle
size, can account for differences in spindle size that
span over 100 million years of evolution.135

Figure 2. Nuclear scaling in early Xenopus embryos. (A) Isolated blastomeres from different stage X. laevis embryos were stained with
mAb414 antibody against the NPC and imaged by confocal microscopy. (B) Average nuclear and cell volumes were quantified for the
indicated stages of development, and used to obtain average nuclear-to-cytoplasmic (N/C) volume ratios. Error bars are SE. Images used
with permission from71.
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Furthermore, during early C. elegans development the
physical length of condensed mitotic chromosomes
scales with cell and nuclear size, such that a smaller
nucleus contains shorter chromosomes as measured
just prior to NE breakdown when chromosome con-
densation is nearly complete.74 Similar evolutionary
pressures may act to control the size of the nucleus as
a function of cell and embryo size. As already dis-
cussed, multiple mechanisms likely contribute to the
proper regulation of nuclear size. Regardless of mech-
anism, nuclear size normally scales with cell size, sug-
gesting that correct nuclear scaling is important for
nuclear, cell, and organismal function, as is particu-
larly evidenced in the case of early embryonic
development.

New technologies to study nuclear size regulation

During early Xenopus development, reductions in
nuclear size might be regulated by changes in the
composition of the embryonic cytoplasm and/or

reductions in cytoplasmic volume as cells become
smaller. We have already reviewed data showing
how developmentally regulated changes in cyto-
plasmic composition contribute to nuclear scaling,
including roles for nuclear import and cPKC activ-
ity. More recently, microfluidic-based technologies
enable the testing of how cytoplasmic volume
directly impacts nuclear size (Fig. 3). Encapsulating
X. laevis egg or embryo extracts in droplets of tun-
able and defined size is becoming a popular
approach to investigate mechanisms of organelle
scaling. The open nature of the extract system
allows for precise manipulation of cytoplasmic
composition, for instance through the addition or
depletion of specific proteins, while microfluidic
droplet generating devices allow for exquisite con-
trol of cytoplasmic volume and droplet shape. This
approach facilitates the study of how organelle size
is regulated by varying cytoplasmic volumes, limit-
ing components in fixed cytoplasmic volumes, and
sensing of droplet shape and boundaries.136

Figure 3. Microfluidic encapsulation technology to study organelle size scaling. (A) A standard microfluidic T-junction device is shown.
At the junction where oil/surfactant and X. laevis egg extract mix, droplets are generated. Droplet size can be tuned by altering device
geometry and flow rates. Image courtesy of John Oakey and Jay Gatlin. (B) Large 800 pl droplets containing stage 10 X. laevis embryonic
cytoplasm and endogenous nuclei are shown. Nuclei are visualized by import of GFP-NLS. Over the course of »3 hours at room temper-
ature, nuclear size expands (our unpublished data). (C) Partially fractionated X. laevis egg extract was encapsulated in a droplet, and ER
network formation was visualized with DiI (our unpublished data).
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Microfluidic techniques have provided insight into
scaling of the mitotic spindle, where droplet encapsu-
lation of X. laevis egg cytoplasm demonstrated that
small spindles form in small droplets and larger spin-
dles form in larger droplets. Interestingly, spindle
length was more sensitive to cytoplasmic volume than
droplet shape, arguing against a boundary-sensing
model of spindle length regulation.112,113 As cyto-
plasmic volume regulates spindle length scaling, these
data support a limiting component model of spindle
size regulation. A variant of this approach, in which X.
laevis egg extract was pumped into microfluidic chan-
nels of varying dimensions, demonstrated that the rate
of nuclear growth correlated with the volume of acces-
sible cytoplasm. Additionally, when X. laevis egg
extract was treated with a dynein inhibitor prior to
encapsulation in the microchannels, nuclear expan-
sion was greatly inhibited, implicating a microtubule-
and dynein-based mechanism of nuclear size
regulation.137

Other new technologies allow for measuring the
entire transcriptomes of individual cells, by coupling
microfluidic encapsulation of individual cells with
next generation sequencing.138 For example, whereas
only 5 mouse retinal cell types were previously known,
this so-called Drop-seq method identified 39 distinct

cell types based on individual cell profiles.139 We envi-
sion coupling these approaches with encapsulation of
Xenopus extracts, in order to test how cytoplasmic vol-
ume impacts the onset of zygotic transcription associ-
ated with the MBT.71

Does nuclear morphology affect chromatin
organization?

