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ABSTRACT
The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte
heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue
for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic
adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of
brown adipocyte recruitment by the sympathetic nervous system and by direct b-adrenergic
receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown,
beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-
thermogenic, metabolically beneficial effects of brown adipocytes.
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Introduction

Interest in understanding adipose tissue biology has
increased globally because of the alarming rise in obesity
and diabetes. The escalation in obesity is largely attrib-
uted to augmented energy consumption and widespread
adoption of sedentary lifestyles, with the consequent
expansion of adipose tissue and development of meta-
bolic dysregulation. Therefore, research efforts have been
focused on elucidating regulators of adipose tissue physi-
ology in the hope of finding novel therapeutic
approaches that mitigate the pathological effects of ele-
vated fat mass.

The past 6 y have seen an explosion of interest in
brown adipose tissue (BAT) that has been fueled by the
unequivocal identification of active BAT in adults,1-5 and
by the growing appreciation of the intrinsic metabolic
and cellular plasticity of mammalian adipocytes. Posi-
tron Emission Tomography (PET) imaging studies con-
clusively demonstrated that mild cold stress or selective
activation of b3-adrenergic receptors (ADRB3) produces
visually impressive increases in uptake of 18F fluorodeox-
yglucose (FDG).3-9 However, direct measurement of oxi-
dative metabolism in BAT by 15O PET (or blood flow)
indicate that the level of cold-activatable thermogenesis
in most individuals is less than 10 kcal/day.6,7,9 To put
this in perspective, blood flow to BAT of cold-adapted
rats can reach rates of 1000 ml/min/100 g10,11 versus 15–

20 ml/min/100 g BAT in cold-stressed, warm-adapted
humans.6,7,9 The clear conclusion is that the abundance
and/or magnitude of thermogenic activation of BAT in
humans would need to be increased by 40–50 fold to
achieve an effect similar to brief exercise. Thus, there is a
real need to understand how the brown adipocyte (BA)
phenotype is regulated in vivo, and how levels might be
expanded by physiological and pharmacological
approaches.

The central role of the sympathetic nervous system
(SNS) in modulating BAT and white adipose tissue
(WAT) energy metabolism is well established (for review
see refs.12-14). Recent work from our lab and others has
demonstrated that the SNS, acting mainly via ADRB,
plays a central role in modulating intrinsic cellular and
metabolic plasticity of adipose tissues. Importantly, the
mode of regulation varies according to depot and nature
of activating stimulus. The goal of this article is to pro-
vide a focused outlook on how adrenergic receptor acti-
vation mediates cellular and metabolic plasticity in
adipose tissues with a main focus on research done on
rodents.

Modes of adrenergic activation

Adipose tissue ADRB can be stimulated by elevating
sympathetic neural activity, for example by cold stress,15-18
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leptin19,20 or emotional stress.21 In rodents, substantial
sympathetic innervation of both BAT and WAT has
been demonstrated consistently by a variety of methods
(for review see refs.14,17) including immunochemical
detection of tyrosine hydroxylase,22-26 fluorogold retro-
grade tracing27 and electrical recording of nerve activ-
ity.18,28 Direct nerve stimulation of WAT has also been
demonstrated in rodents and humans.29-32 Importantly,
the sympathetic innervation of WAT is necessary for
lipolysis triggered by stimuli like leptin or cold exposure
in rodents.13,33-36 Nonetheless, it is important to note
that the level of sympathetic innervation varies among
fat pads, with BAT being the most heavily innervated
and abdominal WAT the least.25,27,37 Furthermore, acti-
vation of the SNS varies according to stimulus and fat
depot. Thus, cold exposure is a powerful activator of
BAT and inguinal WAT (iWAT) and, to a lesser extent,
gonadal WAT (gWAT), whereas glucoprivation selec-
tively activates iWAT, but not BAT or gWAT.16

A second means of activating the catabolic functions
of adipose tissues is by direct adrenergic receptor activa-
tion, which overcomes the limitations imposed by differ-
ences in innervation and central nervous system (CNS)
activation. In rodents, systemic infusion of norepineph-
rine is sufficient to reproduce most of the effects induced
by neural activation.38-42 Activation of thermogenesis
and upregulation of oxidative metabolism is mediated by
ADRB and selective ADRB3 agonists are highly effective
in elevating whole body thermogenesis in rodents 11,43-46

and humans.47 Interestingly, experiments involving tis-
sue-selective gene expression indicate that activation of
ADRB in both WAT and BAT is required for full ther-
mogenesis, with WAT ADRB3 directly or indirectly
accounting for~70% of the total response.48 In this regard,
humans express ADRB3 in BAT, but not WAT,49-51

which may explain why ADRB3 agonists have not been
successful as anti-obesity agents in humans.52

