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Abstract
The maximal information coefficient (MIC) captures dependences between paired vari-

ables, including both functional and non-functional relationships. In this paper, we develop

a new method, ChiMIC, to calculate the MIC values. The ChiMIC algorithm uses the chi-

square test to terminate grid optimization and then removes the restriction of maximal grid

size limitation of original ApproxMaxMI algorithm. Computational experiments show that

ChiMIC algorithm can maintain same MIC values for noiseless functional relationships, but

gives much smaller MIC values for independent variables. For noise functional relationship,

the ChiMIC algorithm can reach the optimal partition much faster. Furthermore, the MCN

values based on MIC calculated by ChiMIC can capture the complexity of functional rela-

tionships in a better way, and the statistical powers of MIC calculated by ChiMIC are higher

than those calculated by ApproxMaxMI. Moreover, the computational costs of ChiMIC are

much less than those of ApproxMaxMI. We apply the MIC values tofeature selection and

obtain better classification accuracy using features selected by the MIC values from

ChiMIC.

Introduction
Identifying relationships between variables is an important scientific task in exploratory data
mining [1]. Many measures have been developed, such as Pearson correlation coefficient [2],
Spearman rank correlation coefficient, Kendall coefficient of concordance [3], mutual informa-
tion estimators [4],[5],[6], distance correlation (dCor) [7], and correlation along a generating
curve [8]. Recently, Reshef et al. [9] proposed a novel maximal information coefficient (MIC)
measure to capture dependences between paired variables, including both functional and non-
functional relationships [10],[11]. The MIC value has been applied successfully to many prob-
lems [12–20]. The MIC of a pair of data series x and y is defined as follow:

MICðx; yÞ ¼ maxfIðx; yÞ=log2minfnx; nygg ð1Þ

where I(x, y) is the mutual information between data x and y. The nx, ny are the number of bins
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into which x and y are partitioned, respectively. Reshef et al. [9] developed a dynamic program
algorithm, ApproxMaxMI, to calculate the MIC. As the bin sizes affect the value of mutual
information, determining the appropriate value of nx and ny is important. In ApproxMaxMI
algorithm, Reshef set the nx×ny˂ B(n), where B(n) = n0.6 is the maximal grid size restriction and
n is the sample size. The generality of MIC is closely related to B(n). Setting B(n) too low will
result in searching only for simple patterns and weakening the generality, while setting B(n)
too high, will result in nontrivial MIC score for independent paired variables under finite sam-
ples. For example, the MIC value of two independent variables with 400 sample points calcu-
lated by ApproxMaxMI is 0.15±0.017 (B(n) = n0.6, 500 replicates). Furthermore, the
computation cost of ApproxMaxMI becomes expensive when the sample size n is large, which
makes it difficult to calculate the MIC for big data.

Many efforts have been committed to improve the approximation algorithm for MIC by
either optimizing the MIC value or reducing the computing time. Tang et al. [21] have pro-
posed a cross-platform tool for the rapid computation of the MIC based on parallel computing
methods. Wang et al. [22] have used quadratic optimization to calculate the MIC. Albanese
et al. [23] re-implemented the ApproxMaxMI using C.[9]. Zhang et al. [10] have applied the
simulated annealing and genetic algorithm, SGMIC, to optimize the MIC. Although SGMIC
can achieve better MIC values, it is much more time-consuming.

In this paper, we develop a new algorithm to improve the MIC values as well as reduce the
computational cost. Our new algorithm, ChiMIC, uses the chi-square test to determinate opti-
mal bin size for the calculating of MIC value. Experiments on simulated data with different
relationships (e.g. statistically independent, noiseless functional and noisy functional relation-
ships) and real data show that our method can optimize the MIC value and significantly reduce
the computation time.

