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7-dehydrocholesterol efficiently 
supports Ret signaling in a mouse 
model of Smith-Opitz-Lemli 
syndrome
Myriam Gou-Fàbregas1,†, Anna Macià1, Carlos Anerillas1, Marta Vaquero1, Mariona Jové2, 
Sanjay Jain3, Joan Ribera1 & Mario Encinas1

Smith-Lemli-Opitz syndrome (SLOS) is a rare disorder of cholesterol synthesis. Affected individuals 
exhibit growth failure, intellectual disability and a broad spectrum of developmental malformations. 
Among them, renal agenesis or hypoplasia, decreased innervation of the gut, and ptosis are consistent 
with impaired Ret signaling. Ret is a receptor tyrosine kinase that achieves full activity when 
recruited to lipid rafts. Mice mutant for Ret are born with no kidneys and enteric neurons, and display 
sympathetic nervous system defects causing ptosis. Since cholesterol is a critical component of lipid 
rafts, here we tested the hypothesis of whether the cause of the above malformations found in SLOS is 
defective Ret signaling owing to improper lipid raft composition or function. No defects consistent with 
decreased Ret signaling were found in newborn Dhcr7−/− mice, or in Dhcr7−/− mice lacking one copy 
of Ret. Although kidneys from Dhcr7−/− mice showed a mild branching defect in vitro, GDNF was able 
to support survival and downstream signaling of sympathetic neurons. Consistently, GFRα1 correctly 
partitioned to lipid rafts in brain tissue. Finally, replacement experiments demonstrated that 7-DHC 
efficiently supports Ret signaling in vitro. Taken together, our findings do not support a role of Ret 
signaling in the pathogenesis of SLOS.

Smith–Lemli–Opitz syndrome (SLOS; OMIM 270400, ORPHA818) is an autosomal recessive, multiple congeni-
tal malformation syndrome, with an incidence of approximately 01/50,000 live births. SLOS presents with a very 
heterogeneous phenotype, causing perinatal death in its most severe forms. In general, children affected by SLOS 
show growth retardation, developmental delay and intellectual disability. Craniofacial defects include micro-
cephaly, micrognathia, and ptosis (dropping of the eyelid). Individuals affected by SLOS often display postaxial 
polydactyly of the hands or feet, and syndactyly of the 2nd and 3rd toes. Internal malformations include renal 
hypoplasia, ambiguous genitalia in male, pyloric stenosis, colonic aganglionosis (Hirschsprung disease), holo-
prosencephaly and cardiac malformations. SLOS patients are hyperactive, display self-injurious behavior, and 
demonstrate autistic characteristics [reviewed in1–3].

SLOS is caused by inherited mutations of the 7-dehydrocholesterol reductase gene (DHCR7)4,5. DHCR7 gene 
product catalyzes the last step of cholesterol biosynthesis, namely conversion of 7-dehydrocholesterol (7-DHC) 
into cholesterol. As a consequence, DHCR7 deficiency impairs cholesterol production, resulting in elevated 
7-DHC levels and typically decreased cholesterol levels. Cholesterol is a major structural component of plasma 
membranes, is the precursor of steroid hormones, bile acids and constitutes a critical component of plasma mem-
brane microdomains known as lipid rafts. Moreover, cholesterol is necessary for proper function of the sonic 
hedgehog (Shh) pathway6, and 7-DHC is the precursor of vitamin D. Given the multiple and important functions 
of cholesterol, it is not surprising that the molecular mechanisms by which such altered cholesterol/7-DHC ratio 
cause the variety of developmental abnormalities observed in SLOS patients are only partially understood.
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The GDNF family ligands (GFLs) constitute a group of neurotrophic factors (GDNF, NRTN, PSPN, ARTN) 
that regulate several aspects of the developing nervous and genito-urinary systems7. GFLs signal through a com-
mon tyrosine kinase receptor (Ret), and one of the four co-receptors known as GFRα​, which bind directly to 
GFLs providing ligand specificity. GFRα​ co-receptors are attached to the outer leaflet of the plasma membrane via 
a glycosyl-phosphatidyl inositol anchor, which targets them to lipid rafts. Stimulation by GFLs prompts recruit-
ment of Ret to lipid rafts, where the GFL-GFRα​-Ret ternary complex interacts with Src family kinases to elicit 
maximal biological responses8. Interestingly, stimulation of Ret by soluble GFRα​1 also drives Ret to lipid rafts 
where it interacts with FRS29. Moreover, partitioning of Ret to lipid rafts not only promotes association with 
key signaling intermediates, but prevents its proteasomal-mediated degradation10. Finally, a very recent report 
shows that knockin mice expressing a GFRα​1 mutant localized outside lipid rafts phenocopy several aspects of 
Ret knockout mice, confirming the importance of GDNF-driven translocation of Ret to lipid rafts for its proper 
function11.

