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Abstract

This study considers the problem of describing and predicting cleft formation during the early 

stages of branching morphogenesis in mouse submandibular salivary glands (SMG) under the 

influence of varied concentrations of epidermal growth factors (EGF). Given a time-lapse video of 

a growing SMG, first we build a descriptive model that captures the underlying biological process 

and quantifies the ground truth. Tissue-scale (global) and morphological features related to regions 

of interest (local features) are used to characterize the biological ground truth. Second, we devise a 

predictive growth model that simulates EGF-modulated branching morphogenesis using a dynamic 

graph algorithm, which is driven by biological parameters such as EGF concentration, mitosis rate, 

and cleft progression rate. Given the initial configuration of the SMG, the evolution of the 

dynamic graph predicts the cleft formation, while maintaining the local structural characteristics of 

the SMG. We determined that higher EGF concentrations cause the formation of higher number of 

buds and comparatively shallow cleft depths. Third, we compared the prediction accuracy of our 

model to the Glazier-Graner-Hogeweg (GGH) model, an on-lattice Monte-Carlo simulation model, 

under a specific energy function parameter set that allows new rounds of de novo cleft formation. 

The results demonstrate that the dynamic graph model yields comparable simulations of gland 

growth to that of the GGH model with a significantly lower computational complexity. Fourth, we 

enhanced this model to predict the SMG morphology for an EGF concentration without the 

assistance of a ground truth time-lapse biological video data; this is a substantial benefit of our 

model over other similar models that are guided and terminated by information regarding the final 

SMG morphology. Hence, our model is suitable for testing the impact of different biological 

parameters involved with the process of branching morphogenesis in silico, while reducing the 

requirement of in vivo experiments.
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Index Terms

Statistical learning; unsupervised learning; predictive models; network theory (graphs); image 
segmentation; systems biology; Monte Carlo methods

 1 Introduction

Branching morphogenesis is a developmentally conserved process occurring in many 

organs, including the lungs, pancreas, kidneys, salivary and mammary glands [1], [2]. 

Branching morphogenesis is a temporally regulated highly dynamic, multiscale process 

involving mRNA modifications, protein signaling pathways and reciprocal interactions 

between epithelial and mesenchymal cell types; leading to tissue level structural changes 

affecting organogenesis [2]. Although the branching structures in developing organs have 

been studied in detail, we are still far from comprehending the integrated process.

Since the early developmental processes in branching morphogenesis in several branched 

organs are conserved, we used mouse embryonic submandibular salivary gland (SMG) in 

our investigations [3]. The ability to produce saliva is important in maintaining oral health, 

and continued efforts are being targeted to identify methods to restore functionality or 

design artificial salivary glands. Computational modeling of the developing organ can not 

only add to the basic knowledge of developmental mechanisms but can also facilitate organ 

engineering efforts. Embryonic SMG organ explants have long been used as a biological 

model system to study pattern formation during the process of branching morphogenesis [3], 

[4]. The embryonic SMG explants undergo branching morphogenesis when grown on filters 

at the air/media interface in serum-free medium in a way that reproduces the branching 

pattern that occurs in vivo [5].

The SMG initiates as a thickening of the primitive oral cavity epithelium on embryonic day 

11 (E11). At E12 the protrusion of the primitive oral epithelium into the surrounding 

condensed mesenchyme forms a single cellularized epithelial primary bud on an epithelial 

stalk, as shown in Fig. 1. By E12.5 clefts, or invaginations of the basement membrane begin 

to form on the epithelial surface of this initial bud, as seen in Fig. 1(a). These clefts are 

stabilized before they begin to progress deeper into the gland and separate the initial bud into 

multiple secondary buds, as shown in Fig. 1(b). Epithelial proliferation occurs during cleft 

progression aiding in tissue growth [5]. Clefts eventually stop progressing further into the 

tissue and begin to widen at their base during cleft termination, as seen in the left-most cleft 

in Fig. 1(c), and ultimately transition into newly forming ducts. The gland undergoes 

multiple rounds of cleft and bud formation, and duct elongation throughout development 

and, as a result, a progressively complex and highly arborized structure is formed. 

Detectable epithelial cellular differentiation starts by E15; thereafter creating functional 

ductal structures to transport saliva and secretory acinar units capable of saliva secretion.

Branching of the salivary gland epithelial tissue is known to be dependent upon growth 

factors and exogenous basement membrane [6]–[8]. Epidermal growth factor (EGF) is one 

such growth factor, which is known to be involved in the morphogenesis and fetal 

development of several organs, including the lungs [9], kidney [10], mammary gland [11], 
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and pancreas [12]. The role of several growth factors in SMG branching morphogenesis, 

including EGF, was previously investigated using mesenchyme-free epithelial rudiments 

cultured in a basement membrane extract in the presence of exogenously added growth 

factors [13]–[15]. Addition of EGF induced cleft formation and development of a highly 

lobed structure with little ductal elongation. The Epidermal Growth Factor Receptors 

(EGFR) family displays receptor tyrosine kinase activity and ligand binding induces several 

downstream signaling cascades that modulate EGFR activity affecting global growth 

patterns in a tissue [16]–[19]. EGF is known to activate several developmental processes 

including growth, survival, migration, and cell-fate determination [20]; however, the exact 

mechanism by which EGF regulates cleft formation has not yet been investigated.

Conventional cellular and molecular biological techniques are limited in their ability to 

explain complex biological phenomenon, and thus computational approaches have been 

introduced as a means to model branching morphogenesis [21]. Computational modeling of 

morphogenesis dates back to the mid 20th century with important mathematical models that 

advanced our understanding of fundamental properties of clusters of cells [22], [23]. These 

theories were followed by biochemical and mechanochemical models [24] that led to the use 

of continuum mechanics which considered a tissue to be composed of cells and extracellular 

matrix (ECM) and described the stress forces between the cells and the ECM [25]–[27]. 

Such models have also been used for modeling of epithelial morphogenesis in 3D breast 

culture acini [28], and lung [29]–[31] and kidney branching morphogenesis [32]. Each of 

these models was tailored to the particular biological process in question to account for the 

structurally different final branching patterns in these organs, even though mechanistic 

pathways are conserved across several branching organs.

