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Abstract

Fiber reinforced structures are central to the form and function of biological tissues. Hyperelastic, 

transversely isotropic material models are used widely in the modeling and simulation of such 

tissues. Many of the most widely used models involve strain energy functions that include one or 

both pseudo-invariants (I4 or I5) to incorporate energy stored in the fibers. In a previous study we 

showed that both of these invariants must be included in the strain energy function if the material 

model is to reduce correctly to the well-known framework of transversely isotropic linear elasticity 

in the limit of small deformations. Even with such a model, fitting of parameters is a challenge. 

Here, by evaluating the relative roles of I4 and I5 in the responses to simple loadings, we identify 

loading scenarios in which previous models accounting for only one of these invariants can be 

expected to provide accurate estimation of material response, and identify mechanical tests that 

have special utility for fitting of transversely isotropic constitutive models. Results provide 

guidance for fitting of transversely isotropic constitutive models and for interpretation of the 

predictions of these models.
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 1. Introduction

Fiber-reinforced structure is typical of many soft biological tissues, including skeletal 

muscle (Morrow et al., 2010), myocardium (Humphrey, 2002; Taber, 2004), brain stem 

(Ning et al., 2006), white matter (Feng et al., 2013), ligament and tendon (Dourte et al., 
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2008; Lake et al., 2010; Thomopoulos and Genin, 2012; Weiss et al., 1996). To understand 

the mechanical behavior of these soft biological tissues, reliable material models are needed. 

Here, we focus on transversely isotropic hyperelastic models for such tissues. The 

constitutive properties are described by a strain energy function ψ, which is a function of 

certain measures of deformation (Spencer, 1984), some of which (I1, I2, I3) are invariant 

under arbitrary rotations and others of which (I4, I5) are invariant under rotations about the 

fiber axis. The most general strain energy function form for a transversely isotropic material 

contains all of the five invariants (Taber, 2004):

(1)

It is common to separate the strain energy function into two parts: the strain energy of the 

isotropic base material ψisotropic and the strain energy associated with the anisotropic fiber 

components ψanisotropic (Feng et al., 2013; Horgan and Saccomandi, 2005; Merodio and 

Ogden, 2003a,b, 2005; Murphy, 2013; Pierce et al., 2013; Qiu and Pence, 1997; Swedberg et 

al., 2014):

(2)

A broad range of forms have been proposed for ψ (Table 1). Most proposed ψanisotropic terms 

are expressed as a function of only one invariant, either with I4 or I5. Polignone and Horgan 

(1993) originally proposed a general quadratic form in terms of I4 for ψanisotropic. Following 

this idea, many studies have focused on the strain energy function with variations of the 

form. Notably, the ψanisotropic term considering tension-only fibers (e.g. I4−1) is of primary 

interest for many biological applications such as ligaments and tendon tissues (Horgan and 

Saccomandi, 2005; Murphy, 2013). We study here the quadratic form of Qiu and Pence 

(1997), F(I4) = μγ(I4−1)2/2, which we term the F(I4) model in which μ is a modulus that also 

appears in the isotropic part of ψ and γ is a dimensionless scaling factor. To study the effect 

of I5, we evaluate the second term of the model of Feng et al. (2013), , in 

which ϕ is a dimensionless scaling factor and , where the overbar indicates a 

variable related to the distortional component of the deformation gradient, as described in 

detail in Section 2. We term this the G(I5) model, and note that many other forms for the role 

of I5 have been proposed (Horgan and Saccomandi, 2005; Merodio and Ogden, 2005; 

Murphy, 2013).

Both Feng et al. (2013) and Murphy (2013) noted that both anisotropic invariants I4 and I5 

are needed in the strain energy function to correctly describe tensile and shear moduli 

differences in the small strain regime. Models containing only a F(I4) or G(I5) term cannot 

capture this behavior. Both Murphy (2013) and Feng et al. (2013) proposed the form:

(3)
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Note that Destrade et al. (2013) also showed at least three invariants are needed to model the 

transversely isotropic materials (Destrade et al., 2013). Here, we study the model of Feng et 

al. (2013), with . We term this the H(I4, I5) model.

