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Abstract

 Background—Cardiovascular risk factors tend to aggregate. The biological and predictive 

value of this aggregation is questioned and genetics could shed light on this debate. Our aim was 

to reappraise the impact of risk factor confluence on ischemic heart disease (IHD) risk by testing 

whether genetic risk scores (GRSs) associated with these factors interact on an additive or 

multiplicative scale, and to determine whether these interactions provide additional value for 

predicting IHD risk.

 Methods and Results—We selected genetic variants associated with blood pressure, body 

mass index, waist circumference, triglycerides, type-2 diabetes, HDL and LDL cholesterol, and 

IHD to create GRSs for each factor. We tested and meta-analyzed the impact of additive (Synergy 

Index –SI–) and multiplicative (βinteraction) interactions between each GRS pair in one case-control 

(n=6,042) and four cohort studies (n=17,794), and evaluated the predictive value of these 

interactions. We observed two multiplicative interactions: GRSLDL·GRSTriglycerides (βinteraction=

−0.096; Standard Error=0.028) and non-pleiotropic GRSIHD·GRSLDL (βinteraction=0.091; Standard 

Error=0.028). Inclusion of these interaction terms did not improve predictive capacity.

 Conclusions—The confluence of LDL cholesterol and triglycerides genetic risk load has an 

additive effect on IHD risk. The interaction between LDL cholesterol and IHD genetic load is 
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more than multiplicative, supporting the hazardous impact on atherosclerosis progression of the 

combination of inflammation and increased lipid levels. The capacity of risk factor confluence to 

improve IHD risk prediction is questionable. Further studies in larger samples are warranted to 

confirm and expand our results.

Keywords

risk factor; genetic variation; risk assessment; genetics; association studies; clustering; interactions

 Introduction

The Framingham Heart Study introduced the term “cardiovascular risk factor”1 to define 

traits that are associated with cardiovascular disease and have a capacity to predict future 

events2. Some of these risk factors are interrelated and tend to aggregate. A paradigm of this 

aggregation is metabolic syndrome3, which is associated with an increase in cardiovascular 

events4,5. However, there is an open debate about whether this confluence of cardiovascular 

risk factors provides clinical or mechanistic information beyond the mere addition of its 

individual components6-8. In other words, is the combination of risk factors more valuable 

than the sum of its parts?

An ideal way to reliably assess the impact of these risk factors on cardiovascular risk, 

individually and in combination, would be to perform a prospective cohort study of 

individuals with different, stable, long-term levels of exposure to these risk factors and with 

different combinations of each. Alternatively, this approach could be circumvented by 

genetic analysis, in which variants associated with cardiovascular risk factors are used as a 

proxy for the risk factors themselves. Specifically, each risk factor could be represented by a 

genetic risk score (GRS) composed of multiple variants that are known to be robustly 

associated with that risk factor9,10. While this approach has the disadvantage of capturing a 

limited fraction of the total variance of the risk factor itself, it does have some important 

advantages. First, a GRS represents constant lifetime exposure within individuals and 

variable exposure between individuals, with random combinations of alleles according to 

Mendel's Second Law11. Second, it is an efficient and economically feasible approach to this 

clinically important question.

In this study, we used the genetically determined variability of classical risk factors to 

reappraise the value of risk factor confluence in assessing ischemic heart disease (IHD) risk. 

Our specific aims were i) to analyze whether GRSs associated with the individual 

cardiovascular risk factors interact and present more than an additive or multiplicative 

association with IHD, and ii) to determine whether these interactions provide additional 

value for predicting the risk of future IHD events.

 Methods

 Design

A meta-analysis of five studies, one case-control and four prospective cohorts, was carried 

out. The studies included the Myocardial Infarction Genetics Consortium (MIGen)12 and the 
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Framingham Heart Study (FHS), FINRISK 1997, FINRISK 2002, and Estonian Biobank 

(EGCUT)13 cohorts. A total of 23,836 participants were included in the meta-analysis, 6,042 

from the case-control study and 17,794 from the four cohorts.