Results

Comparison of MIC values for independent and noiseless functional
relationships
Ideally, the MIC values should be close to 0 for two independent variables. The MIC values for
two independent variables calculated by ApproxMaxMI depend on the ratio between B(n) and
n [24]. The MIC value for two independent variables is close to 0 only when n approaches
infinity, namely, the B(n)/n trends to 0. Although, the MIC values calculated by ChiMIC also
depend on B(n)/n, the ChiMIC algorithm gives much smaller MIC values for independent vari-
ables and converges to zero faster as shown in Fig 1. Specifically, for small sample sizes, the
MIC values calculated by ChiMIC are much smaller. For example, when sample size is 100,
MIC value calculated by ChiMIC is 0.06, while MIC value calculated by ApproxMaxMI is 0.24.

Meanwhile, the MIC values of two variables with noiseless functional relationships should
be close to 1. We calculate the MIC values between variables with 21 different noiseless func-
tional relationships (S1 Fig) using ChiMIC algorithm. All MIC values are equal to 1 as shown
in S1 Table, which indicates that the ChiMIC algorithm maintains the generality of MIC.

Comparison of grid partition for noisy relationships
For noise relationships, the ChiMIC algorithm terminates the grid partition search much ear-
lier than ApproxMaxMI. As shown in Fig 2, both ChiMIC and ApproxMaxMI capture a noise-
less linear relationship with a 2×2 grid (Fig 2A). When adding noise, the ApproxMaxMI
partitions the noisy linear relationship with a 2×32 grid (Fig 2B). Meanwhile, ChiMIC parti-
tions the noisy linear relationship with just a 2×4 grid (Fig 2C). We also compare the grid
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partition for parabolic function (Fig 3) and sinusoidal function (Fig 4). As shown in Figs 3 and
4, the ChiMIC algorithm partitions the noisy functional relationship into much fewer numbers
of grids. The fewer numbers the grid are partitioned, the smaller the MIC values are calculated.
The MIC values calculated by ChiMIC algorithm are always smaller than those calculated by
ApproxMaxMI. We calculate the MIC values for 21 functional relationships with different
noise levels (S2 Table). The higher the noise level, the smaller the MIC values calculated by
ChiMIC comparing to those calculated by ApproxMaxMI.

Comparison of minimum cell number (MCN) estimation
In maximal information-based nonparametric exploration statistics, the minimum cell number
(MCN) is the number of grid cells needed to calculate MIC values. It is defined as follows [24]:

MCNðD; εÞ ¼ minflog2ðxyÞ : MðDÞx;y � ð1� εÞMICðDÞg
xy<B

ð2Þ

Fig 1. MIC values calculated by ApproxMaxMI and ChiMIC for random data with different sample sizes. The
scores are reported as means over 500 replicates.

doi:10.1371/journal.pone.0157567.g001

Fig 2. Grid partition of ApproxMaxMI and ChiMIC for linear function. 1000 data points simulated for functional
relationships of the form y = x+η. where η is noise drawn uniformly from (−0.25, 0.25). A: Grid partition for noiseless
linear function. B: Grid partition based on ApproxMaxMI for noisy linear function. C: Grid partition based on ChiMIC
for noisy linear function.

doi:10.1371/journal.pone.0157567.g002
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where D is a finite set of ordered paired data. The parameterε provides robustness for MCN.
This measure captures the complexity of the association between two variables. A greater
MCNmeasure indicates a more complex association.

For independent variables, MCN is equal to 2 and is unrelated to sample size. When ε is set
to 0, the MCNmeasure based on MIC calculated by ApproxMaxMI increases steadily as the
sample size grows (Fig 5). When ε is set to 1-MIC(D) as in Reshef [24], the MCNmeasures
based on MIC calculated by ApproxMaxMI algorithm do not increase as sample size grows,
but still maintain greater than 3. On the other hand, the MCN values based on MIC calculated
by ChiMIC are always close to 2.