Fitting hyperelastic models to experimental data is crucial in material characterization 

(Ogden et al., 2004). To estimate the model parameters, it is necessary to gain an 

understanding of model behaviors in commonly used experimental test such as biaxial and 

shear tests. Thus, an analysis of canonical large deformations in those standard tests is 

warranted to identify the tests that are most useful in characterizing the dependence of 

constitutive response on these invariants.

In this article, we study the mechanical responses of the F(I4), , and H(I4, I5) models. 

Our goal is to answer two questions. First, under what circumstances can F(I4) and 

provide adequate models of material behavior, despite being unable to model linear elastic 

transversely isotropic material behavior? Second, what mechanical loading tests best 

emphasize the independent roles of I4 and  in material behavior, and are therefore best 

suited to fitting of model parameters? In the following, we study the influence of the two 

anisotropic invariants under different loading conditions, and develop insights into the 

experiments that can best fit model parameters.

 2. Material model

Defining X as the position vector of a material particle in the undeformed configuration and 

x as its position vector in the deformed configuration, then the deformation gradient is 

. The corresponding right and left Cauchy–Green deformation tensors are C = FTF, b 
= FFT. The corresponding principal invariants are (Holzapfel, 2000; Spencer, 1984):

(4)

where J = det F is the volume ratio between the deformed and undeformed configurations. 

Let A be the unit vector of the fiber direction, then two additional “anisotropic” invariants 

(or pseudo-invariants) I4 and I5, invariant under rotations about A, are introduced to describe 

the effects of fiber reinforcement (Spencer, 1984):

(5)

The deformed fiber unit vector is a = FA. Its magnitude represents the fiber stretch . 

Using the general form of the strain energy function of Eq. (1), the Cauchy stress is given by

(6)
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where ψi = ∂ψ/∂Ii (i = 1, 2, 3, 4, 5), and I is the identity tensor.

If we align fiber direction A with x1 in a (x1, x2, x3) Cartesian frame (Fig. 1), then I4 = C11 

and . Thus I5 contains information not only about fiber stretch, but also 

about fiber shearing (Merodio and Ogden, 2005). To isolate and characterize the fiber shear 

information, the fiber stretch component can be subtracted from I5 (Feng et al., 2013; see 

also: Taber (2004)):

(7)

This definition of  is similar to the corresponding invariant used by Taber (2004), who 

described the fiber reinforcement effect in terms of Lagrange strain E. Thus, the fiber 

reinforcing model function H(I4, I5) can be expressed as . If we rewrite the general 

form of Eq. (1) in terms of , then the Cauchy stress of  is

(8)

where ψi = ∂ψ/∂Ii (i = 1, 2, 3, 4), , and I is the identity tensor.

We consider the simple incompressible, transversely isotropic model with the strain energy 

function of Feng et al. (2013):

(9)

This model is proposed as the simplest that captures anisotropy in tension and shear in small 

deformations (Feng et al., 2013; Namani et al., 2012). In this model, μ is the isotropic shear 

modulus in a Neo Hookean strain energy function ψisotropic, and ζ and ϕ are dimensionless 

scaling parameters related to fiber stretch and shear. Fibers are assumed to bear load in 

compression as well as tension. When ϕ = 0, the model reduces to the F(I4) model.

Eqs. (8) and (9) yield the Cauchy stress:

(10)

where p is an arbitrary hydrostatic stress according to the incompressibility condition J = 1.

For numerical simulations of nearly incompressible material behavior, it is convenient to 

decompose the deformation gradient into distortional and dilatational components 

. The decoupled right and left Cauchy–Green deformation tensors are , 

. The corresponding modified principal invariants and pesudo-invariants are
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(11)

For nearly incompressible material, a decoupled form of strain energy function is used:

(12)

where the volumetric term  is the penalty term used to enforce near-

incompressibility.