The continuum mechanics models laid the foundation for utilizing computational 

approaches to model complex biological processes; however, they often made oversimplified 

assumptions regarding small deformations at the tissue-scale. Also, solutions for continuum 

mechanical problems have higher computational complexity, and require knowledge of the 

strength of bonds between cell types or the knowledge of various force fields, which are not 

known. Although recent studies have considered the tissue to behave as a viscous liquid 

under the assumption that the epithelium and mesenchyme are immiscible Stokes fluids; 

these models also fell short in reproducing actual salivary gland cleft shapes [33]–[35]. To 

overcome the shortcomings in these earlier modeling techniques and to better replicate the 

complicated dynamics governing biological processes, stochastic models were constructed 

based on Monte-Carlo (MC) methods. MC-based approaches can provide approximate 

solutions to complex, sometimes intractable mathematical problems when a large percentage 

of the possible configurations of the system have high energies and thus have a low 

probability of being attained [36]. The Glazier-Graner-Hogeweg model, an on-lattice MC 

model, was used to determine cellular parameters regulating cleft progression during 

branching morphogenesis in the epithelial tissue of an early embryonic SMG [37]. The 

disadvantages of on-lattice MC-based approaches include a time-consuming sampling step 

to reach desired solution, potential negative effects of lattice discretization, and the use of 

variance-reduction techniques [38].
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Over the past 20 years, graph theoretical models [39] have become significantly important in 

analyzing large-scale networks with complex interactions between multiple participating 

entities. Biological networks have also commonly benefitted from the advent of network 

analysis tools and techniques [40] that have been used to model protein-protein interactions 

[41]–[45], metabolic networks [46]–[49], genetic and transcriptional regulatory networks 

[50], [51], disease progression [52], [53], and neuronal connectivity [54]. We previously 

developed a graph theoretical model called cell-graphs to study the structure of cellular 

networks [55]–[58]. A cell-graph is an unweighted and undirected graph where the 

topological organization of the cells within tissues is characterized by graph theoretic 

features. The graph vertices (nodes) represent the cellular nuclei within the tissue and graph 

edges (links) capture cell-to-cell interactions. Cell-graphs enable quantification of the spatial 

uniformity, connectedness, and compactness at multiple scales. Conventionally, graph 

models have been used to depict structural properties of tissues at fixed time-points enabling 

characterization and quantification of the spatial evolution of tissue shape and integrity, 

without explicitly addressing the temporal component.

 1.0.1 Our Contributions

In this study, we utilize a novel approach towards quantifying the spatio-temporal evolution 

of tissue shape and growth pattern using a graph-based growth model. We utilized time-lapse 

confocal images of SMG grown for 12 hours under the influence of varying concentrations 

of EGF and constant concentration of Fibroblast Growth Factor 7 (FGF7). FGF7 is critical 

to the processes of mitosis and cell differentiation. The primary contributions of this study 

are as follows:

• Descriptive model: We extracted morphometric parameters from multiple time-

lapse confocal images of mesenchyme-free epithelial rudiments. A dynamic 

graph-based growth model was constructed that simulated the first round of 

branching morphogenesis with elongation of existing clefts, tissue proliferation 

and de novo cleft formation. From this graph model, novel local cleft and bud-

based features such as median cleft depth and median bud perimeter 

percentage, and global morphological features such as area and perimeter of 

the growing epithelial tissue, were analyzed for each concentration of EGF. We 

show that the dynamic graph-based growth model successfully characterized 

the developmental stages of the SMG growth pattern and simulated temporal 

changes of structural properties of the tissue.

• Predictive growth model: Given only the initial configuration of an SMG organ 

explant, the dynamic graph model predicts the time-evolving development of 

the SMG between E12 and E13 as a function of initial gland morphology, EGF 

concentration, and mitosis and cleft progression rates. Varying concentrations 

of EGF was used to adjust rates of epithelial proliferation in the model [59]–

[61] that accounted for global tissue growth.

• Interpolation-driven prediction modeling: We enhanced the dynamic graph-

based growth model to predict the time-evolving morphology and expected 

configuration of an SMG organ explant without (i) time-lapse data obtained 

from biological experiments, and (ii) apriori knowledge to determine the 
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halting configuration, or cleft termination. Our approach is based on building a 

linear regression model of cleft deepening dependent on the perimeter of the 

adjoining buds and the EGF concentration; this dependency allows us to better 

modulate the growth of the gland. This approach is novel since it automatically 

calculates the target configuration to determine the halting condition. We 

present simulation results that demonstrate significant qualitative agreement 

between the target configuration predicted by our linear regression model and 

the biological insight.

We also show that while the dynamic graph model is nondeterministic, multiple executions 

of the model successfully produce the same number of clefts that vary in their individual 

depths and locations across the epithelial periphery. This observed variance in cleft depths 

and locations in the the dynamic graph model closely mimics the high degree of variability 

in cleft depths and place of initiation found in the ex vivo grown samples. This realistic 

modeling by the dynamic graph model is because it is driven by EGF concentration, and 

mitosis and cleft progression rates, and does not enforce assumptions regarding bonds 

between cell types; also leads to reduced computational complexity.

 1.0.2 Organization of the paper

The rest of the paper is organized into four primary sections. Following this introduction 

(Section 1), Section 2 describes the biological data sets used for our experiments, 

preliminary image processing techniques applied on these biological data sets, algorithms 

for detection and development of clefts, and extraction of features including global 

morphological features, and local region of interest features. Section 3 describes the 

descriptive model based on dynamic graphs, the feature-based clustering of the biological 

data sets, comparison of the predictive growth model with a Monte-Carlo based on-lattice 

model, and the augmented prediction model based on dynamic graphs. Section 4 

summarizes the findings of the study and alludes to potential future directions.

 2 Materials and Methods

 2.1 Data Acquisition: Ex Vivo submandibular salivary gland epithelial organ cultures

Timed-pregnant female mice (strain CD-1, Charles River Laboratories) at E12, with day of 

plug discovery designated as E0, were used to obtain SMG rudiments following protocols 

approved by the National Institute of Dental and Craniofacial Research IACUUC committee, 

as reported previously [13]. E12 SMGs that contain a single primary epithelial bud were 

microdissected, the mesenchyme was removed and the epithelial rudiments were cultured in 

presence of 100ng/ml FGF7, as described previously [13]. For three of the glands, the media 

was also supplemented with 20 ng/mL epidermal growth factor (EGF), while for the other 

three 1 ng/mL EGF (R&D Systems) was used. Images were collected as described in the 

next section A.1. Henceforth, we will refer to the image sets as EGF-20a, EGF-20b and 

EGF-20c (20 ng/mL EGF), and EGF-1a, EGF-1b and EGF-1c (1 ng/mL EGF). Description 

of the other data acquisition techniques can be found in the Appendix sections A.1 and A.2.
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 2.2 Quantification of ground truth: Image Processing and Segmentation

The first step in characterizing the SMG morphology consists of segmenting the SMG 

regions in the FN (via ImageJ) and GFP (manual segmentation due to noisy images) time-

lapse data sets. The FN images were segmented via Otsu’s technique [62] by calculating an 

optimal threshold to separate the tissue (foreground) from the Matrigel medium 

(background). Biologists visually inspected this manual segmentation to ensure that it 

correctly captured the morphology. To obtain nuclear information regarding cell distribution 

and cell morphologies, we referred to the ex vivo data set (in Section 2.1).