Modes of modulating adipose plasticity by
adrenergic activation

The pioneering work by Cinti highlighted the tremen-
dous plasticity of adipose tissues,53-55 and many labora-
tories are now investigating how this intrinsic plasticity
might be exploited for therapeutic benefit. Adrenergic
activation expands the catabolic character of adipose tis-
sues by interrelated mechanisms, and lipolysis is a major
regulator of catabolic activity. In BAs, mobilized fatty
acids are direct allosteric regulators of UCP1 56 and are
the principal fuel driving high rates of heat production.57

Mobilized free fatty acids are also effective ligands of
PPARa and PPARd, which regulate expression of genes
involved in the uptake and oxidation of fatty acids,

thereby coupling oxidative capacity to supply.58 Of
course, activation of PKA by ADRB phosphorylates and
activates CREB-binding protein,59 PGC1a 60,61 and p38
MAPK,62 which are important in establishing the BA
phenotype and inducing mitochondrial biogenesis. Inter-
estingly, chronic ADRB3 activation in rodents greatly
increases catabolic activity of WAT in a manner that can
be largely independent of UCP1.63-65 Under chronic con-
ditions, this catabolic activity is matched by dramatic
increases in de novo lipogenesis in BAT, iWAT, and
gWAT.65 These observations indicate that coupled
energy expenditure (i.e., ATP-consuming processes) may
be of greater significance in WAT vs. BAT, at least in
response to pharmacological activation.65,66

In addition to metabolic plasticity, adrenergic activa-
tion can alter a number of BAs (defined as multilocular
cells expressing UCP1) in classic interscapular BAT
(iBAT) and WAT depots. Although the modes of BA
recruitment are not fully resolved, in general they involve
de novo adipogenesis (i.e., differentiation from progeni-
tors) or upregulation of the BA phenotype in differenti-
ated cells that appear to be white. Importantly, the
mechanisms of BA recruitment depend on the nature of
inductive stimuli (neural vs. pharmacological) and the
specific fat depot.

Cellular plasticity in iBAT

In mice, iBAT develops prenatally and is functionally
innervated and fully active at birth.67 An intact innerva-
tion is not required for specification of the BA lineage;
however, denervated iBAT is functionally inactive and
over time takes on the appearance of white adipocytes.40

The significance of the SNS in activating and maintain-
ing BA phenotype in adult mice has been firmly
established by selective surgical,68-72 chemical,73 immu-
nological,74 and genetic 75 denervation strategies. Impor-
tantly, local surgical denervation abrogates induction of
UCP1 and tissue hyperplasia in response to cold.25,69

Similarly, highly selective inhibition of medullary sympa-
thetic efferent neurons eliminates induction on BAT
thermogenesis in response to cold.76,77 Thus, while other
cellular sources of catecholamine, such as macrophages,
have been proposed based on genetic approaches,78,79

none is sufficient to mediate the effects of cold in the
absence of neural activation.

Adrenergic stimulation induces BA hyperplasia and
angiogenesis in iBAT,25,80-82 leading to pronounced
expansion of iBAT mass during extended cold adapta-
tion. Using radioactive thymidine labeling, Bukowiecki
found that cold, norepinephrine, or isoproterenol
strongly induced cellular proliferation in iBAT, suggest-
ing that ADRB stimulation mediates cellular
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proliferation.80,81 By analyzing the fate of flash-labeled
cells, Bukowiecki deduced that BA cells arise from a pop-
ulation of interstitial cells that proliferate during the first
2–4 d of cold stress. More recent work using genetic trac-
ing methods demonstrated that cold exposure or norepi-
nephrine treatment triggers proliferation and
differentiation of a subpopulation of Sca1C stromal cells
that express PDGFRa.25 PDGFRa cells are morphologi-
cally and immunologically distinct from closely associ-
ated endothelial cells, which also proliferate in response
to cold stress.25 The PDGFRaC BA progenitors have a
dendritic morphology that appears to be characteristic of
adipocyte progenitors in various fat pads.25,83,84 Interest-
ingly, proliferation of progenitors occurs mostly in the
dorsal region of iBAT at the white-to-brown interface,25

suggesting the presence of specific micro environmental
factors.