Use Eqs. (8) and (12) the corresponding Cauchy stress in terms of decoupled invariants is

where  and . Note that in numerical implementation, the decoupled 

formulations are only applicable to incompressible materials. As for compressible material, 

the coupled form is recommended to prevent possible unrealistic results (Nolan et al., 2014; 

Sansour, 2008).

 3. Responses to simple loadings

 3.1. Uniaxial and biaxial loadings

Tensile (Babaei et al., 2015a,b; Jacquemoud et al., 2007; Tan et al., 2005) and biaxial 

mechanical tests (Sacks, 2000; Sacks, 1999) are widely used to characterize soft biological 

tissues. In this section, the response of a uniaxial deformation parallel (Fig. 2a) or 

perpendicular (b) to the fiber direction is studied. The biaxial response (Fig. 2c) of the model 

is also studied. If the unit vector of the fiber direction A is given as A = x1, the deformation 

gradient F and Cauchy stress σ are given in matrix form

(14)

where λi, i = 1, 2, 3, are the principal stretches. In the incompressible case, we have

(15)

The pseudo-invariants based on Eqs. (5) and (7) are
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(16)

where  indicates no shear deformation. From Eq. (8), the Cauchy stress components 

are

(17)

where p is the Lagrange multiplier constraining the material incompressibility.

 3.1.1. Uniaxial loading in the fiber direction—In the case of uniaxial load in the 

fiber direction, σ22 = σ33 = 0, with Eqs. (15)–(17), we have

(18)

The non-zero Cauchy stress component σ11 (Fig. 3a) is

(19)

From Eq. (19), we can observe that in uniaxial loading, the Cauchy stress is related to stretch 

by the shear modulus μ and the parameter ζ associated with the fiber stretch pseudo-invariant 

I4. The parameter ϕ which is associated with  does not affect the Cauchy stress in uniaxial 

loading. The uniaxial response is a strong function of ζ (Fig. 3a), but the stretch ratios in the 

plane of isotropy (λ2 and λ3), which are constrained by incompressibility (Eq. (18)), are 

independent of the material parameters (Fig. 3b).

 3.1.2. Uniaxial loading transverse to the fiber direction—When uniaxial loading 

is applied along the x2 axis, we have σ11 = σ33 = 0. With Eqs. (15)–(17)

(20)

Under the incompressibility condition λ1λ2λ3 = 1, the relationship between stretch ratios λ1 

and λ2 can be obtained from Eq. (20)

(21)
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The non-zero Cauchy stress component σ22 is

(22)

A numerical solution is obtained from Eqs. (21) and (22) (Fig. 3c and d).

 3.1.3. Biaxial loading in the (x1, x2) plane—Taber (2004) presented an analytical 

solution for biaxial stretch of a transversely isotropic material. Following his approach, the 

response of the planar biaxial stretch of the transversely isotropic material of Eq. (9), with 

fibers along the x1 axis, is

(23)

The stress-stretch curves for equibiaxial stretch (Fig. 4a and b) reveal that the stress 

perpendicular to the fiber direction is not affected by fiber reinforcement. This is useful in 

equibiaxial calibration experiments because the material parameters ζ and μ can be 

determined by probing the stresses σ11 and σ22.

Note that because, in all the above analyses, the model responses when ζ =0.1 and ζ =1 are 

qualitatively very similar, we use only ζ ={0, 1, 10} for illustration in the following analyses.