For noiseless linear, parabolic and sinusoidal functions, the MCN values are 2, 2.58 and 3,
respectively, for MIC calculated by either ApproxMaxMI or ChiMIC (Fig 6). As MCN values
increase as the complexity of functional relationships increases, the MCN values should
increase when weak noise is added. However, when the level of noise blurs the real functional
relationship, the MCN values should decrease and converge towards 2. Thus, the MCN values
should follow a parabolic graph as the noise level increases. We examine the MCN values when
different levels of noise are added to linear, parabolic and sinusoidal functions. When ε is set to
0 and noise level is greater than or equal to 0.4, the MCN values based on MIC calculated by
ApproxMaxMI are always equal to 6 for all three functions (Fig 6A). Thus, MCN can no longer
capture the complexity of functional relationships in this case. When ε is set to 1-MIC(D),
only the MCN values based on MIC calculated by ApproxMaxMI for linear function follow the

Fig 3. Grid partition of ApproxMaxMI and ChiMIC for parabolic function. 1000 data points simulated for functional
relationships of the form y = 4x2+η. where η is noise drawn uniformly from (−0.25, 0.25). A: Grid partition for noiseless
parabolic function. B: Grid partition based on ApproxMaxMI for noisy parabolic function. C: Grid partition based on
ChiMIC for noisy parabolic function.

doi:10.1371/journal.pone.0157567.g003

Fig 4. Grid partition of ApproxMaxMI and ChiMIC for sinusoidal function. 1000 data points simulated for
functional relationships of the form y = sin(4πx)+η. where η is noise drawn uniformly from (−0.25, 0.25). A: Grid
partition for noiseless sinusoidal function. B: Grid partition based on ApproxMaxMI for noisy sinusoidal
function. C: Grid partition based on ChiMIC for noisy sinusoidal function.

doi:10.1371/journal.pone.0157567.g004
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parabolic form. The MCN values based on MIC calculated by ApproxMaxMI for parabolic and
sinusoidal functions do not follow the parabolic form, and cannot reflect the complexity of
functional relationships under some noise levels (Fig 6B). When ε is set to 0, MCN values
based on MIC calculated by ChiMIC for all three functions follow the parabolic form (Fig 6C).
However, the MCN values do not converge to 2. When ε is set to 1-MIC(D), MCN values
based on MIC calculated by ChiMIC for all three functions not only follow the parabolic form,
but also converge to 2 when noise reaches in certain level. These results imply that MCN values
based on MIC calculated by ChiMIC can capture the complexity of functional relationships in
a better way.

Fig 5. MCN values of independent variables for different sample sizes. The values are reported as
means over 500 replicates.

doi:10.1371/journal.pone.0157567.g005

Fig 6. MCN values for linear, parabolic and sinusoidal functions at different noise levels. AMCN
estimates with MIC (ε = 0), B MCN estimates with MIC (ε = 1-MIC), C MCN estimates for ChiMIC (ε = 0), D
MCN estimates for ChiMIC (ε = 1-MIC). MCN estimates were computed for n = 1000 data points over 500
replicates. Each relationship listed, is the same as in Figs 2–4. Where y = f(x)+η, η was uniform noise of
amplitude equal to the range of f(x) times one of these 12 relative amplitudes:0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2,1.4,
1.6, 1.8, 2.0.

doi:10.1371/journal.pone.0157567.g006
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Comparison of statistical power
The power of a statistical test is an important concept in hypotheses testing [25]. The empirical
statistical power is the proportion of tests that correctly reject the null hypothesis. dCor is con-
sidered to be a dependency measures with high statistical power [25],[26],[27], so we compare
the statistical powers of MIC calculated by ApproxMaxMI and ChiMIC with those of dCor.

For the null hypothesis of statistical independency, a larger average value and standard devi-
ation for the dependency measure indicate lower statistical power. Therefore, for two indepen-
dent variables, a good dependency measure should have small standard deviation and zero
average value, although small average value and standard deviation do not directly mean high
statistical power. Fig 7 illustrates the density distribution of MIC values calculated by Approx-
MaxMI and ChiMIC, as well as the dCor scores for the null hypothesis. Obviously, MIC values
calculated by ChiMIC have a smaller average value and standard deviation. Therefore, they
potentially have higher statistical power.

However, the statistical power of dependency measures may depend on different factors,
such as pattern types, noise levels and sample sizes. We examine the statistical power of dCor
and MIC calculated by ApproxMaxMI and ChiMIC for five different functions with different
noise levels. As shown in Fig 8, the statistical powers of MIC calculated by ChiMIC are higher
than those of MIC calculated by ApproxMaxMI for all five functional relationships. For linear,
parabolic and circular functional relationships, dCor has higher statistical power than those of
MIC calculated by ApproxMaxMI and ChiMIC. For sinusoidal function, statistical power of
MIC calculated by ApproxMaxMI and ChiMIC are both higher than that of dCor. For checker-
board function, MIC calculated by ApproxMaxMI and ChiMIC outperform dCor at low noise
levels, while dCor outperforms at high noise levels.

