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Abstract

 PURPOSE—Broad, hybrid capture-based next-generation sequencing (NGS), as a clinical test, 

uses less tissue to identify more clinically relevant genomic alterations compared to profiling with 

multiple non-NGS tests. We set out to determine the frequency of such genomic alterations via this 

approach in tumors where previous extensive non-NGS testing had not yielded a targetable driver 

alteration.

 METHODS—We enrolled lung adenocarcinoma patients with a ≤15 pack-year smoking history 

whose tumors previously tested “negative” for alterations in 11 genes (mutations in EGFR, 
ERBB2, KRAS, NRAS, BRAF, MAP2K1, PIK3CA, and AKT1, and fusions involving ALK, 
ROS1, and RET) via multiple non-NGS methods. We performed hybridization capture of the 

coding exons of 287 cancer-related genes and 47 introns of 19 frequently rearranged genes and 

sequenced these to deep, uniform coverage.

 RESULTS—Actionable genomic alterations with a targeted agent based on NCCN guidelines 

were identified in 26% (8/31: EGFR G719A, BRAF V600E, SOCS5-ALK, CLIP4-ALK, CD74-
ROS1, KIF5B-RET [n=2], CCDC6-RET). 7 of these patients either received or are candidates for 

targeted therapy. Comprehensive genomic profiling using this method also identified a genomic 

alteration with a targeted agent available on a clinical trial in an additional 39% (12/31).

 CONCLUSION—Broad, hybrid capture-based NGS identified actionable genomic alterations 

in 65% (95% CI 48–82%) of tumors from never or light smokers with lung cancers deemed 

without targetable genomic alterations by earlier extensive non-NGS testing. These findings 

support first-line profiling of lung adenocarcinomas using this approach as a more comprehensive 

and efficient strategy compared to non-NGS testing.
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 INTRODUCTION

Therapeutic approaches to lung cancers have quickly shifted towards an emphasis on 

molecularly targeted therapy in genotypic subsets of patients. The discovery of activating 

mutations in the epidermal growth factor receptor (EGFR) gene in 2003(1–3) and 

rearrangements involving the anaplastic lymphoma kinase (ALK) gene in 2007(4) ushered in 

an era where the identification of key oncogenic alterations emerged as the critical 

determinant of benefit to targeted therapy. Phase III trials have demonstrated that response 

rate and progression-free survival are improved with targeted therapy in comparison to 

chemotherapy.(5–7) In the United States, the EGFR tyrosine kinase inhibitors (TKIs) 

erlotinib and afatinib, and the ALK TKIs crizotinib and ceritinib are approved for patients 

with EGFR-mutant and ALK-rearranged advanced lung cancers, respectively.(8, 9)

Recent data from The Cancer Genome Atlas (TCGA) revealed that lung cancers rank among 

the most genomically-complex of tumors among the 12 cancer types studied by the TCGA 

Pan-Cancer effort.(10, 11) This genomic complexity allows the opportunity to exploit the 

presence of other molecular alterations as therapeutic targets in patients. Over the last 

decade alone, the number of lung cancer drivers for which active targeted therapeutics have 

been identified has steadily risen. In lung adenocarcinomas, these include, beyond EGFR 
mutations and ALK fusions, mutations in ERBB2 (HER2),(12) BRAF,(13) PIK3CA,(14) 

and AKT1,(15) recurrent gene fusions involving ROS1,(16) and RET,(17) and MET 
amplification,(18) with an ever-growing list of other potential candidates. Lung cancers from 

patients with a never smoking history have a unique molecular profile in comparison to lung 

cancers from smokers. Tumors from never smokers are characterized by lower overall 

mutation frequencies and are enriched for targetable drivers such as EGFR mutations, and 

ALK, ROS1, and RET fusions.(19)