 2.3 Quantification of ground truth: Detection of cleft regions

The first important step in characterizing the SMG morphology is the detection of clefts as 

they form and deepen. The SMG is comprised of alternating buds and clefts, where clefts are 

narrow valley-shaped indentations that form in the basement membrane. Figures 1(d)–(o) 

illustrate the progression stages of typical clefts from shallow nascent clefts to narrow and 

deep progressive clefts in the EGF-1a and EGF-20a data sets. We characterize the cleft 

region using cleft center defined as the deepest point of the cleft, with the walls of the cleft 

extending on either side of the surface normal at the cleft center, and the corresponding left 

and right extrema points that determine the extent of the cleft; the buds are considered to be 

starting beyond the points marked as cleft extrema. The cleft center and cleft extrema are 

illustrated in Fig 2(a). Automated detection of these key points is carried out as follows:

1. We identify local extrema of the gradient along the SMG boundary by 

detecting angular variations greater than 35° at regular intervals of 14 

successive (x,y) coordinate points measured via Euclidean distance on a 

rectangular Cartesian grid. This interval constituted by 14 successive boundary 

points was found to be optimal based on the successful identification of 

inflection points along the boundary. Angular thresholds lower than 35° 

identified multiple outliers. The extrema thus identified correspond to potential 

cleft centers or peaks of boundary irregularities.

2. These peaks are eliminated using the signed area of the triangle formed by the 

candidate point, t, and two of its immediate 8-connected neighbors, t−1 and t

+1, along the boundary ordered in clock-wise direction. This is obtained as 

,where (xt, yt), (xt−1, yt−1), xt+1 yt+1 1 and (xt+1, yt+1) 

represent the horizontal and vertical coordinates of the candidate point and its 

previous and next neighbors along the boundary, respectively. This expression 

is positive for clefts and negative for peaks.

3. After the peaks are eliminated, we identify the cleft extrema points using the 

mean-squared error (MSE) between the best-fit line and SMG boundary points 

on either side of the potential cleft centers. As points from the curved buds are 

included in the best-fit line, a higher MSE is obtained in comparison to the 

steeper cleft walls. The algorithm progresses from the cleft center 

incrementally adding points on either side of the cleft center to the cleft region. 

Dhulekar et al. Page 6

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



When the MSE exceeds a threshold the boundary point is labeled as a cleft 

extrema. We set a dynamic threshold for the MSE that is computed as a 

function of depth of the cleft from the closest convex hull vertices obtained 

after fitting a convex hull around the SMG. For every cleft center detected by 

the algorithm, we identify the vertices lying on the convex hull to its 

immediate left and right. The depth is then calculated as the perpendicular 

distance from the cleft center to the mid-point of the line segment joining these 

closest vertices identified on the convex hull. We implement cleft tracking as 

part of the algorithm to track the progress of the cleft.

4. As a final filtering step to eliminate boundary irregularities or nascent clefts, 

we exploit the cleft depth and spanning angle as illustrated for a sample cleft in 

Fig. 2(a). Cleft depth is described as the shortest Euclidean distance from the 

cleft center to the line segment joining the two-extrema points, and the 

spanning angle is the angle formed by the two line segments joining the 

extrema points to the cleft center. Indentations that had a depth of less than 

9μm and spanning angle greater than 150° were not considered since our 

analysis of time-lapse data indicated that such regions were boundary 

irregularities that might not form a stable cleft. These thresholds were decided 

based on discussions with biologists and measurements from empirical data. 

Figures 2(b)–(e) show original images from four data sets with detected clefts 

highlighted in green and their cleft centers marked in red (or maroon as in Fig. 

2(c)).

 2.4 Quantification of ground truth: Extraction of global SMG morphological features

The morphology of the SMG undergoes quantifiable transformations as a consequence of 

creating the ramified structure. We capture these transformations by extracting seven 

morphological features, namely area, perimeter, eccentricity, elliptical variance, convexity, 

solidity, and box-count dimension. We label this data matrix of morphological features as . 

When referring to a feature matrix in subsequent text, we allude to the data matrix 

, consisting of the values of the seven morphological features over M time-steps. 

Appendix Table A1 lists the definitions of the various morphological features.

 2.5 Quantification of ground truth: Extraction of novel local cleft and bud features

Early branching morphogenesis is characterized primarily by bud outgrowth and cleft 

deepening. Early clefts tend to get deeper and narrower with time, with the end result being 

that the initial buds are split into multiple secondary buds. We ascertained novel local cleft 

and bud-based features to analyze the effects of cleft deepening on early branching 

morphogenesis. Using QR factorization with column pivoting, we sorted these features in 

accordance with their ability to capture the variance within the data [63]. This factorization 

is performed when the feature matrix, A, is not of full rank. QR factorization with column 

pivoting is given as A = QRPT, where Q is an orthogonal matrix, R is an upper triangular 

matrix, and P is a permutation matrix chosen such that the diagonal elements of R are non-

increasing |r11| ≥ |r22| … ≥ |rnn|. The selection of features (columns) from A is based on 

finding the feature with the maximum Euclidean norm, and successively finding the features 
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maximally orthogonal to the subspace spanned by the previously such determined features. 

The sequence of selection of features is stored in P. Other algorithms including singular 

value decomposition (SVD) may also be used for feature selection (please refer http://

featureselection.asu.edu/for other feature selection techniques). The lower computational 

cost of QR factorization as compared to SVD was the reason we chose it as the feature 

selection algorithm.

 2.6 Modeling cleft progression as a function of EGF concentration and adjacent bud 
perimeters

We observed that although EGF stimulates branching, higher EGF concentrations produced 

quantitatively shallower clefts as compared to lower EGF concentrations. We thus 

determined that cleft depth is a function of the EGF concentration levels. We also found that 

cleft depth is a function of the perimeter of the adjacent buds. Larger adjacent buds allow the 

cleft to progress much deeper into the tissue, and higher EGF concentration levels create 

more buds but shallower clefts. Appendix Table A2 lists correlation coefficients, represented 

by ρ, between cleft depth and adjacent bud perimeters for three of the data sets. In all we 

identified 524 cleft segments, where a cleft segment is defined only for the sequence of 

images where its adjacent buds do not split. We collected information regarding cleft depth 

and adjacent bud perimeters from all the data sets to formulate cleft progression as a linear 

regression model with equations of the form c = BA + E, where c ∈ ℝ524×1 is a vector of 

depths attained by the cleft before one of its adjacent bud splits creating a new cleft, B ∈ 

ℝ524×3 is the matrix of adjacent bud perimeters (with a column of 1s for the intercept), A ∈ 

ℝ3×1 is the vector of equation coefficients, and E ∈ ℝ524×1 is the vector of errors. For our 

simulations, to determine the depth a cleft can achieve, we first calculate distances to every 

cleft in the database by comparing the adjacent bud perimeters in Euclidean space. We then 

apply two levels of weights to these Euclidean distances, one weight for the EGF 

concentration, and the other weight for each cleft in the database. For the EGF 

concentration, we calculate the absolute difference of the EGF concentration from 1 ng/mL 

and 20 ng/mL (our two sample EGF concentrations), calculate the inverse of these 

differences and normalize the inverse differences by dividing by their sum. We call these 

weights W1. We repeat this procedure for the distances of the bud perimeters adjacent to the 

cleft under investigation to the corresponding bud perimeters for each cleft in the database: 

calculate the inverse of the distances and normalize by dividing the inverse distances by their 

sum. We call these weights W2. We split the equation coefficients (B) into two groups for 

the two sample EGF concentrations, and weight the coefficients corresponding to each cleft 

in either group by the appropriate weight in W2. We then take the product of these new 

coefficients with W1 and sum the cleft depth values estimated by the two EGF 

concentrations. This gives us the final interpolated cleft depth. The simulated cleft is then 

assigned this cleft depth, which is updated when there is further splitting of its adjacent 

buds, or it exceeds the ascribed depth. We decrease the rate of growth of the cleft for higher 