With regard to the identity of the ADRB involved in
expansion of BAT mass, it is known that rodents and
human iBAT express b1, b2, and b3 receptors (ADRB1,
2 and 3 respectively).51,85-88 Early in vitro work from the
labs of Kozak and Nedergaard suggested that norepi-
nephrine triggers BA proliferation via ADRB1.88-91 These
data are in agreement with the fact that ADRB1 are pres-
ent in BA progenitors, whereas ADRB3 is a marker of
the differentiated state.91 Recently, we reported that
knockout of ADRB1 abrogates cold-induced iBAT
hyperplasia.25 In this regard, it should be noted that
ADRB3 agonists do not induce hyperplasia in iBAT,
despite intense metabolic activation.82 Altogether these
data indicate that ADRB1 mediate SNS-induced progeni-
tor proliferation in iBAT, whereas both ADRB1 and
ADRB3 mediate increases in lipolysis, mitochondrial
biogenesis and establishment of oxidative phenotype in
mature BAs (for review see refs.17,92,93).

Adrenergic regulation of BA phenotypes in
subcutaneous WAT

It is well known from the work of Cinti,53-55 Loncar94-96

and Kozak97,98 that neural or direct adrenergic activation
of subcutaneous white fat in small mammals can induce
the appearance of UCP1 positive multilocular adipo-
cytes. Although this phenomenon can be observed to
varying degrees in many depots, it is most robust
(defined as fold-induction) in the inguinal fat pad,97 also
known as the mammary fat pad. In mice, the inguinal
pad develops prenatally and adipocytes begin to fill with
lipid in the first few days after birth.99 Interestingly,
UCP1 expressing multilocular adipocytes appear in
abundance during the second post-natal week and by the
time of weaning these cells compose about 30% of the
total adipocyte population.34,100,101 The developmental

appearance of BAs in the inguinal pad seems unrelated
to perinatal thermoregulation, since these cells appear
after the peak activation of classic BAT and after pups
have acquired fur. The mechanism for the upregulation
of the BA phenotype is not clear; however, expression
profiling of whole iWAT indicates that UCP1 expression
correlates with upregulation of genes involved in axono-
genesis, neuritogenesis, and growth of nervous tissue.102

It is possible that expression of the BA phenotype
requires neural activity and that appearance of iWAT
reflects degree of innervation and or activity of the SNS
in this depot.

Mice largely lose expression of BA markers in iWAT,
like UCP1 and CIDEA, by 3 months of age when reared
in the warm;34,102 however, expression of these markers
can be rapidly (within hours) induced by cold stress or
ADRB3 agonists.55,97,103,104 Whether the newly appear-
ing BA cells represent de novo adipogenesis or the induc-
tion of BA phenotype in existing cells is controversial.
Immunohistological experiments indicate that UCP1
expression first appears in relatively large paucilocular
adipocytes that progressively take on the appearance of
classic BA.55 Furthermore, experiments done in UCP1-
CreER/tdRFP mice and UCP1-GFP mice indicate that
the inguinal fat pad contains a substantial population of
UCP1 negative adipocytes having a history of UCP1
expression.104 Tracing experiments using tamoxifen-
inducible Cre also support the notion of conversion
between “white” (paucilocular, UCP1 negative) and
“brown” (multilocular UCP1 positive) phenotypes.25,104

Use of tamoxifen for tracing in adipose tissue has been
criticized owing to the potential slow clearance.105 How-
ever, use of tamoxifen under conditions in which de
novo adipogenesis can be quantitatively demonstrated in
iBAT, indicates that most BA cells that appear in ingui-
nal fat during cold stress arise from preexisting fat
cells.25,83,84,104 As mentioned before, UCP1 positive cells
that appear in response to 2 single injections of ADRB3
agonist have an appearance (large, paucilocular) that
seems inconsistent with de novo adipogenesis.34 In con-
trast, Scherer’s group has shown that cold and ADRB3
agonist treatment stimulate “massive” de novo adipogen-
esis in iWAT.106 This conclusion is based on the appear-
ance of differentiated UCP1 positive adipocytes in iWAT
that lack an immediate history of adiponectin expression.
Using Lac-Z activity as a reporter, these authors observed
that overnight cold exposure was sufficient to produce
the appearance of fully formed unilocular (>50 microm-
eter diameter) white adipocytes in gWAT. In addition,
Gupta’s group recently demonstrated that Zfp423-
PDFGRbC mural cells, which also express PDGFRa,
give rise to brown adipocytes in iWAT in response to 2
weeks but not 1 week of cold exposure107 suggesting that
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several waves of de-novo adipogenesis may occur in
response to cold exposure. However, the nature of early
white adipocyte progenitors has not been established,
and alternative technical explanations have been sug-
gested.25,83,84 Since PDGFRaC progenitors do not con-
tribute significantly to brown adipogenesis in iWAT
within a week of adrenergic stimulation,25,83,84 initial de
novo recruitment might involve an intermediate or par-
tially-differentiated phenotype capable of rapid lipid fill-
ing, but lacking adiponectin expression.