Comparison of computational cost of ApproxMaxMI and ChiMIC
The computational cost of MIC increases as the sample size n increases. With more and more
big data available, the computational cost becomes critical for MIC calculating algorithm. We

Fig 7. Density distribution of ApproxMaxMI, ChiMIC and dCor scores for two independent variables.
ApproxMaxMI, ChiMIC and dCor estimates were computed for sample size n = 400 over 1000 replicates.

doi:10.1371/journal.pone.0157567.g007
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compare the computational time of ChiMIC and ApproxMaxMI using different sizes of inde-
pendent variable pairs. As shown in Table 1, the run times of ChiMIC algorithm are signifi-
cantly less than those of ApproxMaxMI algorithm. This is because ChiMIC algorithm uses the
chi-square test to terminate grid optimization earlier, while ApproxMaxMI algorithm always
tends to search to the maximal grid size B(n). When sample size is 100, ChiMIC algorithm is
about 30% faster than ApproxMaxMI algorithm. As samples sizes increase, the advantage of

Fig 8. Statistical power of MIC from ApproxMaxMI, ChiMIC and dCor with different levels of noise, for
five kinds of functional relationships. The statistical power was estimated via 500 simulations, with sample
size n = 400.

doi:10.1371/journal.pone.0157567.g008
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ChiMIC algorithm becomes even more evident. When the sample size is 20000, ChiMIC algo-
rithm runs nearly five times faster than ApproxMaxMI algorithm does. For the parabolic func-
tion with noise_LEVEL is 0.4, ChiMIC algorithm also has a faster convergence speed. Thus,
ChiMIC algorithm will be a better method for calculating MIC values of big data.

Application of MIC values to selecting features for cancer classification
The dependency measures can be used to select features. We compare the MIC values calcu-
lated by ApproxMaxMI and ChiMIC in feature selection. We test feature selection on four can-
cer classification data sets: two microarray datasets (Prostate1 and Prostate2) and two image
datasets (WDBC and WPBC). We partition each dataset into a training set and a test set ran-
domly (see details in the Method section). The training set is used for feature selection and clas-
sifier construction, and the test set is used for model validation. The retained features and
independent test accuracies for the four datasets are shown in Table 2. For the Prostate1 data-
set, although the methods based on MIC values from ApproxMaxMI and ChiMIC both select
four features, features selected by MIC values from ChiMIC give much higher test accuracy
(93.33% vs. 86.67%). For the other three data sets, MIC values from ChiMIC select fewer fea-
tures than those selected by MIC values from ApproxMaxMI. All classifiers based on features
selected by MIC values from ChiMIC obtain higher test accuracy. Especially for the Prostate2
dataset, the test accuracy of classifier based on features selected by MIC values from ChiMIC
(80.77) is 11.54% higher than that of classifier based on features selected by MIC values from
ApproxMaxMI (69.23%). This result suggests that the features selected by MIC values from
ChiMIC are more effective.

Methods

ChiMIC algorithm: determining optimal grid using chi-square test
Same as ApproxMaxMI [9] algorithm, the ChiMIC algorithm partitions a data set of ordered
pairs through x-axis and y-axis. Similar to ApproxMaxMI [9] algorithm, the ChiMIC algo-
rithm tries to find optimal partition of x-axis given an equipartition of r bins on y-axis. For
example, in Fig 9A, the first optimal endpoint EP1 divides x-axis into two bins. Then, we will
use a chi-square test to determine whether the next endpoint is useful. If the p-value of chi-
square test is lower than a given threshold, the endpoint is useful and the ChiMIC algorithm
continues searching for next optimal endpoint. On the other hand, if the p-value of chi-square
test is greater than the given threshold, the endpoint is not useful and the process of partition
x-axis is terminated.