MIGen, an international case-control study, included 2,967 cases of early-onset myocardial 

infarction (MI) (men ≤50 and women ≤60 years old) and 3,075 age- and sex-matched 

controls (12). The FHS sample consisted of 3,557 individuals from the FHS offspring cohort 

attending exam 5. Genome-wide genotype and associated phenotype data from MIGen and 

FHS were obtained via the database of Genotypes and Phenotypes (dbGaP; http://

dbgap.ncbi.nlm.nih.gov; project number #5195). The FINRISK cohorts are comprised of 

representative, cross-sectional population survey respondents. Surveys have been carried out 

every 5 years since 1972 to assess the risk factors of chronic diseases and health behaviors in 

the working age population; 5,562 individuals were included from the FINRISK 1997 cohort 

and 2,314 from the FINRISK 2002 cohort. Finally, the EGCUT cohort of 50,750 participants 

recruited between 2002 and 2011 includes adults (aged 18-103 years) from all counties of 

Estonia, approximately 5% of the Estonian average-adult population13. A subset of 6,361 

individuals was included in the study selected for this meta-analysis.

 SNP Selection

We mined published data from a series of large meta-analyses of Genome Wide Association 

studies for each of the selected phenotypes. From these studies we identified SNPs that were 

associated (p<5×10-8) with the trait of interest, and grouped these into 8 categories broadly 

definable as distinct cardiovascular risk factors or coronary endpoints (Supplementary Table 

1): low-density lipoprotein (LDL) cholesterol14, high-density lipoprotein (HDL) 

cholesterol14, triglycerides (TG)14, blood pressure (BP)15-16, type 2 diabetes (T2D)17, body 

mass index (BMI)18, waist circumference19 and ischemic heart disease (IHD)20. We 

additionally included genetic variants associated with schizophrenia21 as a negative control.

 Genotyping

Four different arrays and two reference panels were used for genotyping and imputing. The 

MIGen study used the Affymetrix 6.0 GeneChip and imputing was performed with MACH 

1.0 using the HapMap CEU phased chromosomes as reference. The FHS used the 

Affymetrix 500K and 50K chips, imputing was performed using HapMap CEU as reference. 

FINRISK used the Illumina HumanCoreExome chip, imputation was performed using 

IMPUTE v222 and the 1000 Genomes Project sequencing data as a reference panel23. 

EGCUT used the Illumina OmniExpress BeadChip, imputation was implemented in 

IMPUTE v2 using the 1000 Genomes Project as a reference. In all the cohorts, directly 

genotyped SNPs were coded as 0, 1 or 2, while the dosage was used for the imputed SNPs 

with values ranging between 0 and 2. SNPs with an imputation quality <0.4 were excluded.

 Construction of the genetic risk scores (GRS)

We constructed a weighted GRS for each cardiovascular risk factor of interest and IHD 

independently by adding the number of risk alleles weighted by their effect sizes on the 

phenotype of interest (Supplementary Table 1). One SNP could be included in more than 

one GRS when associated with more than one risk factor, although with different weight.
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We also constructed a weighted GRS for each cardiovascular risk factor, excluding those 

SNPs that were related to any trait other than that of interest (non-pleiotropic GRSs). From 

the list of variants associated with each trait, we excluded those that were associated with 

any other trait with a p-value less than 0.10 in the Framingham cohort.

 Ischemic heart disease outcomes

In the MIGen case-control study, only early-onset myocardial infarction cases were 

included. In the cohort studies, two IHD outcomes were defined: hard IHD, including fatal 

and non-fatal myocardial infarction and coronary death, and all IHD, additionally including 

angina and revascularization. The follow-up methodology in the prospective cohorts is 

explained in detail in the supplementary material. In summary, a follow-up or linkage with 

national databases was implemented using predefined ICD9 and ICD10 codes. In each 

cohort, cases were categorized by an event committee.

 Statistical methods

The association between each GRS and IHD was tested by a logistic regression model in the 

case-control study and by Cox proportional hazards models in the cohort studies. 