The evolution of molecular diagnostic platforms that permit rapid identification of 

oncogenic alterations has played a central role in allowing continued expansion of this 

approach. In the face of few targetable oncogenes, molecular testing previously followed a 

one driver-one test approach, with the use of Sanger sequencing to detect EGFR mutations 

and break apart fluorescence in situ hybridization (FISH) to detect ALK fusions. With an 

ever-expanding number of drivers of interest, multiplex polymerase chain reaction (PCR)-

based platforms such as Sequenom (Sequenom, San Diego, CA) and SNaPShot (Applied 

Biosystems, Foster City, CA) were developed to simultaneously interrogate mutation 

hotspots in multiple oncogenes.(20) In several larger centers, the pre-NGS approach to 

diagnostic testing commonly involved one of the latter methodologies in addition to 

multiplex sizing assays, FISH tests for recurrent gene fusions, and immunohistochemistry to 

determine overexpression or protein loss. However, from the perspective of the clinician, the 

clinical laboratories, and the patient, the amount of tissue, effort, and time required to 

complete such as an algorithm has become less and less feasible.
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Next-generation sequencing (NGS) or massively-parallel DNA sequencing represents an 

important technologic advance in the evolution of molecular diagnostic tools. NGS allows 

for the simultaneous detection of multiple alterations in relevant cancer genes in a single 

test,(21) but this ability can depend on the type of target enrichment used, namely hybrid 

capture or PCR. Most PCR capture-based NGS assays are designed as “hot spot” tests, 

sequencing predefined areas of oncogenes with known associations with resistance or 

sensitivity to approved agents. These tests commonly detect base substitutions with high 

sensitivity, but small insertions and deletions with lower sensitivity. Although providing a 

substantial advance over single gene or marker analysis, PCR-based NGS assays do not 

routinely detect copy number changes (amplification or homozygous deletions) or gene 

fusions.

In contrast, hybrid capture-based NGS assays allow the identification of not only hotspot 

mutations, but also interrogates the entire coding sequence of oncogenes and tumor 

suppressor genes and the introns of selected genes involved in gene fusions, and allow 

assessment of copy number alterations, all from a single formalin fixed paraffin embedded 

specimen.(22)

With this in mind, we set out to perform a broad, hybrid capture-based NGS assay 

(FoundationOne) on tumor specimens from patients with lung adenocarcinomas who tested 

negative for a panel of 11 known drivers via a standard molecular diagnostic algorithm 

previously used at our institution. Our intent was to define the incremental potential benefit 

of such an approach to detect previously undiagnosed genomic alterations amenable to 

targeted therapy in this defined patient population.

 MATERIALS AND METHODS

 Patient identification and selection

Patients with lung adenocarcinomas harboring no evidence of a genomic alteration based on 

a focused panel of non-NGS testing who were treated at the Memorial Sloan Kettering 

Cancer Center (MSK) between 2006 and 2013 were identified. Testing for these alterations 

was performed under a separate, ongoing, prospective program (the MSK Lung Cancer 

Mutational Analysis Program or LC-MAP) in patients with pathologically-confirmed lung 

adenocarcinomas. Tissue and clinical data were collected under a protocol approved by the 

institutional review board or waiver of authorization.

Non-NGS testing was comprised of a number of tests for known lung cancer alterations in 

11 genes (EGFR, ERBB2, KRAS, NRAS, BRAF, MAP2K1, PIK3CA, AKT1, ALK, ROS1, 

and RET).(14) A multiplex mass-spectrometry-based system (Sequenom) was used to study 

91 point mutations in EGFR, ERBB2, KRAS, NRAS, BRAF, MAP2K1, PIK3CA, and 

AKT1 (Supplementary Table 1). Multiplex sizing assays tested for insertions or deletions in 

EGFR exons 19 and 20, and ERBB2 exon 20. Three FISH break apart assays were used to 

screen for gene rearrangements involving ALK, ROS1, and RET.

Patients whose tumors tested negative for the above alterations were eligible if they were 

never smokers or smoked ≤15 pack-years of cigarettes, had an Eastern Cooperative 
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Oncology Group (ECOG) performance status of 0–1, and stage IIIB/IV disease or early-

stage disease with radiographic findings suspicious for recurrence not amenable to local 

therapy. Sufficient tumor tissue for broad, hybrid capture-based NGS was required. Our 

intent was to identify patients who were candidates for targeted therapy should an actionable 

genomic alteration be identified.

