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Abstract

Mammalian chromosome ends are protected by nucleoprotein structures called telomeres. 

Telomeres ensure genome stability by preventing chromosome termini from being recognized as 

DNA damage. Telomere length homeostasis is inevitable for telomere maintenance because 

critical shortening or over-lengthening of telomeres may lead to DNA damage response or delay in 

DNA replication, and hence genome instability. Due to their repetitive DNA sequence, unique 

architecture, bound shelterin proteins, and high propensity to form alternate/secondary DNA 

structures, telomeres are like common fragile sites and pose an inherent challenge to the 

progression of DNA replication, repair, and recombination apparatus. It is conceivable that longer 

the telomeres are, greater is the severity of such challenges. Recent studies have linked excessively 

long telomeres with increased tumorigenesis. Here we discuss telomere abnormalities in a rare 

recessive chromosomal instability disorder called Fanconi Anemia and the role of the Fanconi 

Anemia pathway in telomere biology. Reports suggest that Fanconi Anemia proteins play a role in 

maintaining long telomeres, including processing telomeric joint molecule intermediates. We 

speculate that ablation of the Fanconi Anemia pathway would lead to inadequate aberrant 

structural barrier resolution at excessively long telomeres, thereby causing replicative burden on 

the cell.
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 1. Introduction

 Telomeres are a paradox

Telomeres are chromosome end nucleoprotein structures consisting of short tandem DNA 

repeats (5'-TTAGGG-3' in humans and mice) and inherently associated proteins, called the 

shelterin complex (TRF1, TRF2, POT1, TPP1, TIN2, and RAP1) (Figure 1A). Telomeres 
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ensure genome stability by capping chromosome termini thereby preventing them from 

being recognized as broken DNA ends. Such protection of mammalian telomeres has been 

attributed to (i) the shelterin complex, where TRF2 and POT1 particularly have direct well-

defined roles in protecting telomeres from activating ATM and ATR kinase pathways (Figure 

1A); (ii) unusual structures such as the ‘T-loop’ configuration, where the 3'-telomeric 

overhang is tucked away in a loop (Figure 1B); and (iii) other non-shelterin accessory 

proteins with known functions in DNA repair (including helicases and nucleases that can 

process/remove unusual structural impediments in telomeric DNA) [1]. Paradoxically, some 

of the abovementioned features that enable telomeres to protect DNA ends may also act as 

impediments in its own maintenance thereby making DNA metabolism processes at 

telomeres a challenging task. Telomere maintenance entails several components, including 

length homeostasis (telomerase or ALT-sponsored [2, 3]) and replication-recombination-

repair. In addition, their G-rich sequence also makes telomeres more susceptible to oxidative 

DNA damage and formation of replication blocking Gquadruplex structures (G4) [4] (Figure 

1C).

 Chromosomal instability and predisposition to cancer are the common links between FA 
and telomere dysfunction

Dysregulation of telomere maintenance such as defective length homeostasis (leading to 

critical shortening or over-lengthening), loss in protective function of shelterin proteins, and 

other defects in telomere biology leads to ATM/ATR kinase-involved DNA damage response 

or delays in DNA replication, resulting in genome instability, cell proliferation defects, 

cellular senescence or cell apoptosis (Figure 1A) [5, 6]. In humans, telomere attrition is 

associated with replicative cell senescence in culture, ageing populations, and environmental 

and lifestyle factors that contribute to ageing and ageing-related diseases. Telomere attrition 

is also linked to human disorders, e.g. dyskeratosis congenita (DC), aplastic anemia, and 

idiopathic pulmonary fibrosis [7–9]. A rare recessive disorder that results in aplastic anemia 

is Fanconi Anemia (FA) that is characterized by bone marrow failure, congenital 

abnormalities, increased susceptibility to cancer, and sensitivity to DNA interstrand 

crosslinking agents [10–12]. Interestingly, FA individuals are also reported to have (i) 

telomere loss/break in peripheral leukocytes; (ii) increased end-to-end telomere fusions; and 

(iii) overall shorter telomeres [13–16]. Proposed molecular mechanisms for this shortening 

include direct breaks at telomere sequences; replicative shortening; and accumulation of 

breaks due to defective DNA repair at telomeres and impaired response to oxidative stress 

[17–22]. Although currently there is lack of experimental evidence, as discussed in this 

review, our current knowledge alludes to a potential direct role of the FA pathway in 

telomere maintenance.