EGF concentrations, and vice versa for lower EGF concentrations. This allows us to create 

shallow clefts for higher EGF concentrations, and deeper clefts for lower EGF 

concentrations.
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 2.7 Predictive dynamic graph growth model: Construction of a biologically data driven 
dynamic graph-based growth model of epithelial branching

This section details one of the most important contributions of this study – the development 

of a dynamic graph model to describe the first round of cleft formation and progression in 

SMG branching morphogenesis. The dynamic graph-based growth model advances our prior 

work on a graph-theoretical model called cell-graphs, which was used for histopathological 

image analysis [64], tissue modeling [55], and characterization of the response of E13 

salivary glands to 24 hours of inhibition of the Rho kinase (ROCK) signaling pathway [56], 

[58]. A cell-graph G = (V, E) consists of a set of vertices V representing cell nuclei, and a set 

of edges E representing cell to cell interactions. An edge is present in the graph where the 

distance between two cell nuclei is less than a predetermined threshold. The model takes the 

initial gland morphology, nuclei locations, and EGF concentration as input. The initial image 

in each time-lapse image set was used for gland morphology. The EGF concentration levels 

determine the mitosis and cleft deepening rates. We assume cells to be circular in shape, and 

cell size is approximated by the diameter. We start with a uniform grid-graph where V is the 

intersection of the grid lines, and the grid lines themselves constitute E. The grid is 

continuously distorted on every iteration of the algorithm.

The outline of the dynamic graph-based growth model is given in Fig 3. The steps involved 

in the algorithm are listed below:

1. Detection of cleft regions: The first step of the model involves identifying 

clefts. Please refer to Section 2.3 for details regarding the methodology of 

detecting clefts.

2. Creation of new vertices: Each iteration of the growth algorithm divides the 

cells into two populations based on the distance from the gland boundary, 

namely internal (I) and periphery (P). Subsets I′⊂ I and P′ ⊂ P are chosen to 

undergo a proliferation attempt. Cells in P′ that successfully undergo mitosis 

create new cells (or vertices) V′ that are added to V. For I′, we compute the 

shortest distance to the boundary of the gland (not including the cleft region) 

and find the cell in P closest to that boundary point; new cells  thus created 

are added to V. New edges, E′ and  for periphery and internal cells 

respectively, are also constructed based on the distances from the new cells to 

existing cells in G.

We measured average mitosis rates for EGF-1 and EGF-20 concentration levels 

as 4 cells/minute and 6 cells/minute, respectively. Additional assumptions that 

build upon the Eden model [23] were imposed to model mitosis. These 

assumptions included cells with identical topology and growth permitted only 

at the gland boundary where a hypothesized “nutrient medium” provided by 

the mesenchyme is accessible. In our dynamic graph-based growth model, this 

similarity is enforced via the local structural properties of cell-graphs that 
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maintain consistency in the topology of the SMG throughout the development 

stages. When first created, potential daughter vertices are placed outside the 

initial gland boundary in a region within 20° of the surface normal from the 

parent vertex at a minimum distance of one cell diameter, but less than the 

specified maximum edge length. Five possible candidate daughter vertices 

satisfying these spatial and angular constraints are chosen, and the daughter 

vertex with the closest local cell-graph features to the parent vertex is selected 

as the optimal daughter vertex. These local structural features (refer to 

Appendix C) assess the spatial uniformity (clustering coefficient), 

connectedness (degree, closeness centrality, betweenness centrality), and 

compactness (edge length statistics) of the cell-graph. We distribute the 

extension distances to the neighbors of the parent vertex to model bud 

outgrowth in a local region and prevent spikes in the gland boundary. Figures 

4(a–c) show a sample illustration of the configuration with creation of new 

vertices at different magnification levels. Supplementary Movie V1 shows 

mitosis events occurring over 3 hours (movie can be downloaded here: http://

dsrc.rpi.edu/cellgraph/SMG_modeling/Supplementary_Video_V1.mp4). As 

described above, mitosis events are only allowed to occur on the SMG 

boundary; this was done primarily to reduce computational overload involving 

bookkeeping tasks.

3. Cleft deepening: To create dynamic clefts and to deepen existing clefts, we 

delete edges to vertices that would now lie in the cleft region (C).

This edge deletion effectively isolates these vertices from the rest of the graph. 

All edges that have vertices lying on opposite sides of a cleft, i.e. edges go 

across the cleft, are also deleted. Figure 5 illustrates the cleft deepening 

algorithm. Once a cleft deepens, the cleft centers (marked in red) are removed 

from the cell-graph – the edges from these vertices to all other vertices are 

deleted. The deleted vertices are marked in brown in the second panel. Cleft 

progression is based on the linear regression model described previously in. 

The cleft deepening rate is modulated by the EGF concentration. For lower 

EGF concentrations, we use a higher cleft deepening rate, thereby producing 

deeper clefts, and we use a lower cleft deepening rate for higher EGF 

concentrations to produce shallower clefts. For a sample cleft we list the 

observed and estimated cleft depth values in Table 1, based on the growth 

coefficients computed earlier. We can see that the linear regression model 

estimates the cleft depth better for deeper clefts than for shallow clefts. We 

found that the coefficient of determination, R2, was 0.9873, confirming our 

hypothesis that the cleft depths can be computed as a function of the adjacent 

bud perimeters. Restricting mitosis in the clefts as well as progressively 
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increasing cleft depth causes the cleft to narrow and to deepen, both 

characteristics of progressive cleft formation.

4. Dynamic cleft creation: We first determined the smallest possible perimeter at 

which a bud splits, and the percent increase in the perimeter of buds before 

they split. These values were also found to be dependent on the EGF 

concentration. Since higher EGF concentrations stimulate branching 

morphogenesis and create more buds, we use progressively smaller increases in 

bud perimeter under increased EGF concentration levels. The position of the 

split is determined probabilistically. We select coordinate points along the 

boundary that lie in the vicinity of the center of the bud, and we randomly 

choose a point from this list as the cleft center for the dynamic cleft. We isolate 

the vertices that lie in the newly created cleft region from the rest of the graph 

by deleting edges incident to these vertices. All edges that go across the cleft 

are also deleted.

5. Maintaining boundary smoothness: We use the spatial orientation of vertices to 

create a smoother gland boundary. The smoothness algorithm is based on the 

hypothesis that if daughter vertices are aligned similarly to the parent vertices, 

then smoothness will be maintained when the daughter vertices are integrated 

into the boundary. This is accomplished by minimizing the quantity , 

where ϕi is the angle ∠pi−1pipi+1, and  is the angle , as shown in 

Fig. 4(d). The previous and next vertices pi−1 and pi+1, respectively, are fixed, 

and the position of the daughter vertex  is varied along the line segment . 