Furthermore, we analyzed all potential pairwise interactions between the GRSs of interest 

and IHD. In the analysis of these interactions –and from a methodological point of view– we 

considered their departure from additivity and multiplicativity24: i) to test for multiplicative 

interactions we added, one by one, all pairwise products of GRSs to the logistic or Cox 

regression models; and ii) to analyze departure from additivity several metrics have been 

recommended, relative excess risk due to interaction (RERI), attributable proportion (AP), 

and synergy index (SI)24-25. We selected the SI metric because it has been proposed as the 

most robust when the model includes covariates to control for confounding 26:

Where:

- HR/ORA+B+ = Hazard ratio/Odds ratio of those exposed to factor A and B 

compared to those non-exposed to factor A and B.

- HR/ORA+B- = Hazard ratio/Odds ratio of those exposed to factor A but not to 

factor B compared to those non-exposed to factor A and B.

- HR/ORA-B+ = Hazard ratio/Odds ratio of those exposed to factor B but not to 

factor A compared to those non- exposed to factor A and B.

This index measures the extent to which the hazard or odds ratio for both exposures together 

exceeds 1, and whether this is greater than the sum of the extent to which each risk ratio, 

considered separately, exceeds 1. A SI > 1 would indicate the presence of an additive 

interaction. Bootstrapping was used to calculate 95% confidence intervals (95%CI) of the 

estimate25.
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All the analyses were adjusted for age, sex, and principal genetic components to account for 

population stratification and family relatedness27. We used a Bonferroni-adjusted p-value to 

account for independent multiple testing. Due to the correlation between the 36 pairs of 

tested interactions (each GRS of interest was included in 8 different pairwise interaction 

terms, we estimated the number of effective independent tests according to the matrix of 

variance-covariance28; the resulting value was 35.88. Therefore, the statistical threshold was 

set at 0.05/35.88=0.0014. A meta-analysis of the results observed in the different studies was 

undertaken using an inverse-variance weighting under a random-effects model 

(DerSimonian-Laird method)29. Heterogeneity between studies included in this meta-

analysis was also analyzed by estimating the I2 and its p-value. To assess whether an 

individual study had strong effects and influenced the pooled results, a sensitivity analysis 

was performed by excluding one study at a time and calculating the multiplicative and 

additive interaction metrics for the remaining studies.

The improvement in the predictive capacity of the statistically significant interaction terms 

was evaluated by assessing improvements in discrimination and reclassification in the cohort 

studies:

a. The improvement in the discriminative capacity of the model was evaluated 

using the change in the c-statistic30. We first evaluated the discriminative 

capacity of a multivariate model including age, sex, and all the individual 

GRSs of interest; additionally, we evaluated the discriminative capacity of this 

multivariable model, further including the significant interaction terms 

individually in different models.

b. The reclassification capacity of the interactions of interest was evaluated by 

calculating the continuous net reclassification improvement index (c-NRI) and 

the integrated discrimination improvement index (IDI)31-32.

These analyses were also performed in the individual studies and meta-analyzed using an 

inverse-variance weighting under a random-effects model.

All statistical analyses were carried out using packaged or custom functions written in 

R-3.02 (R Foundation for Statistical Computing, Vienna)33.

 Ethics Statement

All participants gave written informed consent to be included in these studies. The study was 

approved by the local Clinical Research Ethics Committees.

 Results

The characteristics of the individuals included in the five studies, and the number of incident 

coronary events (938 hard events and 1,453 events in total) and median follow-up in the four 

cohorts, are shown in Table 1.
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 SNP selection and sample description

From the literature sources described above, 484 independent SNPs were reported to be 

robustly associated with cardiovascular risk factors or coronary endpoints14-20. The number 

of SNPs included in the GRSs ranged from 23 for Type 2 diabetes (T2D) to 81 for BMI 

(Supplementary Table 1). There was a slight overlap between the different GRSs in terms of 

number of shared SNPs or loci but the Spearman correlation coefficient between GRSs was 

weak (correlation coefficient, ρ<0.100) with the exception of the associations between GRSs 

for TG and HDL (ρ=-0.391), IHD and LDL (ρ=0.182), TG and LDL (ρ=0.170), and HDL 

and LDL (ρ=0.129) (Supplementary Table 2). When the non-pleiotropic GRSs were 

considered only the correlation between TG and HDL GRSs (ρ=-0.142), and between TG 

and LDL GRSs (ρ=0.379) remained significant. A strong and consistent association across 

studies between the GRS and their corresponding risk factors was observed, remaining 

strong and consistent for lipids and body mass index when the non-pleiotropic GRS were 

analyzed (Supplementary Table 3).