 3.2. Shear deformations

For homogeneous shear deformation, we denote the amount of shear as the displacement 

magnitude k imposed on the top of a sheared unit cube. For transversely isotropic materials, 

the shearing deformation can be separated into (i) shear in the plane of isotropy ((x2, x3) 

plane) and (ii) shear in the plane perpendicular to the plane of isotropy ((x1, x2) plane). For 

the transversely isotropic material in Eq. (9), when shear deformation is in the plane of 

isotropy, I4 = I5 = 1. In this case, the fiber reinforcement effect is minimum; the material 

behaves like Neo Hookean material. The shear stress σ23 = μk, and the strain energy function 

in terms of k is . In this study, we focus on the analyses of shear deformation in a 

plane perpendicular to the plane of isotropy. Shearing in the direction of fibers (Fig. 2d), 

transverse to the fibers (e), and in an arbitrary direction in the (x1, x2) plane (f) with 

incompressibility constraint are analyzed. A condition of plane strain in the (x1, x2) plane is 

assumed for simplicity.

 3.2.1. Simple shear displacement in a fiber plane—When shear deformation is 

produced by imposing a displacement k in the fiber direction (Fig. 2d), the deformation 

gradient tensor F and Cauchy–Green tensor C are
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(24)

The corresponding pseudo-invariants I4 and I5 are

(25)

The corresponding Cauchy stress components are

(26)

The stress response as a function of k is shown in Fig. 5. We observe that ζ does not affect 

the Cauchy stress, which indicates that the fibers are not stretched when the shearing 

displacement is imposed in the fiber direction. However  still captures the shearing 

information when k is nonzero. ϕ affects all the Cauchy stress components.

If also under a plane stress condition (σ33 = 0), the Cauchy stress tensor σ is

(27)

If the strain energy function is written in terms of k (Eqs. (4), (9) and (25))

(28)

then

(29)

From Eqs. (27) and (28), we observe that: (i) σ11, σ22 and σ33 are even functions of k; (ii) 

σ12 is an odd function of k; (iii) the parameter ζ, which governs stresses due to fiber stretch, 

is not included in either the stress response or the strain energy change. Only the parameter 

ϕ affects the stress response.
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 3.2.2. Simple shear displacement transverse to the fiber direction—When the 

simple shear deformation is imposed with displacement transverse to the fiber (Fig. 2e), the 

deformation gradient tensor F and Cauchy–Green tensor C are

(30)

The corresponding pseudo-invariants I4 and I5 are

(31)

We observe that if the amount of shear k>0 and I4>1, the fibers are stretched. Also,  is 

nonzero only when k is nonzero. Based on Eq. (8), the Cauchy stress is

(32)

The stress response as a function of k is shown in Fig. 6.

If plane stress condition is assumed (σ33 = 0), the Cauchy stress tensor σ is

(33)

If the strain energy function is written in terms of k (Eqs. (4), (9) and (31))

(34)

then

(35)
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From Eqs. (33) and (34), we observe that: (i) σ11, σ22 and σ33 are even functions of k; (ii) 

σ12 is an odd function of k; (iii) both ζ and ϕ are included in the stress and strain energy 

term.

 3.2.3. General simple shear in the (x1; x2))plane—If simple shear is applied in the 

(x1; x2) plane, with shearing direction in an angle θ to the x1 axis (Fig. 2f), then we set up 

the material coordinates  following (Horgan and Saccomandi, 2005; Merodio and 

Ogden, 2005; Qiu and Pence, 1997):

(36)

where the shearing direction is parallel to  axis. The deformation gradient F, and the right 

Cauchy-Green tensor C in the coordinates  are the same as Eq. (24). Using Eq. 

(36) to transform F and C into (x1; x2; x3) coordinates

(37)

The pseudo-invariants are

(38)

It is easy to verify that , which captures the shearing information when k is 

nonzero(Merodio and Ogden, 2005).  increases with k when θ is 0, , , (Fig. 7). When θ 

is ,  is a concave function, with an inflection point at k = 1. The normalized Cauchy 

stress in terms of material parameters ζ and ϕ and the shearing direction θ is shown in 

Appendix A. A plot of the Cauchy stress components σ11, σ22, σ33 and σ12 against the 

amount of shear k with  and  shows that the stress response could be non-monotonic 