Table 1. Elapsed time for calculating MICs for different sample sizes.

Number of samples 100 1000 2000 4000 10000 20000

Independent variable
pair

ChiMIC (second) 0.0046±5e-04 0.1520±0.03 0.537±0.11 2.166±0.59 12.93±4.1 53.55±11

ApproxMaxMI
(second)

0.0061±6e-04 0.5229±0.02 2.188±0.24 8.502±0.12 60.02±0.8 284.38±11

Parabolic function
(noise_LEVEL = 0.4)

ChiMIC (second) 0.0021±3e-04 0.1325±0.02 0.5946±0.12 2.754±0.45 21.41±3.5 99.70±10

ApproxMaxMI
(second)

0.0021±5e-04 0.1407±0.03 0.7360±0.15 3.523±0.54 26.65±2.1 122.8±12

The corresponding time was represented as the average value ± standard deviation over 100 time replicated runs on a Windows 7 32-bit operating

system (RAM: 3.00GB, CPU: 2.80 GHz).

doi:10.1371/journal.pone.0157567.t001
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The chi-square statistic is defined in Eq (3):

w2

EPm
¼

Xr

i¼1

Xkþ1

j¼k

ðfij � niTj=NÞ2
niTj=N

ð3Þ

where themth(m>1) new endpoint EPm divides x-axis into the kth and (k+1)th bin. i
(i = 1,2,. . .,r) denotes the ith bin of y-axis, j(j = k, k+1) denotes the jth bin of x-axis. fij denotes
the number of sample points falling into the cell in the ith row and jth column. ni denotes the
number of sample points falling in the ith row, Tj denotes the number of sample points falling
in the jth column, N denotes the total number of sample points falling in the kth and (k+1)th col-
umns. For example, in Fig 9B, the second optimal endpoint EP2 is selected by dynamic

Table 2. Retained features and independent test accuracy based on MIC and ChiMIC.

Datasets Feature selection method Selected features Feature size Test accuracy (%)

Prostate1 ApproxMaxMI TRGC2, SERPINF1,
NELL2, SPON1

4 86.67

ChiMIC TRGC2, HPN, NELL2,
LMO3

4 93.33

Prostate2 ApproxMaxMI SUCO, SMARCD3, XRCC5,
PXDC1, CCL2,
MAGEA11, MFAP3L,
ABCC3, HLA-DPB1

9 69.23

ChiMIC SMARCD3, CCND1, ESR1,
SSH2, PISD, BRD2,
DIS3, RASA3

8 80.77

WDBC ApproxMaxMI Concave points SE, Worst
concave points,
Perimeter SE, Mean
fractal dimension, Mean
perimeter, Mean texture,
Worst Radius,
Compactness SE, Worst
compactness, Radius
SE, Mean area

11 97.06

ChiMIC Concave points SE, Worst
concave points,
Perimeter SE, Mean
fractal dimension, Worst
Radius, Worst
compactness, Radius
SE, Worst fractal
dimension

8 97.65

WPBC ApproxMaxMI Mean Radius, Worst
compactness, Mean
perimeter, Worst
concave points, Worst
fractal dimension,
Symmetry SE, Mean
smoothness, Mean
compactness, Mean
concavity

9 72.88

ChiMIC Mean Radius, Symmetry
SE, Worst concave
points, Mean concave
points, Worst
compactness, Fractal
dimension SE

6 76.27

doi:10.1371/journal.pone.0157567.t002
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programming. The sample points distributed in the blue area (the x2
th column and x3

thcolumn
in Fig 9B) are used to perform a chi-square test on an r×2 contingency table. If EP2 is useful,
then ChiMIC continues searching for the next optimal endpoint. If the next one is EP3, we use
the sample points distributed in the green area to perform a chi-square test on an r×2 contin-
gency table (Fig 9C). If p-value is greater than the given threshold, the optimizing process is ter-
minated. For the chi-square test, the minimum expected count in each group is five [28]. The
p-value of chi-square test for a 2×2 table with data counts {0, 5; 5, 0} is 0.0114. So we choose
0.01 as the threshold. The Chi-square value needs correction for continuity when r = 2 [29].