 2. FA proteins in telomere maintenance

 The FA pathway

Mechanistically, the FA syndrome is caused by mutations in genes involved in repair of 

DNA inter-strand crosslinks (ICLs), with about 19 gene products identified till date [10–12, 

23](Figure 2A). Eight FA proteins (FANCA/B/C/E/F/G/L/M) form the FA core complex, 

and along with the ATR checkpoint kinase, regulate ubiquitination of the heterodimeric 
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FANCD2-I (ID) complex that is recruited to the ICL lesion. The ID complex acts as a 

platform to coordinate repair activities at the ICL site with several downstream FA proteins 

(FANCP/J/D1/N/O/S/R/Q and FAN1). This includes bringing multiple nucleases at the 

lesion via their assembly on FANCP (or SLX4) (discussed below), thus creating nucleolytic 

incisions at the site, which are then repaired by homologous recombination (HR).

 ID complex players involved in telomere maintenance

The shared genome instability phenomenon in telomere dysfunction and FA suggests 

possible connection(s) between FA proteins and telomere function. Mammalian telomeres 

are maintained either via extension by the nucleoprotein complex telomerase or via an 

alternate lengthening of telomeres (ALT) mechanism that relies on HR to synthesize new 

telomeric DNA. The key FA player FANCD2 has been shown to colocalize with the inherent 

telomeric protein TRF1 in ALT cells, in a FANCA, FANCL, and ATR-dependent manner, 

and depletion of FANCA and FANCD2 causes telomere loss and decrease in telomere sister 

chromatid exchange [24], suggesting a role for monoubiquitinated FANCD2 in ALT 

telomere maintenance through telomeric HR. TRF1 that directly binds to double-stranded 

telomeric DNA is believed to prevent replication defects in telomeres by recruiting the G4 

structure resolving helicases BLM and RTEL1 [25, 26]. However, TRF1 ribosylation by the 

telomere-associated poly(ADP-ribose) polymerase Tankyrase 1 (binds to TRF1) displaces 

TRF1 from telomeric DNA [27, 28]. FANCD2 has been shown to interact with Tankyrase 1 

and inhibit TRF1 ribosylation. In turn, FANCD2 deficiency increases ribosylation of TRF1 

and its displacement from telomeres [29], that may then lead to increased replication 

challenges at telomeres. Thus, ribosylation-mediated control of TRF1 affinity for telomeric 

DNA may be one possible mechanism where FANCD2 ensures telomere stability. TRF1 also 

physically blocks the SLX4-nuclease complex from nucleolytically resolving the T-loop 

[30]. Thus, TRF1 removal from telomeres may promote nucleolytic resolution of telomeric 

joint molecule intermediates. Indeed, FANCD2 deficiency leads to formation of 

extrachromosomal telomeric structures [29], supporting this probability.

 FA core complex members involved in telomere maintenance

Some effects of depletion of FA core complex genes have been reported. Fancg-deficient 

mice show no signs of telomere dysfunction in both hematopoietic and nonhematopoietic 

cell lineages, even in presence of extensive genomic stress such as ICL-inducing agent 

mitomycin C [31]. Although Fancc-deficiency also shows no telomere dysfunction in mouse 

cells with intrinsically long telomeres, it does accelerate telomere attrition in high turn-over 

hematopoietic cells and regulates short telomere-initiated telomere HR in the absence of 

telomerase [32]. Thus, FANCC may aid in telomere length maintenance under replicative 

pressure and during HR-mediated ALT.