(Fig. 8 and Fig. 9). The stress responses are monotonic when ζ is 0 or 1 and ϕ is 1. However, 

when ζ and ϕ become larger, especially when ζ=ϕ=10, the non-monotonic effect appears in 

all stress components. The nonzero components of Cauchy stress tensor in plane stress 

condition are also shown in Appendix A.
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 4. Example of data fitting

Transversely isotropic material models have been applied to study ligament and tendon 

tissues which have distinct fiber directions (Dourte et al., 2008; Henninger et al., 2015; Lake 

et al., 2010). Many tensile and biaxial tests have been done (Davis and De Vita, 2012; 

Henninger et al., 2015; Szczesny et al., 2012). Typical tests such as stretch along the fiber 

direction are usually of primary interest for ligaments and tendons. Therefore, we used data 

from uniaxial stretch of tendon to show the model behavior with one of the anisotropic 

invariants.

As an example of fitting the model of Feng et al. (2013), we fit the mechanical tests of Davis 

and De Vita (2012), who applied uniaxial stretch along the fiber direction of rat tail tendon 

fascicles. The tensile test is similar to Fig. 2a. A fitting of the data from the uniaxial stretch 

provides a first estimate of μ=107.66 MPa, and ζ=0.91 (Fig. 10).

 5. Discussion

 5.1. Anisotropic behavior

The stress responses when the material is stretched transverse and parallel to the fiber 

direction (Fig. 11a, b) confirms the fiber reinforcement effect when ζ>0. The shear stress 

increases in a nonlinear fashion when the material is sheared transverse to the fiber direction 

(Fig. 11c, d). Inspection of the shear stress component σ12 in Eqs. (26) and (32) shows that 

the shear stresses in the two cases (shear displacement parallel or perpendicular to the fiber 

direction) differs by 2ζk3. Thus anisotropic behavior under finite shear is partly a result of 

fiber stretch, analogous to the Poynting effect.

 5.2. Strengths and limitations of transversely isotropic constitutive models

 5.2.1. Uniaxial stretch in the fiber direction—Using the F(I4) model Qiu and Pence 

(1997) showed that when the material is loaded along fiber direction

(39)

Using a strain energy function analogous to the G(I5) model, Merodio and Ogden (2005) 

showed that when loaded in tension along fiber direction

(40)

Eq. (39) is identical with Eq. (19) (  is unaffected by fiber stretch). Similar results were 

also observed in a transversely isotropic model with F(I4) only, proposed by Horgan and 

Saccomandi (2005). In Eq. (40), it is clear that I5 contributes to the uniaxial response, σ11.

 5.2.2. Uniaxial stretch transverse to the fiber direction—The relation between 

fiber stretch λ1 and λ2 in Eq. (21) is seen in the F(I4) model and the G(I5) model, from which
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(41)

Both the F(I4) and G(I5) models have limited shortening along the fiber direction (λ1 in Fig. 

3d) when stretching infinitely perpendicular to the fiber direction (λ2 in Fig. 3d). The 

asymptotic behavior of the H(I4; I5) model is the same as that of the F(I4) model.

 5.2.3. Simple shear displacement in the fiber direction—In plane stress 

conditions, when ϕ = 0 the Cauchy stress tensor for the H(I4; I5) model is identical to that of 

the F(I4) model. If ϕ>0, each stress component is larger than that of the F(I4) model. By 

comparing the stress response with those from the G(I5) model:

(42)

we observe that the magnitudes of both σ11 and σ12 increase monotonically as k increases 

(σ11 is an even function and σ12 is an odd function). In Eqs. (26) and (28), we observe that 

the stress components and strain energy function are only related to ϕ, the parameter 

characterizing fiber matrix interaction. Similarly, in the G(I5) model, all stress components 

contain γ (Eq. (42)) which is the parameter related with fiber shear.