 Broad, hybrid capture-based NGS assay

Tumor samples were pre-screened at MSK for adequacy as defined by an initial requirement 

of 10–15 unstained slides of formalin-fixed paraffin-embedded (FFPE) tissue. Tissue was 

sent to a Clinical Laboratory Improvement Amendments (CLIA)-certified and College of 

American Pathologists (CAP)-accredited laboratory (Foundation Medicine, Cambridge, 

MA) for NGS. Additional pathologic review of submitted specimens was performed to 

determine tissue adequacy (defined as ≥20% tumor nuclei and ≥50 ng of DNA) prior to 

testing. Macro-dissection to enrich specimens of ≤20% tumor content was performed as 

warranted. DNA was extracted from unstained FFPE sections and quantified by a Picogreen 

fluorescence assay.

In samples deemed adequate, 50–100 ng of DNA was used for whole-genome shotgun 

library construction. Hybridization capture of 4,557 exons of 287 cancer-related genes and 

47 introns of 19 genes frequently rearranged in solid tumors was performed. Hybrid-capture 

libraries were then sequenced to >500x average unique coverage with >100x at >99% of 

exons using Illumina HiSeq2000 or 2500 sequencers (Supplementary Figure 1 and 2). 

Sequencing data were processed using a customized analysis pipeline designed to detect 

multiple classes of genomic alterations including base substitutions, short insertions and 

deletions, copy number alterations, and genomic rearrangements. Once available, results 

were released to the treating physician to allow identification of appropriate targeted 

therapeutics for patients whose tumors harbored an actionable genomic alteration.

 RESULTS

 Patients

We identified 47 patients with lung adenocarcinomas that harbored no evidence of a 

genomic alteration via focused non-NGS testing. Of these patients, non-NGS testing with 

multiple assays resulted in tissue exhaustion in 34% (n=16/47) of cases and a repeat biopsy 

was either not feasible or declined by the patient.

Testing was successfully performed on tumor from the remaining 31 cases. Clinical and 

pathologic features are summarized in Table 1. The median age at diagnosis was 60 years 

(range 29–78) and the majority of patients were never smokers (71%, n=22/31). In 71% of 

patients (n=22/31), tumor tested was obtained from the same procedure as tumor used for 

non-NGS testing.

Most patients (84%, n=26/31) required ≥ 2 tumor biopsies (median 3, range 2–6) to 

complete testing. Of these patients, 69% (n=18/26) underwent multiple biopsies in order to 

complete non-NGS testing alone and sufficient tissue remained for the NGS assay. In 31% 

of cases (n=8/26), non-NGS testing resulted in tissue exhaustion and an additional biopsy 
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was required to complete NGS testing. For each new biopsy, an attempt to run all non-NGS 

tests was made, including tests which were previously performed on prior tissue. Only 29% 

(n=5/31) of samples were derived from the initial procedure performed to diagnose lung 

cancer. Most samples (71%, n=22/31) were obtained from a surgical procedure such as a 

lobectomy, wedge resection, VATS pleural biopsy, or excision of a metastatic focus.

 Genomic Alterations

One or more genomic alterations were uncovered by hybrid capture-based NGS in tumors 

from 94% (n=29/31) of patients. Across 31 patient samples tested, a total of 96 individual 

genomic alterations were found, with a median of 3 alterations (range 0–7) per sample. 

These alterations are summarized by patient sample in Table 2 (including median exon 

coverage, mutation allele frequency, and copy number) and most commonly involved TP53 
(14%, n=13/96), EGFR (7%, n=7/96), MDM2 (5%, n=5/96), KRAS (4%, n=4/96), CDK4 
(4%, n=4/96), and SETD2 (4%, n=4/96).

Small mutations comprised 55% of the detected abnormalities (Figure 1): 36% (n=34/96) 

were non-synonymous base substitutions, 16% (n=15/96) insertion or deletion, and 3% 

(n=3/96) splice site mutation. For non-synonymous point mutations, TP53 was the most 

commonly mutated gene (24%, n=8/34), followed by EGFR (9%, n=3/34) and KRAS (6%, 

n=2/34). Insertion or deletion most commonly involved EGFR, TP53, and SETD2 (20%, 

n=3/15 for each). The majority of splice site mutations involved TP53 (67%, n=2/3).

Gene amplification comprised 31% (n=30/96) of genomic alterations. MDM2 was the most 

frequently amplified gene (17%, n=5/30). Gene loss comprised 9% (n=9/96) of all genomic 

alterations and was most commonly observed with CDKN2A (40%, n=2/5). Fusion genes 

were found in 9% (n=9/96). These most commonly involved RET (33%, n=3/9) and ALK 
(22%, n=2/9).