This process is repeated from the second till the (n − 1)th daughter vertex, 

keeping the first and nth daughter vertices fixed.

6. Updating the gland boundary: An interpolating cubic spline curve is used to 

insert the daughter vertices into the existing gland boundary. If the distance 

between the current and next daughter vertices is greater than a predetermined 

threshold, we connect the current daughter vertex to the +3 neighbor of the 

parent vertex along the SMG boundary.

7. Compare against expected target configuration: The simulation is run for 100 

iterations, after which the optimal terminating iteration is selected via post-

processing by determining the iteration number that minimizes the weighted 

Euclidean distance to the target configuration. From our analysis, we found 

that about 6 hours of experimental data translates to running 100 iterations of 

the model. We compute the morphological feature vectors for all the iterations, 

and project this data matrix into the reduced space (xj) by post-multiplying by 

the right singular vectors of the particular ground truth data set. We then 

compare this projected feature matrix to the projected feature vector 

corresponding to the target configuration of the corresponding ground truth 

data set (yj) using a weighted Euclidean distance given as:
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Weights are computed as the square of the positive singular values of the 

projected ground truth data set divided by the sum of the squares of all positive 

singular values. We look for the global minima in the distance dxy values and 

select this optimal iteration as the terminal configuration for our simulation. 

Table 2 lists biological processes and properties, and the corresponding 

mechanisms to handle them in the dynamic graph-based growth model.

 3 Results

We present three different types of results in this section. First, we validate the accuracy of 

our representation of the ground truth. Next, we compare the prediction accuracy of the 

dynamic graph-based growth model with a Monte-Carlo-based simulation model. Finally, 

we present results for the interpolation-driven prediction modeling.

 3.1 Time-Series Analysis of SMG structural features

Based on the features described in the Sections 2.4 and 2.5, we present in this section the 

growth trends of the respective features for two of the ground truth data sets. Figure A2 

displays the trends for the global and local SMG morphological features for the EGF-1a and 

EGF-20b data sets. There are 29 images in the EGF-1a data set stretching over a period of 

about 3 hours. There are 47 images in the EGF-20b data set stretching over a period of about 

8 hours. Area and perimeter (Appendix Figures A2(a) and (b)) display an increasing trend 

over time as the SMG matures. Eccentricity (Appendix Fig. A2(c)) is a measure of the 

circularity of the ellipse fitted to the SMG that has the same second-moments as the SMG, 

and quantifies the elongation of the SMG. Eccentricity increases as the SMG becomes more 

elongated with growth. The drop in eccentricity values for the EGF-20b data set can be 

attributed to the drop in perimeter values for the same range. Elliptical variance (Appendix 

Fig. A2(d)) displays an increasing trend as the clefts deepen since the error of fitting an 

ellipse to the SMG with deeper clefts would be higher than a SMG with shallow clefts. 

Convexity (Appendix Fig. A2(e)) displays a decreasing trend over the time-lapse images. As 

the clefts progress, the perimeter of the SMG increases, but there is only a minor increase in 

the perimeter of the convex hull. The perimeter of the convex hull is dependent on bud 

outgrowth, and this is a much slower process as compared to cleft progression [5]. Solidity 

(Appendix Fig. A2(f)) decreases over time since deepening of the clefts reduces the rate of 

growth of the SMG as compared to its convex hull. The box-count dimension (Appendix 

Fig. A2(g)) is a measure of a shape’s space-filling capacity. Cleft deepening is expected to 

increase the box-count dimension. Although the rates of change of the features differ for the 

EGF-1 and EGF-20 data sets, all the global morphological features follow similar trends, i.e. 

either the features increase for both data sets or the features decrease for both data sets.

From the feature analysis, we identified median cleft depth and median bud perimeter 

percentage as the most important local features. We considered median cleft depth since 
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some clefts progress towards termination faster than other nascent clefts. Median bud 

perimeter percentage is the median of the percentage of the SMG perimeter belonging to 

individual buds. Appendix Fig. A2(h) shows the trend in median cleft depth. An increasing 

trend is seen for this feature since the clefts deepen with time. Sudden dips in the trends 

indicate formation of nascent clefts. The deeper clefts that are characteristic of EGF-1 data 

sets are the reason a higher slope is observed in the graph for EGF-1a as compared to the 

slope for the EGF-20b graph. Median bud perimeter percentage drops over time as more 

buds are created that are smaller in perimeter than the original buds.

 3.2 Validation of the morphological features

To verify whether the set of global morphological and local features described in the 

previous section was sufficient to capture the tissue-scale and local changes in the SMG, we 

attempted to cluster the EGF-1 and EGF-20 biological data sets (ground truth). The 

hypothesis being that the two EGF concentrations give rise to different morphological 

changes, and thus would cluster separately. As an illustration, consider the area of the SMG. 

It is known that the mitosis rate is dependent on EGF concentration [60]. A higher EGF 

concentration increases mitosis rate as compared to a lower mitosis rate for lower EGF 

concentration. This in turn implies that the area values for the target configuration of the 

EGF-1 data sets will differ from the area values for the target configuration of the EGF-20 

data sets.

We ran QR factorization with column pivoting to determine the importance of each of the 

nine morphological features, seven global and two local region of interest features (see 

Section 2.5). We ran the factorization for each of the six data sets and found that no feature 

was consistently ranked with the least important score indicating that we needed to consider 

all nine features for our analysis. We ran k-means clustering [65] in the full nine-

dimensional space, with k equals to 2, to separate the sets into two classes as shown in Fig. 6 

with the three EGF-1 data sets listed first, followed by the three EGF-20 data sets. All the 

data sets are ordered chronologically within themselves from the first frame in the set to the 

last frame in that set. The EGF-1 data sets are either completely contained in cluster C2, or 

transition fairly early from cluster C1 to cluster C2 as they develop deeper clefts and larger 

buds. The EGF-20 data sets are either completely contained in cluster C1 or transition 

comparatively late from cluster C1 to cluster C2 exhibiting behavior similar to advanced 

EGF-1 data sets. The majority presence of the EGF-1 data sets in cluster C2 supports our 

claim that this cluster signifies larger but fewer buds and deeper clefts, whereas the majority 

presence of EGF-20 data sets in cluster C1 verifies that this cluster is characteristic of 

smaller but more buds and shallower clefts. Thus, we verify that our features were able to 

represent the morphological changes that occur in the SMG during branching 

morphogenesis. An interesting observation that was revealed via this analysis was that 

although increased EGF concentration stimulates branching morphogenesis by creating 

more buds, the clefts are shallower than when compared to lower EGF concentrations. Table 

3 shows multiple clustering measures including recall and precision, F-score, and entropy to 

validate that the clustering is able to sufficiently distinguish the two data sets [66].
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 3.3 Performance Evaluation of the Predictive Growth Model on the basis of the Accuracy 
of Predicted SMG Morphology

To understand the efficacy of the predictive growth model, we compare it with a Monte-

Carlo-based simulation model that works on the principle of energy minimization of the 

combined effective energy function (constructed as a Hamiltonian expression).