 5.2.4. Simple shear displacement transverse to fiber direction—Similar to the 

case of simple shear in fiber direction, the Cauchy stress is the same when ϕ=0 but larger 

when ϕ>0, compared to the F(I4) model, due to fiber-matrix interactions. If we compare with 

the Cauchy stress tensor in a similar analysis with respect to the G(I5) model:

(43)

then, for plane stress, we see from Eqs. (33) and (43) that for both models: (i) σ11; σ22 and 

σ33 are even functions; (ii) σ12 is an odd function; (iii) σ11, σ22, and σ12 increase 

monotonically as k increases. However, if not in plane stress, neither σ11 nor σ22 are 

monotonic (Fig. 6), due to the negative term involving ζ.

 5.2.5. Simple shear displacement in an arbitrary direction—Analysis of I4, I5, 

and C12 with respect to k and θ has been performed by Merodio and Ogden (2005). One 

difference worth noting is that when the fiber direction θ = π/8, I5 is convex (Merodio and 

Ogden, 2005) and  is concave (Fig. 7) with respect to k. This illustrates the interaction 

between I4 and I5 when in general shear deformation. The current model confirms that 
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differences in the direction of shear displacement can have a large influence on the stress 

responses (Figs. 8 and 9). A similar effect was also presented in the G(I5) model presented 

by Merodio and Ogden (2005). When ϕ = 0, the Cauchy stress components in Eqs. (A.5)–

(A.7) are identical to the F(I4) model, but larger when ϕ>0. Compared with the results of 

arbitrary shear from the G(I5) model, we observe a similar pattern of σ11, σ22, and σ12 with 

respect to k.

 5.3. Effect of anisotropic invariants in different loading conditions and implications for 
mechanical tests

To characterize transversely isotropic materials, it is usually necessary to estimate model 

parameters via mechanical tests. Although inverse methods can be used to estimate model 

parameters, a straightforward estimate of the model parameters via fitting experiment data is 

still desirable (Zhang et al., 2015). We examined the effect of each invariant by comparing 

the stress components from Eq. (9) to the responses of the model lacking one of the 

anisotropic invariants (I4 or I5):

(44)

The corresponding mechanical tests that are best to capture the invariant and model 

parameters are discussed.

 5.3.1. Effect of I4 and implications for model fitting—In both uniaxial and equal 

biaxial tensile tests, we observe that all the stress components are only affected by parameter 

ζ. If the I4 term was omitted, for uniaxial stretch along the fiber direction and equal biaxial 

stretch, the error of σ/μ would be the same (Eqs. (19) and (23)):

(45)

In simple shear deformation when fiber is along the fiber direction, we observe that the 

stress components are not affected by I4. However, if the shear deformation is transverse to 

the fiber direction in the plane of (x1; x2), omitting I4 can cause error. The error depends 

linearly on ζ and is a non-linear function of the shear deformation, k (Eq. (32)):

(46)

Thus, when estimating the parameter ζ, or any parameters scaling the I4 invariant, uniaxial or 

biaxial stretch tests are sensible.
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 5.3.2. Effect of I5 and implications for model fitting—The effects of I5 in shear are 

captured by the modified invariant . If  is not included in the model, and shear parallel to 

the fiber direction, the error of stress is proportional to both the parameter ϕ and the shear 

amplitude, k (Eq. (26)):

(47)

Similar analysis can be applied to simple shear deformation transverse to the fiber direction, 

and an analytical solution of the stress error in terms of parameter ϕ can be obtained from 

Eq. (32):

(48)

With respect to estimating parameter ϕ, considering Eq. (26), it is recommended to use shear 

tests parallel to the fiber direction for data fitting.

 5.3.3. Remarks on mechanical testing—In estimating the five parameters of the 

general transversely isotropic material form (Eq. (1)), Criscione et al. (2001) developed a 

novel invariant sets separating physical attributes of strain. These mutually orthogonal 

invariants provide a unique advantage in the experimental determination of the energy 

functions (Criscione et al., 2001, 2000, 2002). In this study, the specific strain energy form 

of Eq. (9) has only three parameters. We have shown that under uniaxial loading, either 

along, or perpendicular to the fiber direction, or during equibiaxial stretch, only the invariant 

I4 is needed to model the material behavior. In shear deformation parallel to the fiber 

direction, only the invariant  is needed to model the material behavior. Therefore, each 

individual parameter can be fitted separately using different mechanical testing methods. 