 Association between genetic risk scores and ischemic heart disease

We observed significant associations between the GRS for IHD and hard coronary events in 

all the studies and in the meta-analysis (p-value=9.4×10-47) (Figure 1 and Supplementary 

Table 4; and Supplementary Figure 1 and Supplementary Table 5 for all IHD events). The 

TG, HDL, LDL, BMI, and waist GRSs were also associated with coronary events in the 

meta-analyses of hard IHD events, although these associations were mainly driven by the 

MIGen study (Figure 1 and Supplementary Table 4). The blood pressure, diabetes, and 

schizophrenia GRSs were not associated with coronary events in this meta-analysis (Figure 

1 and Supplementary Table 4). When the non-pleiotropic GRSs were considered, only the 

association between the GRS for IHD and coronary events remained significant 

(Supplementary Table 6).

 Assessment of interactions between genetic risk scores and impact on ischemic heart 
disease risk

We tested all pairwise interactions between the GRSs of interest and IHD in the different 

studies. In the meta-analyses we found two statistically significant multiplicative interactions 

(Supplementary Tables 7 and 8). A negative multiplicative interaction between the LDL and 

TG GRSs on all IHD events (Table 2 and Supplementary Table 8). When hard IHD events 

were considered, the magnitude of the association of the interaction term decreased, from 

-0.096 to -0.047) (Table 3), but this decrease was driven by the MIGen study; when that 

study was excluded the effect of the interaction term on hard IHD remained similar and 

statistically significant (β=-0.116; p-value=1.3×10-4) (Supplementary Table 9). A positive 

multiplicative interaction between the non-pleiotropic LDL and IHD GRSs on all IHD and 

hard IHD was also observed (Table 2), and was robust and consistent in the sensitivity 

analysis (Supplementary Table 9).

We also analyzed the presence of additive interactions. In the meta-analysis, we did not find 

any statistically significant additive interaction term (Supplementary Tables 10 and 11).
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We estimated 80% statistical power to detect a multiplicative interaction regression 

coefficient higher or lower than ± 0.077, considering the observed standard error (0.020) and 

a p-value=0.0014. We also estimated 80% power to detect a synergy index higher than 1.28 

or lower than 0.72, considering the lower observed standard error (0.07), and a synergy 

index higher than 2.57 or lower than -0.57, considering the higher observed standard error 

(0.39), always with a p-value=0.0014.

 Assessment of the predictive capacity of the scores

We evaluated improvement in the discrimination of coronary events in the different cohort 

studies. First we used a model that included age, sex, the GRSs for all the cardiovascular risk 

factors evaluated, and the first two principal genetic components. Second, we added to the 

model, the interaction terms that were associated with IHD (GRSLDL·GRSTG, and non-

pleiotropic GRSIHD·GRSLDL). Including these interaction terms did not improve the 

discriminative or reclassification capacity of coronary events in the meta-analysis (Table 3).

 Discussion

In the present study, we evaluated the potential interaction effects between cardiovascular 

risk factors on ischemic heart disease risk using a genetic approach. We tested the departure 

from an additive or multiplicative effect of the different two-pair combinations of GRSs 

related to these risk factors and their association with coronary events. We report two 

significant multiplicative interactions (GRSLDL·GRSTG and non-pleiotropic 

GRSIHD·GRSLDL) modulating coronary risk. The inclusion of these interaction terms in the 

multivariate model did not improve the predictive capacity of the model based on the 

individual effects of the GRSs of interest.