 Role of downstream FA proteins in telomere biology

FANCJ is a helicase that helps maintain genome stability by facilitating unhindered 

progression of replication, possibly via resolution of G4 DNA structures. Although novel 

proteomic methods have detected FANCJ at telomeres [33], its significance in telomere 

biology is unclear. G4 structures at telomeres can potentially affect not only telomere 

replication, but also access/function of telomerase and telomere 3'-overhang binding 
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shelterin proteins POT1/TPP1. Because G4 removal is crucial for smooth progression of 

telomere metabolism, further exploration of FANCJ’s role in telomere maintenance in FA 

individuals will be interesting.

SLX4 (mutated in FA patients) is a Swiss army knife that assembles and coordinates a 

genome maintenance toolkit, functioning in diverse pathways that include ICL repair, DNA 

replication, processing of HR intermediates, and telomere maintenance [34]. The multi-

domain architecture of SLX4 (Figure 2B) enables it to not only bind to a wide range of DNA 

repair proteins, but also orchestrate their delivery and activities at the target site, each 

function mediated by one or more specific domain(s) of SLX4. For example, direct 

interaction of SLX4 with structure-specific endonucleases (SSEs) SLX1, MUS81-EME1, 

and XPF-ERCC1 is mediated by the SLX4SBD (SLX1-binding domain), SLX4SAP (SAP 

motif, MUS81-binding region), and SLX4XBR (XPF-binding region) domains, respectively 

[35–38]. Although it lacks any catalytic activity, SLX4 coordinates dispatch and activity of 

its associated nucleases [39–41]. Other domains of SLX4 implicated in orchestration of its 

various functions in the right context and location include SLX4ZF (ubiquitin-binding zinc 

finger domain, implicated in ICL repair), SLX4SIMs
 (SUMO-interacting motifs, implicated 

in managing replication stress) [42–44], and SLX4BTB
 (Bric-a-brac, Tramtrack and Broad 

complex domain) [12, 45, 46].

A possible role for SLX4 in telomere maintenance was first suggested when the SLX4-

complex isolated from human cells was shown to contain TRF2 [35]. Subsequently, 

crystallographic, cellular and biochemical studies revealed that SLX4 and its associated 

nucleases is preferentially recruited to long telomeres via direct interaction between a unique 

HxLxP (x, any amino acid) motif within the telomere binding motif (TBM) of SLX4 and a 

docking site at the TRF homology (TRFH) domain of TRF2 (Figure 2B) [38, 47]. The 

SLX4-nuclease complex is required for multiple aspects of telomere maintenance, including 

negative regulation of telomere length, regulation of telomere recombination, and prevention 

of telomere replication defects (manifested as fragile telomeres) [30, 38, 47]. The molecular 

mechanism behind the role of SLX4 in telomere maintenance likely involves the ability of 

the SLX4-associated nucleases to process and remove alternate DNA structures such as 

Holliday Junction (HJ) and T-loop. It has been shown that in vitro, the nucleases SLX1 and 

MUS81 nucleolytically resolve these structures, enabled by catalytic collaboration between 

them [30, 41]. In fact, the SLX4-nuclease complex employs the HR-dependent mechanism 

of telomere shortening, called ‘telomere trimming’, that entails resolution of the T-loop, 

leading to shorter telomeres and extrachromosomal telomeric circles (Figure 1B) [38, 48, 

49].

It is tempting to speculate a link between SLX4 and the negative regulatory mechanisms of 

telomere length. TRF2 has been known to be a negative regulator of telomere length [50, 

51], but the underlying mechanism is unclear. Because the localization of SLX4 to telomeres 

depends on protein levels of TRF2 [38], it is plausible that longer telomeres that are bound 

by more TRF2 recruit more SLX4. The double layered SLX4-TRF2 scaffold then assembles 

the nucleases, followed by shortening of long telomeres. However, it must be kept in mind 

that unregulated nucleolytic activity at telomeres would be dangerous for telomere and 

genome stability. It is believed that cell-cycle-based control of activity of the nucleases [41], 
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alternate pathways of processing HR-intermediates, such as the helicase BLM, and inherent 

telomeric proteins such as TRF1/TRF2 may serve as a check on SLX4-complex-dependent 

nucleolytic activity at the telomeres [30, 41].