However, in shear deformation transverse to the fiber direction, both fiber stretch and fiber–

matrix interactions are involved, and both invariants are needed to describe the model 

behavior, as they are when shear deformation is in an arbitrary direction in the (x2; x3) plane.

 6. Conclusions

In this study, we explored the response to large deformations of a transversely isotropic 

model with both I4 and I5 invariants. A comparison of the model behavior to that of 

transversely isotropic models with only I4 invariant showed similar responses to stretch 

parallel or perpendicular to the fiber direction. However, the model with both invariants 

showed distinctly different behavior under shear deformation.

Analytical solutions exhibited clear nonlinear anisotropic behavior in both stretch and shear 

deformation. The material model exhibited the expected increase in tensile stiffness in the 
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fiber direction, as well as a larger shear modulus when sheared in the plane containing 

fibers, relative to shear in the plane of isotropy. Nonlinear stiffening was seen for shear 

displacement perpendicular to the fiber direction. This behavior is useful for modeling and 

simulations of many soft biological tissues such as brain white matter, muscle, and tendon.

Analytical solutions of the model with both I4 and I5 invariants indicated that individual 

parameters, such as ζ and ϕ, could be characterized separately by tensile and shear tests. 

Typical mechanical testing procedures such as biaxial (Sacks, 2000; Sacks, 1999), 

rheometric (Hrapko et al., 2008) or shear testing (Namani et al., 2012; Rashid et al., 2013) 

can be utilized to characterize the parameters for specific soft tissues with transversely 

isotropic behavior. Parameter fitting based on data acquired from these mechanical tests can 

be used for first approximation of the model parameters. Although some simple mechanical 

tests can be fully modeled using only one invariant, loading conditions such as shear 

transverse to the fiber direction can be described only if both are included.

 Acknowledgments

The authors would like to thank Dr. Larry A. Taber, Dr. Barna Szabo, Dr. Yunfei Shi, Dr. Spencer Lake, and Dr. 
Chunghao Lee for helpful discussions. We acknowledge support from Jiangsu Province (Grant BK20140356, YF), 
the Chinese National Natural Science Foundation (Grant 61503267, YF), the SRF for ROCS, SEM (Grant 
K511701515, YF), the NIH (Grants R01 NS055951 (PVB) and R01 HL109505 (GMG)), the NIH and NSF jointly 
though grant NSF U01 EB016422 (GMG), the NSF (Grant CMMI-1332433, PVB), and the Chinese Ministry of 
Education through a Changjiang Scholar Award (GMG).

 Appendix A

The Cauchy stress components of the general simple shear in the (x1; x2) plane can be 

obtained from Eqs. (8) and (38). We normalized each stress component with respect to shear 

modulus μ. With short-handed notations c = cos θ, s = sin θ for simplicity, the corresponding 

normalized Cauchy stress components are

(A.1)

(A.2)

(A.3)
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(A.4)

With plane stress condition (σ33 = 0), the nonzero components of Cauchy stress tensor σ are

(A.5)

(A.6)

(A.7)
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Fig. 1. 
Basic model of a transversely isotropic material in Cartesian coordinates. Vector A indicates 

the fiber direction in the reference configuration. The plane of symmetry is perpendicular to 

x1.
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Fig. 2. 
Simple deformation of a transversely isotropic material: (a) uniaxial deformation along the 

fiber direction; (b) uniaxial deformation perpendicular to the fiber direction; (c) biaxial 

deformation. (d) simple shear in the fiber direction; (e) simple shear transverse to the fiber 

direction; (f) general simple shear in (x1, x2) plane with shear angle θ with respect to x1 axis. 