 3.3.1 A Brief Overview of the GGH model—The Glazier-Graner-Hogeweg (GGH) 

model [67], [68] is built upon the energy minimization-based Ising model [69], using 

imposed fluctuations via a Monte Carlo (MC) approach. Previously, we performed an in-

depth investigation where we constructed a local GGH-based model of epithelial cleft 

formation and analyzed the ranges of the cellular parameters [37]. In this study, we utilized 

similar values for each of the parameters in the simulation of cleft formation occurring on a 

tissue scale. Please refer to Appendix B for further details about implementation of the GGH 

model. The authors would also like to mention that they discussed the initial development of 

the specific GGH model parameter set with members of the Glazier Lab at Indiana 

University.

We compared the ability of the dynamic graph-based growth model to simulate EGF-

stimulated cleft formation to that of the GGH model. To make a fair comparison between the 

dynamic graph-based growth model and the GGH model, we included the dynamic cleft 

creation module, described in the Section 2.7 to our implementation of the GGH model. This 

ability of the GGH model to generate de novo clefts is an improvement on our earlier work 

[37], [70].

 3.3.2 Evaluation of the predictive growth model—The morphological feature-

based comparison of the dynamic graph-based growth model with a quantitative analysis of 

the biological data set (ground truth) and the GGH model under the specific parameter set 

described above (and in Appendix B and [37]) for organ explants grown in the presence of 

low or high levels of EGF (EGF-1a and EGF-20b datasets, respectively) is shown in Fig. 7 

and Appendix Fig. A3. For the sake of brevity and page restrictions, only the area feature for 

both EGF concentrations is shown in the figure. Please refer to Appendix Figs. A3 and A4 

for further feature comparisons. Although, both models are constructed by very different 

modeling techniques, one is a graph-based model whereas the other minimizes a 

Hamiltonian formulation, our comparison is solely based on the final shape of the epithelial 

tissue produced by them. No comparison is done based on the outputs of the models in their 

original form. The ground truth trends are displayed in green, the dynamic graph-based-

growth-model’s trends are displayed in red, and the GGH model’s trends are displayed in 

blue. As observed in the ground truth, an increase in area and perimeter is seen in both 

models. The dynamic graph-based growth model is able to replicate the increase in area and 

perimeter more effectively than GGH, and usually remains faithful to the increasing trend. 

Eccentricity increases for the ground truth as the gland becomes more elongated. This is a 

trend that the dynamic graph model is also able to replicate, whereas GGH fails to reproduce 

the appropriate trend. The GGH models inability to properly reproduce the eccentricity trend 

could be attributed to the fact that it tries to acquire a circular structure because of the 

anisotropic growth of the model. Both models are able to model the trends in median cleft 
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depth that are observed in the ground truth, although GGH performs better in a few cases 

since it can exactly specify the number of clefts, location of the clefts, and the depth of each 

cleft. The sudden drops in the value of the median cleft depth in the ground truth as well as 

the models signify creation of new clefts.

Although the range of values of elliptical variance is fairly small (10−2), both models show 

an increasing trend for this feature. Convexity drops as the rate of increase of perimeter of 

the SMG increases at a faster rate than the perimeter of its convex hull. In keeping with the 

ground truth, both models show the appropriate decreasing trend. Solidity decreases with 

deepening of the clefts. While the dynamic graph-based growth model reproduces the 

appropriate trend, since the GGH model tends to grow the gland more circular, solidity is 

also affected by this trait of the GGH model. Also, the clefts generated by GGH are in 

constant flux, appearing and disappearing from one MCS step to the next, and this may also 

be causing the solidity patterns to be modeled incorrectly. In general, the dynamic graph 

model has a higher box-count dimension than the GGH model. This could be because it 

tends to create more clefts than the GGH model, thereby creating more area of concavity. 

These plots illustrate that the dynamic graph-based growth model is able to predict the 

growth of the clefts during early branching morphogenesis. Figure 8 displays target ground 

truth configuration, and sample terminal configurations for both models for the EGF-1a and 

EGF-20b data sets. As can be noticed from the terminal configurations, the dynamic graph-

based growth model is able to produce de novo clefts and the final configuration is 

comparable to that produced by the GGH model.

 3.3.3 Computational Complexity Comparison—We analyzed the time complexity 

of both approaches to illustrate the savings in time afforded by the dynamic graph model. 

The dynamic graph model has worst case time complexity of , whereas the GGH 

model has worst case time complexity of , omitting the constants that come from 

convergence criteria (or number of iterations). This is unsurprising given that the GGH 

model calculates an energy function between each pair of cells, and considers increased 

cellular-level detail thereby further increasing its complexity.

As an illustration, we compared the simulation times for both models. We ran 50 

experiments on a 2.4 GHz Intel Core 2 Duo processor with 4GB RAM. The dynamic graph 

model was on average 10.24 times faster than the GGH model, taking an average of 4.83 

min ± 1.41 sec to complete the experiment, whereas GGH took 49.47 min ± 34.21 sec.

 3.4 Interpolation-driven prediction modeling: Prediction of growth factor dependent 
branching morphogenesis

For the majority of comparisons to biological data, both the time-lapse data set and the 

expected target configurations are available in advance. Our objective was to enhance our 

dynamic graph growth model such that when presented with an initial SMG boundary image 

and EGF concentration, the model could predict gland morphologies without the aid of a 

time-lapse data set, and thus no information regarding the target configuration.
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We start by artificially creating ground truth morphological feature vectors from the initial 

SMG boundary image and EGF concentration, using as a first attempt, linear growth 

equations under the assumption that all features are uncorrelated. We computed two sets of 

average linear regression models for all features for EGF-1 and EGF-20 concentrations, 

given in Appendix Table A3. The linear growth rates follow the expected behavior as 

explained in Section 3.1. For any intermediate EGF concentration, we interpolate between 

these two sets of models, and apply a normalized inverse distance function for the EGF 

concentration as a weighting factor (similar to the function defined in 2.3). With these 

individual feature growth equations, we determine the values the features would attain after 

a certain time interval. For our experiments, we consider time intervals of 3, 4.5, and 6 

hours. Since the GGH model requires apriori knowledge of expected target configurations 

(i.e. final cleft depth) it was not possible to make such predictions with this model.

Using the formula mentioned earlier in Section 2.2, we calculated average mitosis rates 

(MR) for EGF-1 and EGF-20 concentrations as 4 cells/minute and 6 cells/minute, 

respectively. Mitosis rates for intermediate EGF concentrations were predicted by 

interpolating between these two mitosis rates, weighted by a normalized inverse distance 

function. We also interpolated cleft deepening rates and maximum cleft depth using a linear 

interpolation scheme (described in Section 2.6), and ran our algorithm (Section 2.7) based 

on these interpolated mitosis and cleft deepening rates, and bud-splitting statistics for about 

100 iterations, approximately the number of iterations required to simulate 6 hours of 

growth. For all iterations of the algorithm, we computed the morphological feature vector 

(yj) and compared it to the expected target feature vector, or target configuration, as 

determined by the ground truth generated by the linear growth model (xj). The comparison is 

done as following:

The comparison was performed in the original feature space, since the rank of the matrix of 

the linearly generated ground truth is 1. We look for the iteration number that minimizes the 

distance dxy, and use this iteration number as the terminal configuration for each of the three 

time-intervals mentioned above.