The genome is highly compacted in the eukaryotic
nucleus and each chromosome generally occupies a
preferred but not fixed position. Chromosomes near
the interior of the nucleus tend to be gene-dense while
genes at the periphery are usually poorly expressed
and associated with the nuclear lamina.140,141 How
nuclear size and morphology affect chromosomal
positioning and gene expression is an important
unanswered question. Additionally, it has been
showed that there is a correlation between nuclear vol-
ume and genome size in animals and plants.142,143

Here we discuss some aspects of chromatin organiza-
tion that may be influenced by nuclear size (Fig. 4).

Topologically associated domains (TADs) in meta-
zoan genomes are chromosomal regions that tend to
be in close proximity to one another. Within a single
TAD there are interactions and chromatin loops

Figure 4. Chromosomes are spatially organized within the nucleus. The NE is blue, and the nuclear lamina is the orange structure lining
the nucleoplasmic face of the NE. NPCs are black and inserted into the NE. Each chromosome is outlined in brown and is composed of
multiple different TADs that are depicted with different colors. An example of the type of chromatin interaction occurring within a TAD
is shown within the red oval. LAD interactions of chromatin with the nuclear lamina are also depicted. It is easy to imagine how a
change in nuclear volume and/or shape might impact this chromosomal organization.
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between cis-regulatory regions, such as enhancers,
promoters, and insulators, which regulate gene expres-
sion. Neighboring TADs are isolated from one
another by boundary elements, including the insulator
binding protein CTCF, housekeeping genes, and short
interspersed element retrotransposons.144,145 The
importance of CTCF for chromosome organization
has been demonstrated by changing the orientation or
position of CTCF binding sites, which leads to altered
chromatin looping and 3D chromosome architec-
ture.146,147 While some aspects of TAD organization
are conserved among different cell types,144 changes
in TAD interactions are associated with cell differenti-
ation and response to environmental signals,144,148-151

demonstrating plasticity in this level of chromatin
positioning. How nuclear volume and shape might
influence TAD organization is an open question.

Lamina-associated domains (LADs) are tran-
scriptionally repressed chromatin domains localized
at the NE. LADs are generally enriched in repres-
sive histone modifications,152 and repositioning of
active genes to the lamina can result in their
repression. For instance, in human embryonic stem
cells and derived embryoid bodies, active circadian
rhythm genes are silenced when moved into LADs
by PARP1 and its co-factor CTCF.153 The nuclear
lamina provides an interaction platform among
LADs, and lamins regulate this chromatin organiza-
tion through diverse interactions. For example,
Drosophila B-type lamins interact with the actin
nucleation protein Wash to maintain proper LAD
and chromosome organization.154 Deletion of B-
type lamins in mouse embryonic stem cells reduced
interactions between LADs and the nuclear lam-
ina,155 and cortical neurons in lamin B1 deficient
mice exhibit misshapen nuclei with nuclear
blebs.156 As discussed earlier in this review, lamins
and components of the nuclear lamina affect
nuclear size, which we speculate could influence
LAD organization.

Besides the lamina, other nuclear components
can affect chromosome structure and gene expres-
sion. In yeast, some nuclear transport factors and
Nups bind to transcriptionally active genes.157 Loss
of Drosophila Nup62 or Nup93 alters chromatin
attachments to the NPC,158 and depletion of Xeno-
pus Nup188 increases nuclear size, potentially
impacting chromatin localization.10 Centromeric
regions of human chromosomes also adopt defined

positions within the 3-dimensional space of the
nucleus that are likely important for nuclear func-
tion and may be influenced by altered nuclear size
in cancer.159

Novel methods are being developed to investi-
gate chromatin and chromosome structure. We
anticipate these approaches will be useful in
ascertaining how altered nuclear morphology
impacts global chromatin organization. One of
the most widely used methods to detect higher-
order chromatin structure is the chromosome
conformation capture (3C) family of techni-
ques.146,153,160 Chromatin immunoprecipitation
sequencing (ChIP-seq), micrococcal nuclease
sequencing (MNase-seq), and chromatin immuno-
precipitation exonuclease (ChIP-exo) methodolo-
gies provide information over the »1–150 bp
length scale, allowing for analysis of nucleosome
fiber folding 149,161-164. While these types of
approaches provide information on populations of
cells, single-cell approaches have now become fea-
sible. A modified DamID (DNA adenine methyl-
transferase identification) method enables genome-
wide mapping in single human cells,144,147,165,166

and CRISPR-based approaches have been used to
image individual chromosomal loci in live cells
and in vitro extracts.167,168 To identify molecular
mechanisms that contribute to proper chromatin
organization, HIPMap (high-throughput imaging
position mapping) was coupled with siRNA
screening to identify human genome positioning
factors, including chromatin remodelers, histone
modifiers, and NE and NPC proteins.169 As we
gain a better understanding of how proper chro-
mosome positioning is established, it becomes
possible to test how nuclear size and shape
impact these pathways.