We first evaluated the association of each individual GRS with its corresponding risk factors 

and these associations were strong and consistent across studies. We also evaluated the 

effects of each individual GRS on IHD risk in each study and meta-analyzed the results. The 

GRS for IHD was associated with coronary events in all the studies and also in the meta-

analysis. The GRSs for the different risk factors were also associated with hard coronary 

events in the meta-analysis, with the exception of the GRSs for blood pressure, diabetes, and 

schizophrenia (which was included as a negative control). These results validate the GRSs; 

the lack of association of IHD events with blood pressure and diabetes could be related to 

the lack of causal relationship11, low statistical power in the prospective studies, or other 

factors.

The debate about whether the aggregation of cardiovascular risk factors provides additional 

information on vascular health beyond that of each individual components is still open. The 

paradigm for this discussion is metabolic syndrome. Our choice of a genetic approach to 

assess whether different risk factors interact to modulate the risk of IHD was based on the 

premise that a genetic score for a given risk factor captures some of its population 

variability; however, the extent to which this is true varies markedly between risk factors. 

The amount of variance in the traits of interest that is accounted for by genetic scores varies 

from ∼25% to 30% for LDL cholesterol14 down to no more than 3% for blood pressure15. 

However, the loss of information that this represents, with respect to measuring the 
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phenotype itself, is counterbalanced by the fact that genetic risk is a constant exposure 

throughout an individual's lifespan. Some studies have suggested that selecting a list of 

SNPs nominally associated with a trait increases the explained variability of that trait34. In 

this study, we selected only those SNPs consistently replicated in GWAS to be associated 

with the phenotypes of interest. The allelic scores that include thousands of genetic variants 

tend to lack specificity, and therefore should be used with caution and perhaps only to 

analyze proxy biological intermediates, not to analyze the association with other related 

clinical phenotypes34, as in the present study. Moreover, the list of nominally associated 

SNPs could vary across studies. For all these reasons, we preferred to select those variants 

with a statistically significant association, considering the GWAS threshold for our analyses.

In the analysis of these interactions we considered their departure from additivity and 

multiplicativity24 and identified two multiplicative interaction terms, one showing a less than 

multiplicative effect (GRSLDL·GRSTG) and other a more than multiplicative effect (non-

pleiotropic GRSLDL·GRSIHD). The LDL and TG GRSs were slightly correlated. This 

association could be related to common molecular mechanisms or to the use of the 

Friedewald equation to estimate LDL in most epidemiological studies. Although this 

collinearity could decrease the statistical power of our analyses, we report a statistically 

significant multiplicative interaction between the genetic load for LDL cholesterol and TG. 

This interaction term had a negative value, indicating that the joint effect of these two factors 

is less than multiplicative in the risk ratio scale. Moreover, as the additive interaction 

between these two factors was not statistically significant, we can assume an additive effect 

of these two factors on IHD risk in the risk ratio scale. This type of additive but not 

multiplicative effect of two risk factors has also been reported in other diseases, e.g., to 

describe the joint effects of smoking and asbestos on lung cancer35. The explanation of this 

additive effect could be related to basic lipid profile concepts36. The lipid profile includes 

measurement of the total amount of the two most important lipids in the plasma 

compartment: cholesterol and TG. These lipids are not soluble in plasma, and are carried in 

association with proteins, the so-called lipoproteins: HDL, LDL and TG-rich lipoproteins. 

The TG-rich lipoproteins also transport remnant cholesterol. Triglycerides can be degraded 

by most cells, but cholesterol cannot; therefore, the cholesterol content of TG-rich 

lipoproteins, rather than increased TG levels per se, is the more likely contributor to 

atherosclerosis and cardiovascular disease36. The negative multiplicative interaction 

indicates an additive effect between TG and LDL cholesterol on IHD risk, and supports the 

suggestion that TG-rich particles act as an additional source of cholesterol in the arterial 

wall.