In vivo, Ret signaling is necessary for the proper development of the autonomic nervous system and the 
genito-urinary system. Mice bearing a variety of Ret mutations (as well as mutations in certain GFLs or their 
co-receptors) show different degrees of colonic aganglionosis, thus mimicking Hirschsprung disease in humans. 
On the other hand Ret signaling is crucial to kidney development, and mice bearing mutations in Ret or its 
co-receptor GFRα1 develop several kidney defects ranging from complete agenesis to different degrees of kidney 
hypoplasia12–18. Finally, mice lacking either ARTN or GFRα3 develop ptosis owing to failure of sympathetic neu-
rons form the cervical superior ganglion to innervate the tarsus muscle19,20.

Given the overlapping spectra of congenital abnormalities found both in SLOS patients and Ret mutant mice 
and the necessity of intact lipid rafts for optimal Ret function, in the present work we aimed to elucidate whether 
abnormal Ret signaling plays a role in the pathogenesis of SLOS. Analysis of the genito-urinary and enteric nerv-
ous systems of Dhcr7−/− or Dhcr7−/−; Ret+/EGFP mice revealed no abnormalities consistent with compromised Ret 
signaling. Although kidneys from mutant mice branched at a slower pace than those from wild type littermates 
when explanted in the absence of exogenous cholesterol, sympathetic neurons from mutant mice showed normal 
responses to GDNF under the same conditions. Moreover, critical components of Ret signaling including GFRα​
1 or Src family kinases from knockout mice partitioned to the lipid raft fraction in flotation gradients, suggesting 
that 7-DHC allows formation of lipid rafts that efficiently support Ret signaling. In support with this notion, 
removal of cholesterol followed by replenishment with 7-DHC efficiently supported GDNF-mediated phospho-
rylation of Akt in MG87 fibroblasts cultured in the absence of cholesterol. Collectively, the data indicate that 
aberrant Ret signaling is unlikely to play a major role in the pathogenesis of SLOS.

Results
Urinary and enteric nervous systems are largely normal in newborn Dhcr7 knockout 
mice.  Although no major defects in kidney and digestive system were described in Dhcr7 knockout mice, we 
sought to investigate whether subtle abnormalities reflecting compromised Ret signaling could be identified in 
these mice. Macroscopic examination of the genito-urinary system of newborn mutant mice revealed no overt 
malformations consistent with aberrant Ret signaling such as kidney aplasia or hypoplasia, cystic or supernu-
merary kidneys, or ureter abnormalities (Fig. 1A, left panel). Hematoxylin-eosin staining showed that mutant 
kidneys had normal architecture, with well-organized cortex and medulla, a prominent nephrogenic zone, and no 
cystic dilations or signs of hydronephrosis (Fig. 1A, left panel). The number of glomeruli was also similar between 
Dhcr7 knockout mice and their wild type littermates (Fig. 1B), consistent with proper branching of the ureteric 
bud. We next wanted to check the status of enteric nervous system. Immunostaining of colon from newborn mice 
with PGP9.5, which labels enteric neuronal precursors21 showed no signs of colonic aganglionosis, the hallmark 
of Hirschsprung disease (Fig. 1B, left panel). Enteric plexus density was assessed throughout the entire gut by 
means of acetylcholinesterase staining, which labels cholinergic enteric neurons, revealing no differences between 
genotypes (Fig. 1B, right panel).