 3. Concluding remarks

Maintaining telomere length at or near equilibrium (in a species-specific manner) is a critical 

aspect of telomere maintenance (Figure 3) [2, 52]. Dysregulation of telomere length 

homeostasis features in several inherited bone marrow failure syndromes including DC [7–

9]. Short telomeres in DC are not limited to blood, but are also present in fibroblasts and 

buccal cells [53], and telomere erosion is believed to have played a role in pathogenesis of 

the disease [7–9]. Although short telomeres have been reported in FA leukocytes as well, the 

telomeres are not as abnormally short as in DC [53]. There exists lack of mutations in genes 

directly involved in telomere biology in FA patients [54]. Since FA-deficient cells are 

hypersensitive to oxygen [55], telomere defects in FA-deficient cells may be secondary 

effects of increased oxidative damage at telomeres. It remains to be determined if FA-

deficient cells harbor steady-state level of oxidative DNA lesions at telomeres.

Recent studies have linked abnormally long telomeres to tumorigenesis [6, 8, 56–59]. 

Interestingly, both FANCD2 and SLX4 localize to telomeres and are required for 

maintaining long telomeres in ALT cells. Long telomeres face greater challenges and may 

seek extra attention from genomic DNA repair proteins. This potentially can impede timely 

progression of DNA replication and repair. The impact of this burden, particularly with 

respect to FA disease (or in other developmental disorders), may be manifested in a cell-

specific manner. Thus, investigating telomere integrity in cell lineages other than leukocytes 

(such as germline, stem cells, and progenitor cells) in FA individuals may shed meaningful 

insight into the role of telomere biology in FA. We postulate that the FA pathway constitutes 

an important layer of telomere maintenance in these cell lineages, where long telomeres are 

subject to oxidative DNA damage and secondary structure formation. Disruption of FA 

pathway may thus alter telomere length homeostasis, contributing to hematopoiesis and 

oncology.
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Figure 1. Consequences of telomere dysfunction and telomeric unique structural and 
architectural features
(A) Telomeres, bound by the shelterin protein complex cap the chromosome ends against 

NHEJ, HR, DNA damage signaling, and nuclease degradation. Dysfunctional telomeres can 

arise due to loss of telomeric DNA repeats or loss of protection of shelterin, which activates 

ATM or ATR kinase pathways, leading to cell apoptosis and cellular senescence. (B–C) 

Telomeres present a challenging landscape for DNA metabolism, owing to their T-loop 

architecture (B) and G-rich sequence that makes it a hotspot for secondary G4 structure 

formation (C). Resolution of the double HJ in the T-loop would generate a shortened 

telomere and a circular telomeric DNA [60], a mechanism used for ‘trimming’ long 

telomeres in some human cells (B).
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Figure 2. Schematic showing FA pathway and domain mapping of human SLX4 protein
(A) FA pathway proteins. The FA core complex regulates monoubiquitination of the 

heterodimeric ID complex that is recruited to the ICL lesion. The ID complex coordinates 

repair activities at the ICL site with several downstream FA proteins. (B). Human SLX4 

protein. ZF, ubiquitin-binding zinc finger domain; XBR, XPF-binding region; BTB, Bric-a-

brac, Tramtrack and Broad complex domain; TBM, TRF2-binding motif; SIM: SUMO-

Interacting Motif; SAP, SAP motif, MUS81-binding region; SBD, SLX1-binding domain. 
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SLX4 preferentially localizes to long telomeres that face greater challenges of DNA 

replication and alternate structure resolution.
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Figure 3. Telomere length homeostasis is inevitable for proper cellular function
Loss of telomere length equilibrium associates with human ageing, cancer, and inherited 

genetic disorders.
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