Regardless of the mechanism of BA recruitment (phe-
notype reinstatement in existing cells or de novo adipo-
genesis) the tonic neural activity appears to be important
in maintaining phenotype flexibility of WAT. Thus, sur-
gical denervation of iWAT in mice greatly reduces the
ability ADRB3 stimulation to upregulate the expression
of BA makers.34 These results suggest that tonic neural
activity maintains the BA progenitor pool or epigenetic
program that preserve phenotypic flexibility of existing
convertible adipocytes.

Cell cloning experiments and expression profiling
data has suggested that BA cells derived from inguinal
fat pads are distinct in phenotype to BAs from iBAT.108

Thus, in rodents, BAs from iBAT and iWAT express a
distinctive set of body positional markers (e.g, Zic1,
Hoxc8, Hoxc9, Tcf21 and Myf5).109 In spite of those dif-
ferences, it is uncertain to what degree BAs from iWAT
differ fundamentally from classical iBAT with respect to
thermogenic mechanisms, lipid metabolism, and hor-
mone secretion. Recent work by Wang et al. indicates
that PDGFRaC progenitors destined to become BAs
express Ebf2C, whereas those destined to become white
do not.110 These observations reinforce the fact that the
inguinal fat pad is very heterogeneous and that
approaches that do not account for this heterogeneity
can be misleading (i.e. cell suspensions, RNA extraction
and protein homogenates from whole tissue).

Brown in gWAT

GWAT is a major abdominal depot in rodents that
develops postnatally, with differentiated adipocytes
appearing by day P7 and fully maturating by P14.111

Among the various fat depots, gWAT is among the least
capable of inducing BA phenotype in response to neural
or direct adrenergic activation.55,65,103 The reason for the
relative lack of responsiveness is not certain, but could
be related to lower density of sympathetic innerva-
tion25,27,37 or differences in specific progenitor pools.112

Our lab found that mouse gWAT tissue contains popula-
tions of bipotential progenitors that can differentiate into
brown or white adipocytes depending on inductive sig-
nals.84 Cold exposure, which relies on the activation of

the relatively spare SNS in gWAT, has very little effect
on expression of BA makers in existing adipocytes and
induces virtually no de novo recruitment of BA. In con-
trast, direct activation of gWAT by ADRB3 agonist trig-
gers de novo adipogenesis from the bipotential
progenitor pool that express PDGFRa on their surface.
Activation of ADRB3 with CL-316,243 increases cell pro-
liferation peaking at 3 d after treatment. Interestingly, the
effect of ADRB3 agonist is not direct on progenitors,
which lack ADRB3, but rather is the indirect response to
adipocyte cell death and repair. In particular, chronic
infusion of ADRB3 agonist increases lipolysis and adipo-
cyte apoptosis, which signals recruitment of M2 macro-
phages, formation of crown-like structures and
phagocytosis of dead adipocytes.83 Adipocyte efferocyto-
sis results in the expression of signaling molecules like
osteopontin which recruits PDGFRaC progenitor cells
to the site of injury. Recruited progenitor cells divide and
differentiate into adipocytes which, in the presence of
ADRB3 agonist, adopt a multilocular brown like-pheno-
type with increased levels of UCP1.83 Interestingly,
brown adipogenesis occurs in small clusters, reflecting
proliferation and differentiation driven by microenviron-
mental factors. In this regard, we recently found that the
macrophages which clear dead fat cells upregulate
expression of Alox15, which generates the PPARg ago-
nists 9-HODE and 13-HODE.113 In vitro experiments
established that 9-HODE and 13-HODE are nearly as
effective as rosiglitazone in strongly upregulating the BA
phenotype of differentiating PDGFRa cells. Since pro-
genitors in the earliest stages of differentiation express
ADRB3, it seems likely that the combined effects of
adrenergic stimulation and PPARg activation drive bipo-
tential progenitors to the BA fate.