We also report a more than multiplicative effect between the non-pleiotropic genetic load for 

LDL and IHD. The IHD genetic load has been related to lipid, inflammatory and immune 

pathways that could potentiate the progression of atherosclerosis37. The non-pleiotropic 

GRS for IHD excluded SNPs associated with lipids and mainly reflects inmuno-

inflammatory mechanisms. Therefore, this interaction could be explained by the 

independent interrelationships between lipids and inmuno-inflammation that could trigger 

the deleterious consequences of these two factors through different mechanisms38,39.
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We also analyzed the improvement in predictive capacity when the interaction terms were 

included in the model. However, we did not observe any improvement in the discrimination 

or reclassification. Recent meta-analyses focused on metabolic syndrome have shown that 

the population with this syndrome has a two-fold higher risk of cardiovascular disease than 

the rest of the population4-5 but the added value of this clinical constellation of risk factors is 

questioned6-8. We identified 1 cross-sectional study40 and 6 cohort studies41-46 that assessed 

the unadjusted and adjusted association between metabolic syndrome and cardiovascular 

risk. When the models were adjusted for all or some of the classical cardiovascular risk 

factors, 3 of these studies showed an association between metabolic syndrome and 

cardiovascular events43,45-46. However, Girman et al only adjusted for the estimated 

coronary risk obtained with the Framingham function, categorized as ≤20% or >20%45, and 

McNeill et al did not adjust for HDL cholesterol and BP46. In contrast, our analyses did not 

show any interaction between the GRSs related to the risk factors that define metabolic 

syndrome. Our results are in line with the two remaining studies, which specifically 

analyzed whether metabolic syndrome improves the predictive capacity of its individual 

components. Neither study reported significant improvement in discrimination capacity44,46; 

this shared finding calls into question the capacity of the metabolic syndrome diagnosis to 

improve a cardiovascular risk calculation based on the individual classical cardiovascular 

risk factors.

 Limitations of the study

Four main limitations should be considered: i) The variability of the cardiovascular traits 

explained by the genetic scores considered in this analysis is not very high, in general, but 

represents lifetime exposure. Moreover, some interacting genetic variants could have been 

overlooked by GWAS and therefore not included in our GRSs; ii) The small number of 

events observed in the cohort studies limited the statistical power to explore the interactions 

of interest. We have also to consider that when the magnitude of the association between the 

two individual components of the interaction and the outcome of interest is small the power 

to differentiate between additive and multiplicative effects is reduced; iii) IHD clinical 

endpoints are the result of a complex phenomenon, which includes endothelial dysfunction, 

plaque formation and growth, plaque stability, and thrombosis. Interaction could happen in 

the context of one of these pathways and be diluted in the observation of clinical end-points; 

and iv). Although the approach we used could be considered as Mendelian randomization11, 

we must be cautious about interpreting the causality and synergistic effect of the confluence 

of risk factors. First, the genetic instrumental variable is a genetic score composed by 

multiple risk alleles10. In some cases, the biological pathway linking each risk allele to the 

intermediate trait of interest is unknown, and therefore the assumption that the only causal 

pathway from the genetic variant to IHD involves the trait of interest is questionable. 

Moreover, there may be association(s) between the genetic variants and unmeasured/

unknown confounders; for example, the genetic load of obesity could be related to food 

choices that could also be directly related to coronary risk. We also must consider the 

presence of pleiotropic effects that are reflected in the correlation between the GRSs 

analyzed and that violate one of the assumptions of Mendelian randomization studies.
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Finally, we would note that 339 of the FINRISK participants were also included in the 

MIGen sample; however, this is a small proportion (<1.5%) of the whole sample, the 

sensitivity analyses carried out are consistent, and we could consider the effect of this 

duplication to be minimal.

 Conclusions

The genetic risk loads for LDL cholesterol and TG interact, suggesting that the effect of 

these two risk factors on IHD risk is additive rather than multiplicative. Moreover, the non-

pleiotropic GRSs for LDL and IHD also interact on IHD risk and have a more than 

multiplicative effect. This interaction supports the hazardous impact on atherosclerosis 

progression of the combination of inflammation and increased lipid levels. Our results 

question the added value of the confluence of risk factors in improving the estimation of 

cardiovascular risk beyond the predictive capacity provided by individual risk factors. 