This interpolation-driven dynamic graph growth model was used to predict gland 

morphology at specific time points for different EGF concentrations. Figure 9 shows the 

same starting image grown under EGF-1, EGF-10, and EGF-20 concentrations with 

predicted outcomes using the dynamic graph-based growth model for 3, 4.5, and 6 hours. 

Table 4 lists the area, perimeter, number of clefts, and median cleft depth for the three 

configurations. We can observe that higher EGF concentrations stimulate branching 

morphogenesis by creating more buds. As time progresses, the lower EGF concentrations 

have deeper clefts. This can be observed at 6 hours where EGF-1 has a much higher median 

cleft depth, whereas EGF-20 has relatively shallower clefts that have hardly progressed 

beyond 3 hours. Supplementary Movie V2 shows a simulation time-lapse movie produced 
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by the dynamic graph model of all three EGF concentrations together (movie can be 

downloaded from http://dsrc.rpi.edu/cellgraph/SMG_modeling/

Supplementary_Video_V2.mp4).

 4 Discussion

The objective of this study was to quantify and predict the core processes involved in the 

initial stages of branching morphogenesis to initiate the process of branching 

morphogenesis: cleft initiation, stabilization, and progression, under different concentrations 

of EGF. These cleft stages occur simultaneously with bud outgrowth and subsequently lead 

to cleft termination and duct formation. For this purpose, we extracted morphometric 

parameters from time-lapse mouse submandibular salivary gland (SMG) images. We 

developed a biological data driven descriptive model utilizing dynamic graphs. This 

dynamic graph model describes and predicts early branching morphogenesis in SMG. Given 

an initial SMG boundary image and EGF concentration level, the dynamic graph model is 

able to predict the growth of the SMG between embryonic days E12 and E13. The model 

probabilistically adds daughter cells and integrates these cells into the SMG by appropriately 

expanding its boundary. The model also creates new edges between the daughter cells and 

cells existing in the graph representing the initial gland. This augmented cell-graph (with the 

daughter cells) maintains the local structural properties of the original cell-graph. Cleft 

deepening and creation of dynamic clefts are crucial components of the model allowing it to 

produce more realistic branched structures and deeper clefts, and are based on the rules 

captured from the time-lapse data sets. The process of de novo cleft creation is modeled by 

first identifying the regions of initiation of the cleft, as well as the increase required in the 

perimeter of the buds. Given this information, we then use a probabilistic model to create de 
novo clefts.

Our results indicate that the dynamic graph model can correctly capture and represent the 

tissue-level morphological changes during cleft formation in the developmental stages of the 

SMG branching morphogenesis. We also showed that cleft progression is linearly dependent 

on the perimeters of the adjacent buds and is modulated by the EGF concentration. As was 

expected, higher EGF stimulated branching morphogenesis by producing more clefts, 

whereas lower EGF concentrations produced fewer clefts. Our analysis revealed an 

interesting observation regarding the depth of the clefts. Higher EGF concentrations 

produced shallower clefts, whereas lower EGF concentrations produced deeper clefts, for 

reasons that remain unclear. Future studies will be required to understand the cellular 

processes activated by EGF during cleft formation. Since this dynamic graph modeling 

approach can model cleft formation in response to modulation of EGF signaling, this 

approach could be employed to evaluate the contribution of other signaling pathways to cleft 

formation. Similar modeling approaches could be employed towards understanding other 

developmental processes in which large changes in shape occur.

Interestingly, the morphology of the epithelial buds tends to be slightly more circular than 

the buds produced by the dynamic graph-based growth model. It is not possible to capture 

this difference in the circularity of buds with the methods used here and would require a 

more complicated model. Currently, this level of detail in shape modeling is beyond the 
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consideration of the dynamic graph-based growth model, and would be a potential direction 

of enhancement for the model. We compared our results against a well-known on-lattice 

Monte-Carlo-based simulation model, the Glazier-Graner-Hogeweg (GGH) model, under a 

specific parameter set consisting of energy functions that have biologically relevant 

equivalents, and demonstrated that our results are in a similar quantitative agreement with 

the biological data as those of the GGH model, but converge significantly faster to the target 

configuration. The authors would like to point out that the GGH model handles cellular-level 

changes at a higher resolution than the dynamic graph-based growth model. We also 

presented a method to introduce de novo clefts in the SMG using the GGH model thus 

adding to the dynamic nature of the GGH model.

We enhanced the dynamic graph-based growth model to predict the growth of the SMG at 

any specified time between embryonic days E12 and E13 without requiring a time-lapse data 

set. This is one of the primary benefits of the interpolation-driven prediction modeling 

approach – it does not require apriori knowledge of the target configuration – the initial 

configuration and growth rules determined from the biological data are sufficient for the 

algorithm to predict the gland morphology at a future time point. The predictive nature of 

the model reduces its dependence on in vivo experiments, allowing the biologists to view a 

simulation of the experiment prior to performing it. Most other computational biological 

techniques, including the GGH model, require information regarding the final configuration 

of the ground truth data in advance. Thus, it was not possible to compare our predictive 

model to other simulative models. We examined the growth trends in the biological data 

from the viewpoint of morphological features and discovered that individual linear growth 

models are able to predict the evolution of each feature. This allowed us to identify the 

expected configuration of the morphological features at different time points.

While analyzing the results of the dynamic-graph growth model, we observed that it has 

certain shortcomings. Since individual tissue-scale and cellular-scale models have their 

deficiencies with regards to modeling different aspects of cleft formation in branching 

morphogenesis, future efforts should be aimed at creating a multi-scale hybrid model that 

can achieve better tissue-scale modeling, and be able to more realistically capture cellular-

level events such as mitosis and cellular reorganization in cleft regions. The dynamic graph 

model is a generic model and as such can be used in conjunction with other models to create 

this hybrid model. Another future direction for the dynamic graph-based growth model 

involves including dynamic cell movement information for accurate construction of cell 

graphs with a better estimation of the spatial distribution of cells [13].

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Three stages in cleft formation during early branching morphogenesis between embryonic 

days E12 and E13. Selected frames from the time-lapse confocal microscopy image sets 

demonstrate progressively deeper clefts and bud outgrowth. In (a), multiple nascent clefts 

are visible on a single large bud, which deepen in (b), and begin to form buds. By image (c), 

some clefts have terminated, and the gland has at least partially separated into distinct buds. 