 Clinically-Relevant Genomic Alterations

A genomic alteration with a corresponding targeted therapeutic based on the National 

Comprehensive Cancer Network (NCCN) guidelines for non-small cell lung cancer was 

identified in 26% (n=8/31) of patients. The drivers identified in tumors from these eight 

patients are as follows: EGFR G719A, BRAF V600E, SOCS5-ALK, CLIP4-ALK, CD74-
ROS1, KIF5B-RET (n=2) and CCDC6-RET (Figure 2).

In these 8 patients, mass spectrometry genotyping (Sequenom) and break apart FISH testing 

had not detected these alterations, for a variety of possible reasons detailed in Table 2. Of 

note, in all but 1 of 8 patients, tumor samples used for non-NGS and NGS testing were 

obtained from the same biopsy or procedure.

In an additional 39% (n=12/31) of patients, an actionable genomic alteration was discovered 

for which targeted therapy was available either on an ongoing trial at the institution or off-

protocol. These include the following alterations and the corresponding therapy available at 

detection: CDKN2A loss (CDK4/6 inhibitor, NCT01237236), EGFR L747P (erlotinib, 

afatinib), EGFR exon 18 deletion (n=2, pan-ERBB inhibitor, NCT01858389), EGFR exon 

20 insertion (pan-ERBB inhibitor, NCT01858389), ERBB2 L755F (ERBB1/2/3 inhibitor, 
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NCT01953926), FGFR1 T141R (FGFR inhibitor, NCT01948297), KRAS G12C (ERK 

inhibitor, NCT01781429), KRAS Q61H (ERK inhibitor, NCT01781429), and MDM2 
amplification (n=3, MDM2 inhibitor, NCT01877382).

 Outcomes of Targeted Therapy Use

Of the eight patients in whose tumors an alteration with a corresponding targeted agent 

based on the NCCN non-small cell lung cancer guidelines was identified by the NGS assay, 

six (with tumors harboring CLIP4-ALK, SOCS5-ALK, CD74-ROS1, KIF5B-RET, KIF5B-
RET, EGFR G719A) went on to receive targeted therapy.

Two patients demonstrated a partial response (RECIST v1.1) to targeted therapy: CLIP4-
ALK with crizotinib, and KIF5B-RET with cabozantinib (NCT01639508). Both patients 

remain on therapy and are progression-free at 5 and 7 months, respectively. Disease 

shrinkage <30% (stable disease by RECIST v1.1) and a clinical response to therapy were 

noted in two others: SOCS5-ALK with crizotinib, and KIF5B-RET with cabozantinib 

(NCT01639508). The former patient died from disease progression while the latter remains 

progression-free on cabozantinib at 3 months. Two additional patients have begun targeted 

therapy but are pending a response evaluation: erlotinib for EGFR G719A, and crizotinib for 

CD74-ROS1. Unless otherwise specified, targeted therapeutic agents were prescribed as 

standard of care and were acquired commercially.

One of the remaining two cases, the patient whose tumor harbors a CCDC6-RET fusion, is 

currently receiving chemotherapy and will receive cabozantinib on disease progression. The 

patient whose tumor harbored a BRAF V600E mutation died before targeted therapy could 

be considered.

Of the 12 additional patients in whose tumors an actionable genomic alteration was 

discovered for which targeted therapy was available either on an ongoing trial at the 

institution or off-protocol, 11 remain on alternate systemic therapy and are candidates for 

targeted therapy on progression. The patient whose tumor harbors EGFR L747P recently 

started erlotinib and a response evaluation is pending.

 DISCUSSION

While some composite algorithms which use multiple non-NGS tests, such as previously 

employed at our center, identify a driver in most patients with lung adenocarcinomas, more 

comprehensive hybrid capture-based NGS assays afford the possibility of driver alteration 

detection in patients where no such genomic alteration was found initially on tumor analysis.

(23) In a report from the Lung Cancer Mutation Consortium (LCMC), comprehensive non-

NGS genomic profiling of 1,007 lung adenocarcinoma specimens across multiple 

institutions was performed. A driver was identified in 64% of tumors, resulting in the use of 

targeted therapy in 28% of patients.(24) However, largely because of limited tissue 

resources, only 70% of cases could have the full complement of LCMC-mandated testing. 