Nuclear morphology and disease

Aberrant nuclear morphology is associated with many
diseases, most notably cancer in which altered nuclear
size and shape are used by pathologists to assess the
degree of malignancy.61,100,170 Chromosomal gains
and losses, amplification or deletion of smaller geno-
mic fragments, and changes in higher-order chroma-
tin structure are all associated with cancer.171,172

Cancer-associated changes in nuclear morphology
may disrupt normal chromatin positioning, gene
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expression, and DNA damage pathways, potentially
contributing to disease progression. In a recent study,
it was shown that loss of the developmentally regu-
lated GATA6 transcription factor in ovarian cancer
resulted in deformation of the NE, cytokinesis failure,
and aneuploidy.173 Molecular mechanisms that may
contribute to altered nuclear size and shape in cancer
have been touched on throughout this review and
comprehensively reviewed elsewhere.1,61,87,100, 170,174-

176 An important question for future research is if cor-
recting the altered nuclear morphology of cancer cells
might mitigate disease.

Mutations in nuclear proteins contribute to other
diseases. In mammalian cells, loss or mutation of NE
structural proteins, such as emerin 177 and lamin A/
C,178 cause altered nuclear morphology associated
with diseases such as muscular dystrophy,179 prema-
ture aging,180 laminopathies,181 and cancer.182 For
example, a heterozygous mutation in exon 11 of
LMNA results in Hutchinson-Gilford progeria syn-
drome, a rare premature aging disease associated with
alterations in nuclear shape and structure.183 Amyo-
trophic lateral sclerosis and frontotemporal dementia
result from hexanucleotide repeat expansions in the
C9orf72 gene, which leads to an inhibition of nuclear
protein import and abnormal nuclear architec-
ture.184,185 Torsin proteins are ER membrane embed-
ded AAAC ATPases. While most torsins are found in
the peripheral ER, torsinA (encoded by TOR1A) is
also localized in the INM where it affects nuclear mor-
phology. An in-frame deletion in the TOR1A gene
that removes a single glutamic acid residue (DE-tor-
sinA) causes the neurodevelopmental disorder DYT1
dystonia and results in redistribution of torsinA from
the ER to the NE.186-189 In both torsinA null and
homozygous DE-torsinA knockin mice, the neuronal
NE exhibited ultrastructural abnormalities, including
INM-derived vesicles within the NE lumen190. Other
data indicate that torsinA affects connections between
the INM and ONM.191 Mutating OOC-5, the C. ele-
gans homolog of torsinA, led to abnormal germ cell
and intestinal nuclear morphologies, with vesicle-like
blebs present in the perinuclear space and protrusion
of ONM into the cytoplasm.192

Nuclear architecture can also be targeted by patho-
gens. Human immunodeficiency virus type 1 (HIV-1)
associates with particular Nups in order to integrate
into transcriptionally active host genes that are located
within 1 mm from the nuclear periphery, while

avoiding heterochromatin regions in LADs,193 sug-
gesting that host nuclear topology is an essential deter-
minant of the HIV-1 life cycle. SINC is a type III
secreted protein of Chlamydia psittaci. When Hela
cells are infected by C. psittaci, SINC incorporates into
the NE of the host cell nucleus and interacts with
Nups, ELYS, lamin B1, and emerin, leading to altera-
tions in nuclear shape and function in both infected
cells and neighboring uninfected cells.194 Many dis-
eases are associated with altered nuclear morphology,
so identifying approaches to correct these morpholog-
ical defects may lead to novel therapeutics.

Concluding remarks

Throughout this review, we have touched on some
important outstanding questions in the field of nuclear
morphology regulation. A variety of new experimental
methodologies promise to provide new insights into
the mechanisms that control nuclear size and shape.
With a better handle on mechanism, it should become
possible to directly address the functional significance
of nuclear morphology, both in normal cells and in
disease. How does nuclear morphology affect nuclear
function and the morphology of other intracellular
structures? How does nuclear volume impact chroma-
tin positioning and gene expression? Does nuclear
morphology represent a novel target for cancer thera-
peutics? Answers to these questions and others are
hopefully forthcoming, as exciting work remains to
elucidate the regulation of nuclear size and shape.
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