Adding noise to functional relationship
The noise to functional relationships in S1 Fig, Fig 2, Fig 3, Fig 4 and Fig 6 are defined as fol-
lows:

Y ¼ f ðXÞ þ ðRANDðN; 1Þ � 0:5Þ � noise LEVEL� RANGE ð4Þ
where f is a functional relationship, and RANGE represents the range of f(X). noise_LEVEL is
the relative amplitudes: 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2,1.4, 1.6, 1.8, 2.0. RAND(N, 1) is used to gen-
erate N random numbers in [0, 1].

The noise functional relationships in Fig 8 are defined in Table 3. Five hundred trial datasets
are generated for each of these relationships at each of twenty-five different noise amplitudes
(a) distributed logarithmically between 1 and 10. For each dataset, statistics are computed on
the “true” data {Xi, Yi}(i = 1,. . .,400) as well as on “null” data, for which the indices i on the y
values are randomly permuted. The power of each statistic is defined as the fraction of true
datasets yielding a statistic value greater than 95% of the values yielded by the corresponding

Fig 9. Illustration of x-axis partition of ChiMIC. Colored r×2 contingency tables are used for chi-square test.

doi:10.1371/journal.pone.0157567.g009

Table 3. The X, Y relationships simulated for the power calculations in Fig 8.

Relationship X Y

Linear ξ 2/3X +aη

Parabolic ξ X2 + aη

Sinusoidal 5/2 θ 2 cos(X) + aη

Circular 10 cos(θ) + aξ 10 sin(θ) + aξ

Checkerboard 10 X0 + aξ 10Y0 + aη

doi:10.1371/journal.pone.0157567.t003
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null datasets. ξ and η are random numbers drawn from the normal distribution N(0,1). θ is a
random number drawn uniformly from the interval [−π, π). (X0,Y0) is a pair of random num-
bers drawn uniformly from the solid squares of a 4×5 checkerboard, where each square has
sides of length 1[26].

Real datasets
We use four real datasets to validate the proposed approach. Prostate1 [30] and Prostate2 [31]
are gene expression profile datasets. Wisconsin Diagnostic Breast Cancer (WDBC) and Wis-
consin Prognostic Breast Cancer (WPBC) [32] are image data of tumor tissues obtained from
UCI database, which can be download at http://archive.ics.uci.edu/ml/data. The number of fea-
tures, positive and negative samples in both training set and test set are listed in Table 4.

Feature selection
For each dataset, first, we calculate MIC values of a vector (X, Y) separately in training set,
where X denotes the value of each feature, and Y denotes the phenotype of tumors. Then, we
rank all the features in descending order of MIC values. Next, we sequentially introduce the
ranked features (only top 200 features for datasets Prostate1 and Prostate2) and remove redun-
dant features using 10-fold cross-validation based on support vector classification (SVC).
Finally, we build a SVC prediction model based on retained features using training data and
perform independent prediction on test data.

Computational Methods
The ChiMIC (S1 File) and ApproxMaxMI algorithms are both implemented in Matlab. The
parameters of ApproxMaxMI are set as a = 0.6, c = 5. dCor and statistical power are computed
using Matlab scriptsdownloaded at http://www.sourceforge.net [26]. The SVC is performed
using LIBSVM [33] described by Chang et al, and can be downloaded at http://www.csie.ntu.
edu.tw/~cjlin/libsvm/index.html.

Supporting Information
S1 Fig. 21 Noiseless functions.
(DOCX)

S1 File. This is the ChiMICMatlab code.
(ZIP)

S1 Table. 21 Functional relationships.
(DOCX)

S2 Table. MIC values of each functional relationship with noise.
(DOCX)

Table 4. Datasets: Training set and test set are divided randomly at a ratio of 7:3.

Dataset Data type Feature number Training set Test set

positive samples negative samples positive samples negative samples

prostate1 microarray 12600 35 37 15 15

prostate2 microarray 12625 35 27 15 11

WDBC image feature 32 250 149 107 63

WPBC image feature 34 106 33 45 14

doi:10.1371/journal.pone.0157567.t004
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