Removal of one Ret allele does not cause renal or enteric abnormalities in Dhcr7 knockout 
mice.  The above results were not surprising in light of the relatively mild phenotype of Dhcr7 null mutants 
when compared to SLOS patients. Besides cleft palate and immature lungs, Dhcr7 knockout mice show no overt 
developmental abnormalities reminiscent of the human disease22. It is usually assumed that such discrepancies 
are due to differences in transplacental cholesterol transport between species, being it obligated in rodents23,24 but 
not humans25. Thus, maternal cholesterol transfer to embryos, possibly via Abca1 cholesterol transporter26, would 
compensate cholesterol deficiency in murine but not human embryos. To determine whether reduction in Ret gene 
dosage could unveil suboptimal Ret signaling in the context of Dhcr7 deficiency, we crossed Dhcr7 mutant mice to 
heterozygous Ret knockin mice expressing one copy of EGFP from the Ret locus27, thus allowing easy tracking of 
Ret-expressing cells. As shown in Fig. 2, removal of one copy of Ret did not affect ureteric bud branching or enteric 
plexus density (n ≥​ 3 for each genotype), thus reinforcing the idea that no major abnormalities related to abnormal 
Ret signaling are found in Dhcr7 knockout mice. Taken together, the above observations are not consistent with 
abnormal Ret function in the developing urinary and nervous systems of Dhcr7 knockout mice.

Ureteric bud branching of Dhcr7 mutant metanephroi is reduced in vitro.  To examine Ret signal-
ing avoiding the confounding effect of maternal cholesterol transfer, we decided to place embryonic metanephroi 
from Dhcr7 mutant embryos in culture, in the absence of any exogenous source of cholesterol. As stated in the 
introduction, ureteric bud branching is critically dependent on GDNF-Ret signaling, both in vivo and in explant 
culture. We explanted metanephroi from E12.5 wild type and null embryos in defined medium containing reti-
noic acid, and counted ureteric bud tips after two and five days in vitro. We pooled data from wild type and Dhcr7 
knockout mice irrespectively of the Ret allele expressed as no differences on ureteric bud branching were found 
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between Ret+/EGFP and Ret+/+ embryos within a given Dhcr7 genotype (data not shown). We then stained Ret+/+ 
metanephric explants with an antibody against CalbindinD-28k, a marker of the ureteric bud28, or directly photo-
graphed Ret+/EGFP metanephroi under a fluorescence microscope. We used both techiniques at both 2 days in vitro 
and 5 days in vitro . As shown in Fig. 3A, small but significant differences between wild type and Dhcr7 knockout 
metanephroi were found after two days in culture, which increased with time in culture (Fig. 3B). Thus, ureteric 
bud branching is reduced in Dhcr7 null embryonic kidneys when cultured in defined medium and are therefore 
devoid of exogenous cholesterol.

Ret signaling is not affected by deletion of Dhcr7 in sympathetic neurons.  Even though signaling 
by the GDNF-GFRα​1-Ret axis is the major player in ureteric bud branching, the above observations do not 
directly prove suboptimal Ret signaling in this system. To directly assess biological responses downstream of 
Ret, we chose sympathetic neurons from the superior cervical ganglion as a model system. The importance of 
lipid rafts in Ret signaling has been extensively characterized in sympathetic neurons from the superior cervical 
ganglion (SCG)10. We first used immunoblots to phosphorylated ERK as a readout of Ret signaling in sympathetic 
neurons cultured for five days in the presence of lipid-depleted serum, and stimulated with GDNF in the pres-
ence soluble GFRα​1. As shown in Fig. 4A, no major differences on GDNF-mediated ERK phosphorylation were 
found between wild type and mutant neurons. We next assessed survival of sympathetic neurons in the presence 
of increasing concentrations of GDNF and a fixed concentration of sGFRα​1. As shown in Fig. 4B, no differences 
between genotypes were observed at any of the concentrations assayed. Neurite outgrowth of SCG explants in 
response to GDNF was also similar between wild type and Dhcr7 null mice (Fig. 4C). Thus, at least for sympa-
thetic neurons, mutation of Dhcr7 does not appear to have any consequence on GDNF-induced Ret signaling.