Despite this, patients whose genomic alteration was matched to a targeted therapy appeared 

to live substantially longer than those with a similar driver who received non-targeted 

therapies.
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In this series, we demonstrate that, despite extensive prior conventional non-NGS testing, 

26% of apparently “driver-negative” never or light smokers with lung adenocarcinoma may 

have tumors that harbor a genomic alteration uncovered only by a more comprehensive NGS 

approach. Of the 8 patients for whom such an alteration was detected in this study, 6 went on 

to receive targeted therapy. All 6 of these patients derived clinical benefit from targeted 

therapy initiation, and a partial response or evidence of disease shrinkage was noted in all 4 

patients who have undergone a radiographic evaluation for disease response. Interestingly, 

the majority of these alterations were recurrent gene rearrangements involving ALK, ROS1, 
and RET.

Reasons for non-detection of these genomic alterations via non-NGS testing are varied. 

These include lower sensitivity, complex rearrangements undetectable by standard FISH, 

and, possibly, heterogeneity between different tumor biopsies or sites. Clinical samples 

sometimes contain biologically-relevant genomic alterations at low allele frequencies due to 

excess non-neoplastic cells, leading to false negative results on some forms of non-NGS 

testing. For such samples, deep and uniform unique coverage (median >500x) is often 

necessary for a thorough analysis due to low tumor purity common in many metastatic 

tumor types.(21) Regarding recurrent gene rearrangements, at least one large series has 

previously demonstrated the capability of this type of NGS assay to detect ALK fusions in 

patients whose tumors previously tested negative for an ALK rearrangement via FISH.(25)

It is important to point out that this effort focused on a select population of patients with 

pathologically-confirmed adenocarcinomas who were never smokers or smoked cigarettes 

≤15 pack-years. This strategy was undertaken in an attempt to enrich the diagnostic yield of 

NGS for potential drivers. However, while many clinically actionable lung cancer drivers are 

more commonly found in tumors of never smokers, these drivers have been identified in 

tumors from smokers as well, and patients treated with the associated therapy appear to fare 

as well as the never or light former smoker population.(26, 27) In addition, other actionable 

drivers such as some BRAF (13, 28) and KRAS mutations(29, 30) are enriched in tumors 

from patients with a significant history of smoking. No clinical characteristics can be used to 

select NSCLC patients whose tumors should be tested, and current guidelines recommend 

routine ALK and EGFR testing of tumors from all patients (preferably as part of a multiplex 

panel) with adenocarcinomas, large cell carcinomas, NSCLC NOS (not otherwise specified), 

and squamous lung cancers from never smokers and small diagnostic biopsies.(31)

Molecular diagnostic algorithms that employ multiple non-NGS tests are becoming less 

tenable due to their relatively large tissue requirements. The majority of patients in this 

series required one or more procedures to complete testing. Specifically, more than two 

thirds of these patients required multiple biopsies to complete non-NGS testing alone. In 

addition, those who had sufficient tissue for analysis were largely patients who had 

undergone a surgical procedure for diagnosis and/or molecular testing. The type of NGS 

assay used in the present study offers the advantage of more comprehensive genomic 

characterization using as low as 50 ng of DNA which can be obtained from lung cancer 

specimens with sufficient tumor content using core biopsy needles on average or a carefully 

prepared fine needle aspiration.(32, 33)
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Lastly, the use of broad, hybrid capture-based NGS for more comprehensive molecular 

genotyping expands the scope molecular alterations interrogated and permits new driver 

alteration discovery. Highly specialized types of massively-parallel sequencing, after 

rigorous analytic validation such as that described here, allow for the simultaneous 

interrogation of a broader spectrum of genes, including mutations in all exons of oncogenes 

and tumor suppressor genes, copy number gains and losses, and recurrent gene 

rearrangements.(34) Partly to address the types of testing concerns revealed in the present 

study, our center (MSKCC) has recently implemented a similar broad, hybrid capture-based 

NGS assay.(35)