λ1, λ2 are the stretch ratios, k is the magnitude of shear displacement, the cube has a unit 

length of 1 for each side.
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Fig. 3. 
Uniaxial stress response. (a) σ11 vs. fiber stretch λ1, and (b) fiber stretch λ2 vs. λ1 when the 

material is under uniaxial deformation parallel to the fiber direction. (c) σ22 vs. fiber stretch 

λ2, and (d) fiber stretch λ1 vs.λ2 when the material is under uniaxial loading transverse to the 

fiber direction. The shear anisotropy parameter ϕ does not affect the stress response in these 

cases. The model responses for ζ =0.1 and ζ =1 are very close. An interval of [1/λmax, λmax ] 

is adopted for x-axis in all the plots with λmax =1.5.
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Fig. 4. 
(a) σ11and (b) σ22 vs. fiber stretch λ1 = λ2, when the material is under equal biaxial 

deformation. An interval of [1/λmax, λmax ] is adopted for x-axis in all the plots with λmax 

=1.5.
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Fig. 5. 
Stress response to simple shear displacement parallel to the fiber direction for ϕ=0, ϕ=1, and 

ϕ=10. The parameter ζ, which is related to the fiber stretch, does not influence the response. 

The shear stress complies with the linear response of the Neo Hookean material when ϕ=0.
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Fig. 6. 
Stress response to simple shear displacement transverse to the fiber direction for ζ =0, ζ =1, 

and ζ =10. (a) ϕ=1, and (b) ϕ=10.
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Fig. 7. 

 vs. k when shearing direction angle θ with respect to x1 is 0, , , .  is the same when 

θ is 0 and .
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Fig. 8. 
Stress response to in-plane shear displacement with shearing direction θ=π/4, for ζ =0, ζ =1, 

and ζ =10. (a) ϕ=1, and (b) ϕ=10.
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Fig. 9. 
Stress response of in-plane shear displacement with shearing direction θ=3π/8, for ζ =0, ζ 

=1, and ζ =10. (a) ϕ=1, and (b) ϕ=10.
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Fig. 10. 
Experimental and fitted data of rat tail tendon fascicles under tensile loading along the fiber 

direction.
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Fig. 11. 
Illustration of the anisotropic behavior of the model: stress vs. stretch ratio for (a) ζ=1 and 

(b) ζ=10 when the material is stretched transverse/parallel to the fiber direction; and 

comparison of shear stress in simple shear for (c) ζ=10, ϕ=1 and (d) ζ=1, ϕ=10 when the 

material is sheared transverse/parallel to the fiber direction.
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Table 1

A summary of incompressible, transversely isotropic, hyperelastic models.a

ψisotropic ψanisotropic Volumetric termb

Spencer (1984) μTtr(ε2)

Polignone and 
Horgan 

(1993)c

–

Weiss et al. 
(1996)

–

Qiu and Pence 
(1997)

–

Taber (2004) –

Merodio and 
Ogden (2005)

–

Horgan and 
Saccomandi 

(2005)d

–

Schröder et al. 
(2005)

–

Lu and Zhang 

(2005)e
–

Ning et al. 
(2006)

Velardi et al. 
(2006)

λ1λ2λ3 = 1

Gasser et al. 
(2006)

–

Chatelin et al. 
(2012)

Feng et al. 
(2013)

Destrade et al. 
(2015); 
Horgan and 
Murphy 
(2015); 

–
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ψisotropic ψanisotropic Volumetric termb

Murphy 

(2013)d

Swedberg et 
al. (2014)

f

a
In the incompressible case the isochoric invariants , , ,  are effectively equal to I1, I2, I4, I5. We keep the original form of each strain 

energy function.

b
Explicit volumetric term is shown here if it is written out specifically in the original references.

c
The invariant I5 in the formulation corresponds to the definition of I4 in this paper.

d
Strain energy function is composed of one of the forms of ψanisotropic.

e
The formulation used a multiplicative decomposition of the deformation that factor out the volumetric strain and fiber stretch. , 

f
 .
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