GFRα1 partitions to lipid rafts in brains from Dhcr7 null mice.  As stated in the introduction, GFRα​1,  
which is located to lipid rafts by virtue of its glycosylphosphatydilinositol anchor, recruits Ret to these mem-
brane domains upon ligand stimulation. We next investigated whether lack of effect of Dhcr7 mutation on Ret 
bioactivity in neurons was due to normal partition of GFRα​1 to lipid rafts. To this end, we generated flotation 
gradients from neonatal brain extracts of both control and Dhcr7 null mice. Importantly, cholesterol does not 
cross the blood-brain barrier and thus the contribution of maternal cholesterol to central nervous system drops 
from E10-11 onwards, being 90% of neonatal brain cholesterol of embryonic origin29. Therefore, 7-DHC but 

Figure 1.  Genito-urinary and enteric nervous systems do not show developmental alterations in a SLOS 
mouse model. (A) Macroscopic and microscopic appearance of kidney and lower urinary tracts (left panel), 
and glomeruli number (right panel) of newborn wild type and Dhcr7 knockout mice. (B) Representative images 
of acetyl cholinesterase (AChE) and PGP9.5 staining (left panel) and acetyl cholinesterase-positive fiber density 
(right panel) of newborn wild type and Dhcr7 knockout mice.
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not cholesterol is the major sterol in brains from Dhcr7 knockout mice. As shown in Fig. 5, GFRα​1 was mainly 
found in the high-buoyant, lipid raft fractions, in both wild type and Dhcr7 mull mice. Partition of other critical 
components of Ret signaling such as Src family kinases was also similar in wild type and Dhcr7 knockout mice 
(Fig. 5). Distribution of lipid raft (GM1 ganglioside, caveolin-1 and flotillin-1) and non-raft (transferrin receptor) 
markers indicated correct fractionation of the samples. Thus, loss of Dhcr7 does not affect distribution of critical 
components of Ret signaling to lipid rafts in brain, suggesting that 7-DHC can efficiently support Ret signaling. 
To directly test this hypothesis, we conducted cholesterol depletion followed by 7-DHC replenishment experi-
ments. We first confirmed that depletion of membrane cholesterol by means of methyl-β​-cyclodextrin (Mβ​CD) 
affected signaling downstream of Ret in the mouse fibroblast cell line MG87 stably expressing Ret and GFRα​1, a 
widely used model to study Ret signaling. As shown in Supplemental Fig. 1, GDNF-mediated phosphorylation 
of both ERKs and Akt were affected by increasing concentrations of Mβ​CD to different extents, being the PI3-K/
Akt pathway more sensitive to cholesterol depletion. Since Mβ​CD was toxic at high concentrations even for short 
exposure times, we used the lowest effective concentration of this compound (4 mM) and focused on p-Akt 
phosphorylation for replenishment experiments. As shown in Fig. 6A, replenishment of cellular membranes with 
7-DHC supported GDNF-mediated Akt phosphorylation to levels comparable to those obtained in parallel cul-
tures not subjected to depletion/replenishment treatments, or to cells replenished with cholesterol. Interestingly, 
replenishment with 7-DHC in the presence of BM15766, a novel Dhcr7 inhibitor, did not substantially changed 
Akt phosphorylation, indicating that conversion of 7-DHC to cholesterol was not responsible for rescuing the 
pathway. To assess the efficacy of these stripping/replenishment experiments, we measured both 7-DHC and 
cholesterol in cell extracts by means of liquid chromatography quadrupole time-of-flight mass spectrometry 
(LC-QTOF-MS/MS), as described in methods. Mβ​CD depleted approximately half of the cellular cholesterol, 

Figure 2.  Reducing Ret dosage does not unveil developmental defects of the genito-urinary and enteric 
nervous systems of Dhcr7 knockout mice. Representative fluorescence images metanephroi (top and middle 
panel) and colon (bottom panel) from Dhcr7+/+−; Ret+/EGFP and Dhcr7−/−; Ret+/EGFP embryos of the indicated 
ages. No overt differences in ureteric bud branches or plexus density are observed.
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which was efficiently replenished by Mβ​CD:Cholesterol. Importantly, Mβ​CD:7-DHC complexes did not increase 
cholesterol above levels found in cells treated with Mβ​CD alone, indicating that 7-DHC was not being con-
verted to cholesterol in cells exposed to Mβ​CD:7-DHC. Finally, we only detected 7DHC in cells treated with  
Mβ​CD:7-DHC complexes but not in the rest of conditions (Fig. 6B,C). Taken together, these experiments indicate 
that 7-DHC efficiently supports Ret signaling.