However, further studies in larger samples are warranted to confirm and expand our results, 

due to the limited statistical power of the present analysis.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Clinical Perspective

Cardiovascular risk factors tend to aggregate but the biological and predictive value of 

this aggregation is questioned and genetics could shed light on this debate. Our aim was 

to test whether genetic risk scores (GRSs) associated with these cardiovascular risk 

factors interact on an additive or multiplicative scale and whether these interactions add 

predictive value. The genetic risk loads for LDL cholesterol and triglycerides (TG) 

interacted, but with a less than multiplicative joint effect. Therefore, the confluence of 

these two risk factors has an additive effect on ischemic heart disease (IHD) risk. This 

result suggests that the cholesterol content of TG-rich lipoproteins, rather than increased 

TG levels per se, is the more likely contributor to atherosclerosis. The non-pleiotropic 

GRSs for LDL and IHD also interact, but have a more than multiplicative effect. This 

finding supports the hazardous impact on atherosclerosis progression of the combination 

of inflammation and increased lipid levels. The inclusion of these two interaction terms in 

a risk function did not improve the predictive capacity of the individual genetic risk 

loads. Our results question the added value of the confluence of risk factors to improve 

the estimation of cardiovascular risk beyond the predictive capacity provided by 

individual risk factors. However, further studies in larger samples are warranted to 

confirm and expand our results, due to the limited statistical power of the present 

analysis.
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Figure 1. 
Forest Plot of the Association Between the Weighted Genetic Risk Scores for Cardiovascular 

Risk Factors and Ischemic Heart Disease and the Prevalence/Incidence of Hard Ischemic 

Heart Disease Events (Myocardial Infarction or Ischemic Heart Disease Death) Across 

Studies and in the Meta-analysis.
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Table 2

Significant Multiplicative Interaction Terms Between Genetic Risk Scores of Interest Associated with 

Ischemic Heart Disease Identified in the Meta-analyses.

Regression coefficient (Standard Error) P-value P-value Heterogeneity

GRSLDLxGRSTG

 Hard events -0.047 (0.021) 0.027 0.011

 All events -0.096 (0.028) 5.2×10-4 0.252

Non-pleiotropic GRSLDLxGRSIHD

 Hard events 0.064 (0.022) 0.022 0.003

 All events 0.091 (0.028) 1.2×10-3 0.461

GRS: Genetic risk score; IHD: Ischemic heart disease; TG: Triglycerides; LDL: Low-density lipoprotein.
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Table 3

Results of the Improvement in Predictive Capacity when the GRSLDL and GRSTG, and the Non-pleiotropic 

GRSLDL and GRSIHD Interaction Terms Were Added to the Model Based on the Individual Genetic Risk 

Scores: Changes in Discrimination Capacity (δ c-Statistics) and in Reclassification (Continuous Net 

Reclassification Index –c-NRI– and Integrated Discrimination Improvement –IDI–) for the Two Ischemic 

Heart Disease Outcomes in the Meta-analyses.

Hard IHD Outcomes All IHD Outcomes

GRSLDL·GRSTG

 δ c-statistic (p-value) 0.000 (0.471) 0.000 (0.217)

 c-NRI (95% CI)* 0.011 (-0.030, 0.052) 0.030 (-0.021, 0.081)

 IDI (95% CI)* 0.000 (-0.001, 0.001) 0.000 (-0.001, 0.002)

Non-pleiotropic GRSIHD·GRSLDL

 δ c-statistic (p-value) 0.001 (0.263) 0.000 (0.637)

 c-NRI (95% CI)* 0.031 (-0.011, 0.073) 0.029 (-0.019, 0.077)

 IDI (95% CI)* 0.001 (-0.000, 0.001) 0.001 (-0.000, 0.003)

*
c-NRI (95% CI): Continuous Net Reclassification Index (95% Confidence Interval); IDI (95% CI): Integrated Discrimination Improvement (95% 

Confidence Interval)
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