UCP1-Independent effects: thermogenic and
non-thermogenic mechanisms

Historically, nonshivering thermogenesis has been attrib-
uted to the presence and activation of UCP1 in BAT.
However, depending on background strain, UCP1-
knockout mice can adapt to cold by increasing
thermogenesis.114 Indeed, UCP1 mice are resistant to
diet-induced obesity under mild cold stress, indicating
engagement of inefficient UCP1-independent mecha-
nism.115 The site(s) of UCP1 independent thermogenesis
has(ve) not been fully established. Chronic treatment
with ADRB3 agonist elevates oxygen consumption in
gWAT and this effect is independent of UCP1.63 As men-
tioned above, ADRB3 agonist treatment dramatically
increases glyceride-glycerol turnover (to >50 %/day) and
simultaneously increases de novo lipogenesis and fat oxi-
dation.65 Thus, adrenergic activation creates an ATP-
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consuming cycle of triacylglycerol lipolysis and fatty acid
synthesis and re-esterification (TAG/FA cycle). This cycle
is presumably fueled by local fatty acid oxidation and sus-
tained by dramatic expansion of mitochondria.44,65,116

Whether such dramatic effects can be observed in human
adipocytes is uncertain. Human white adipocytes lack
ADRB3, so other means of triggering futile cycling selec-
tively in adipocytes would need to be developed.117

A positive correlation between BAT mass and insulin
sensitivity has been shown in humans and rodents.118,119

This correlation seems to be independent of total fat
mass and points to a still speculative endocrine function
of BAs. Research shows that subcutaneous or visceral
transplants of BAT or beige/brite tissue improve glucose
metabolism in rodents.120-125 Moreover, a recent report
from Stahl’s group demonstrated the beneficial effects of
matrix assisted transplantation of beige/brite cells on glu-
cose metabolism and insulin sensitivity.126 Although
results from matrix transplants could not be separated
from increased thermogenesis, they point to a possible
endocrine function of BAs. In this regard, FGF21 and
IL6 have been shown to mediate some of the beneficial
effects of BAT transplantation,122 and FGF21 alone can
improve insulin sensitivity in a UCP1-independent fash-
ion.127,128 Altogether recent data suggest that some of the
beneficial effects of BAT and beige/brite tissue are not
related to increasing thermogenic capacity (for review
see ref.129).

Some unresolved issues

A significant amount of progress has been done in
understanding BAT, WAT and beige/brite tissue physi-
ology and regulation in small mammals. However, we
still face challenges when extrapolating those findings to
humans. Endothermic thermogenesis plays a much
larger role in energy balance of small versus large mam-
mals.130,131 Therefore, the contribution of iBAT-medi-
ated thermogenesis on energy expenditure is less
prevalent in humans than rodents. Thus, it would be
necessary to perform studies in larger animals to predict
the applicability of the concept in humans.

In addition, another important difference between
humans and rodents is body distribution of ADRB.
ADRB1 receptors are broadly expressed in the cardiovas-
cular system, so ADRB1 agonists cannot be used to selec-
tively recruit BA progenitors. In rodents, ADRB3 are
selectively expressed in BAT and WAT, and combined
activation is required for full thermogenesis.48 Humans
express ADRB3 only in BAT, and thus ADRB3 activation
cannot rely on WAT-supplied fatty acids to fuel high lev-
els of metabolism. This limitation may explain the failure
of ADRB3 agonists in clinical trials.52 It was recently

reported that the ADRB3 agonist mirabegron, currently
approved for overactive bladder, increases 18F-FDG
uptake in human BAT.132 However, based on the rela-
tionship between standard uptake values (SUV) and
blood flow,6,7 the quantitative significance with respect
to thermogenesis is unclear.

Interestingly, several groups have demonstrated a sig-
nificant increase of about 300 kcal/day in whole body
energy expenditure after cold exposure or ADRB3 in
individuals harboring cold-activated BAT.6,132,133 As
mentioned earlier, these increases are not likely due to
PET-identifiable BAT thermogenesis (which contributes
<20 kcal/day). These data suggest that, similar to
improved glucose metabolism, an alternative non-ther-
mogenic function of BAT could mediate increases in
energy expenditure. Whether this is due to an unknown
BAT function or to the secretion of “BATokines”
remains unclear.
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