With the advent of this approach, the process of matching the range of genomic alterations 

discovered with potential targeted therapeutics will undoubtedly represent an enormous 

challenge and an unprecedented opportunity for clinicians. If functional data are available, 

that should help in discriminating strong potential drivers from passenger alterations. In the 

absence of such data, however, for patients with limited systemic therapy choices, targeted 

therapy that inhibits the oncogenic protein of interest or a downstream pathway remains a 

valid option.(36)

 CONCLUSIONS

Broad, hybrid capture-based NGS assays have the potential to uncover clinically-actionable 

genomic alterations in never smokers or ≤15 pack year smokers whose lung 

adenocarcinomas do not harbor a potential driver via non-NGS testing. This approach 

provides a comprehensive and rapid interrogation of the cancer genome using potentially 

less tumor tissue than standard algorithms. In this series, the majority of patients either 

received or became eligible for targeted therapy due to the discovery of a clinically-

actionable genomic alteration via NGS. When available, we recommend the use of such 

NGS-based assays as the optimal molecular diagnostic platform for patients with lung 

cancers. Our center (MSKCC) has since adopted this type of NGS assay as our primary 

testing method of choice for patients with advanced lung cancers and other tumor types.(35)

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF TRANSLATIONAL RELEVANCE

Selecting the most optimal platform for molecular diagnostic profiling represents a 

crucial step in the management of patients with advanced lung adenocarcinomas. The use 

of broad, hybrid capture-based next-generation sequencing (NGS) resulted in the 

identification of actionable genomic alterations in close to two-thirds of lung 

adenocarcinomas that previously tested “negative” for known alterations by multiple 

conventional non-NGS tests including multiplex mass spectrometry, sizing assays, and 

FISH. Upon driver identification via NGS, several patients whose tumors would have 

otherwise been deemed “driver-negative” via non-NGS testing subsequently received and 

responded to targeted therapy. These results underscore the important role of broad, 

hybrid capture-based NGS in the clinic as a single test that interrogates a wide range of 

genomic alterations using potentially less tissue than standard non-NGS testing.
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Figure 1. Frequency of genomic alterations (GAs) identified via next-generation sequencing
A total of 96 GAs were identified in 31 lung adenocarcinomas. GAs were divided into six 

categories: base substitution, amplification, insertion/deletion, rearrangement, homozygous 

loss, and splice site mutation. The frequency of each of these categories is depicted in the pie 

chart on the right. The frequency of each of the most commonly involved genes under each 

category is detailed on the left.
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Figure 2. Clinical next-generation sequencing (NGS) and targeted therapy use
The results of NGS of lung adenocarcinomas that harbored no genomic alterations (GAs) in 

11 genes (EGFR, ERBB2, KRAS, NRAS, BRAF, MAP2K1, PIK3CA, AKT1, ALK, ROS1, 

and RET) via a focused panel of non-NGS testing in never or ≤15 pack-year smokers are 

shown. The percentage of patients with results that fall into one of four categories is 

depicted in the pie chart.
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Table 1
Clinicopathologic Features

The clinicopathologic profile of 31 patients whose tumors successfully underwent broad, hybrid capture-based 

next-generation sequencing is shown. These tumors previously tested “negative” for alterations in 11 genes 

(mutations in EGFR, ERBB2, KRAS, NRAS, BRAF, MAP2K1, PIK3CA, and AKT1, and fusions involving 

ALK, ROS1, and RET) via non-NGS methods

Clinicopathologic Features (n=31)

Age at diagnosis (years) median 60 (range 29–78)

Sex

M 42% (n=13)

F 58% (n=18)

Cigarette smoking history

Never 71% (n=22)

≤15 pack-years 29% (n=9)

Pathology

Lung Adenocarcinomas 100% (n=31)

Tumor sample source

Primary 52% (n=16)

Metastatic 48% (n=15)

 Pleura 16% (n=5)

 Lymph node 16% (n=5)

 Other 16% (n=5)

Procedure to obtain tumor

Core needle 29% (n=9)

Surgical 71% (n=22)

 Lobectomy 19% (n=6)

 Wedge 19% (n=6)

 VATS pleural biopsy 16% (n=5)

 Excision of metastatic focus 16% (n=5)

Number of procedures to complete both non-NGS and NGS testing

1 16% (n=5)

2 36% (n=11)

≥3 48% (n=15)
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