Scale, 100 μm. Figures (d)–(o) show the progression of individual clefts in two data sets, 

with the upper rows ((d)–(f) and (j)–(l) Scale, 100 μm) displaying the entire gland and a 

white rectangle around the particular cleft, and the lower rows ((g)–(i) and (m)–(o) Scale, 50 

μm) displaying the zoomed in version of this rectangle.
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Fig. 2. 
Characterization of clefts and sample results of the cleft detection algorithm. The figure 

shows cleft extrema (marked in green) and cleft center (marked in maroon) points that 

characterize the cleft in (a) (Scale, 50 μm). Spanning angle and cleft depth are calculated 

from these points as illustrated. In (b)–(e) (Scale, 100 μm), results of applying the cleft 

detection algorithm to four different data sets is shown. The cleft regions are highlighted in 

the DIC microscopy ((b) and (d)), GFP-labeled (c), and FN-labeled (e) images. The cleft 

centers are highlighted in red (or maroon in (c)) and the cleft regions are marked in green.
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Fig. 3. 
Overview of dynamic graph-based growth model. We start with acquisition of the biological 

data that gives us the SMG images. We then quantify the biological data by identifying clefts 

and computing global tissue-scale morphological features and local features. We run our 

dynamic graph-based growth model with the model parameters computed from the 

biological data as shown in the figure. Termination is based on reaching the optimal iteration 

that minimizes the distance to the target configuration.
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Fig. 4. 
Creation of new vertices and maintaining boundary smoothness. The configuration of the 

cell-graph (initially a grid-graph where vertices are found at the intersection of the grid lines, 

and the grid lines are the edges of the graph) after a single iteration of creation of new 

vertices (step 2 of the dynamic graph-based growth algorithm) is shown in (a). The black 

rectangle in (a) represents the closer snapshot of the sub-graph viewed in (b). A further black 

rectangle in (b) represents a smaller sub-graph shown in (c). The spatial positions of parent 

vertices in the current boundary are used to identify the optimal location for daughter 

vertices, as shown in (d). The uniformity in the grid-graph is distorted with every iteration of 

the dynamic graph-based growth algorithm.
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Fig. 5. 
Illustration of the algorithm driving cleft deepening and dynamic cleft creation. The two 

panels show the initial (in a) and final (in b) conditions of the SMG before and after cleft 

deepening. In (a), vertices that are designated as cleft centers are marked in red. All other 

vertices are marked in green. After cleft deepening, all cleft centers lie in the cleft region 

(these original cleft centers are marked in brown) and are replaced by new vertices. The 

edges from these original cleft centers to other vertices are deleted. This effectively isolates 

these vertices from the graph. Supplementary Movie V1 shows mitosis events occurring over 

3 hours.
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Fig. 6. 
k-means clustering of EGF-1 and EGF-20 data sets based on morphological features. The 

markers represent the frames that belong to each data set. The EGF-1 data sets are listed 

first, followed by the EGF-20 data sets. All the data sets are ordered chronologically from 

the first image in the set to the last image in that set, where the frame indices for the initial 

and final image are indicated in the abscissa. We utilize the k-means clustering algorithm 

with k = 2 clusters. It is observed that cluster C1 is characteristic of smaller buds and 

shallows clefts, whereas cluster C2 is characteristic of larger buds and deeper clefts. The 

majority of EGF-1 data sets are present in cluster C2 indicating that this cluster represents 

larger but fewer buds with deep clefts. The majority of EGF-20 data sets are present in 

cluster C1 indicating that this cluster represents smaller but multiple buds with shallow 

clefts. Although, increased EGF stimulates branching morphogenesis by creating more buds, 

clefts are shallow in comparison to lower EGF concentrations.
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Fig. 7. 
Comparison of SMG morphological features between ground truth (green), dynamic graph-

based growth model (red), and the GGH simulation (blue) for EGF-1a and EGF-20b data 

sets. The features are area (a) and (b), perimeter (c) and (d), eccentricity (e) and (f), and 

median cleft depth (g) and (h). “Start” refers to cleft initiation, “Intermediate” refers to mid 

cleft progression stage, and “End” refers to beginning of cleft termination. Area and 

perimeter display increasing trends and similar trends are also seen for the dynamic graph 

model as well as the GGH simulation. GGH shows the opposite trend for eccentricity as it 

tries to create circular shapes. Increasing median cleft depth trends are shown by both 

dynamic graph model and the GGH simulation. For more detailed explanation of the feature 

trends, please refer to Section 3.3.
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Fig. 8. 
Target configuration of the ground truth data sets, and the final configurations reached by the 

simulations for the dynamic graph-based growth model and the GGH simulation. The target 

ground truth configuration is shown in (a) and (d), the dynamic graph model’s 

configurations are shown in (b) and (e), and the GGH model’s configurations are shown in 

(c) and (f). Dynamic graph-based growth model creates more clefts than the GGH model 

and this is one of the primary reasons that it has better quantitative agreement with the 

ground truth in regards to the morphological features.
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Fig. 9. 
Dynamic graph-based prediction model results. Same starting image grown under different 

EGF concentrations for 3, 4.5, and 6 hours. The configuration of the salivary gland after 3 

hours under EGF-1, EGF-10, and EGF-20 concentrations are shown in (a), (d), and (g), 

respectively. The configuration of the salivary gland after 4.5 hours under under the same 

concentrations are shown in (b), (e), and (h), respectively. The configuration of the salivary 

gland after 6 hours under the same concentrations are shown in (c), (f), and (i), respectively. 

The number of buds increases from EGF-1 to EGF-20, with clefting occurring more 

frequently in higher EGF concentrations. Buds are larger and clefts are deeper in lower EGF 

concentrations. Please recall that we do not compare the prediction model to a Monte-Carlo-

based simulation (MCS) model. For further information about the prediction model, please 

refer to Section 3.4
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TABLE 1

Observed Cleft Depth Values as Calculated by the Cleft Detection Algorithm vs. the Cleft Depth Values 

Predicted by the Linear Regression Model. Cleft Depth is reported in μm.

Observed Cleft Depth Estimated Cleft Depth from Linear Regression Model

17.475 20.296

15.878 21.514

21.808 20.333

22.097 21.935

22.443 21.603

22.550 21.597

22.903 20.931

22.505 20.919

22.654 21.626

22.229 22.732

22.094 22.218
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TABLE 2

Biological Processes and Properties, and their Corresponding Interpretations in the Dynamic Graph-Based 

Growth Model, and the State-of-art Monte-Carlo-Based-Simulation Model Used for Comparison.

Biology Dynamic Graph Model GGH Model

Gland Structure Graph Geometry Effective Energy

Mitosis Rate New Vertex Creation Rate Mitosis

Cell-cell Adhesion Maximum Link Length Contact Energy

Cell Volume Cell Diameter, or Minimum Link Length Cell Area

Cell Surface Area Not Included Cell Perimeter

Cleft Deepening Edge Deletion Manual Specification
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TABLE 3

Purity Measures for Evaluating the Effectiveness of Clustering

Cluster Numbers Purity Measures

Recall/Purity Precision F-score Entropy

Cluster C1 0.87 0.57 0.69 0.98

Cluster C2 0.69 0.92 0.79 0.41
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TABLE 4

Comparison of Final Configurations of the Three EGF Concentrations as Predicted by the Dynamic Graph-

Based Growth Model.

Area (μm2) Perimeter (μm) Number of clefts Median cleft depth (μm)

EGF-1 74132.43 1057.03 5 36.42

EGF-10 77473.87 1041.53 6 23.11

EGF-20 80715.32 1067.93 6 17.09
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