Discussion
In the present work we examined the hypothesis of whether suboptimal Ret signaling could explain some of the 
developmental abnormalities found in SLOS patients. Such hypothesis was formulated based on the overlapping phe-
notypes of SLOS patients and Ret mutant mice, and the observation that lipid rafts are critical for proper Ret signaling.

Even though the genetic defect causing SLOS is well-established, the molecular mechanisms leading to the 
plethora of developmental malformations found in SLOS patients are only partially understood. Besides being a 
fundamental component of plasma membranes, cholesterol serves as precursor for a number of important bio-
molecules such as bile acids, steroid hormones and signaling molecules. Such multiplicity of functions makes it 
unlikely that a single molecular mechanism underlies the pathogenesis of SLOS. Moreover, not only cholesterol 
deficiency but the toxic effects of 7-DHC (or its derived oxysterols) buildup may account for some of the compli-
cations found in SLOS patients3,30. A number of observations suggest that membrane structural and functional 
properties may be affected in SLOS patients. 7-DHC has been shown to induce changes in the physico-chemical 
properties of both artificial and cellular membranes, including fluidity, electric potential, and curvature31–34. 
These changes likely account for functional alterations of membrane proteins such as the NMDA and serotonin 
receptors35,36. Of particular interest are the abnormalities found in lipid rafts, as cholesterol is one important com-
ponent of these membrane microdomains. Thus, 7-DHC has been shown to induce changes in both the lipid and 
protein composition of rafts37,38. Likewise, changes in lipid raft stability may account for impaired degranulation 
responses of mastocytes in response to IgE39, or for alterations in caveolae and the potassium channel BKCa in skin 
fibroblasts40. Despite these observations, our data show that GFRα​1 (and Src-family kinases) equally partition to 
lipid raft fractions in brain extracts from both wild type and Dhcr7 null mice, suggesting that at least in central 
neurons Ret would be correctly recruited to lipid rafts upon GDNF stimulation. It is important to stress that brain 
cholesterol is synthesized by the embryo from E11.5 onwards, and therefore maternal cholesterol is likely to be 
residual in brains from newborn Dhcr7 null mice. Even though GFRα​1-mediated recruitment is not the only 
mechanism by which Ret moves to lipid rafts upon ligand stimulation9, recent in vivo data show that it constitutes 
the major mechanism involved in such translocation11.

Figure 3.  Ureteric bud in vitro branching is modestly reduced in Dhcr7 knockout mice. (A) Calbindin 
immunostaining of E12.5 kidney explants of the indicated genotypes cultured in the absence of exogenous 
source of cholesterol for 2 days (left panel). Quantification of ureteric bud tip number after 2 days in vitro 
(2DIV). (B) EGFP immunofluorescence of E12.5 kidney explants of the indicated genotypes cultured in the 
absence of exogenous source of cholesterol for 5 days (left panel). Quantification of ureteric bud tip number 
after 5 days in vitro (5DIV) (right panel).
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We have found that embryonic kidney explants from knockout mice branch at a slightly slower pace than their 
wild type counterparts. Even though GDNF-Ret signaling is the master regulator of kidney branching, we do not 
know whether these defects are caused by impaired Ret signaling in mutant kidneys. In light of our results with 
sympathetic neurons we find such possibility unlikely, although we cannot exclude the possibility that sensitivity 
of Ret signaling to 7-DHC varies depending on the cellular context. Thus, mice expressing a ‘non-raft’ version 
of GFRα1 (GFRα1TM/TM mice) show defects on urogenital, enteric and motor but not sympathetic nervous sys-
tem11. However, the renal phenotype of GFRα1TM/TM mice is a fully penetrant, complete kidney agenesis, whereas 
we observe a modest branching defect that at the most suggests that 7-DHC partially supports Ret signaling in 
the ureteric bud. Alternatively, other signaling molecules that play a secondary role in kidney branching might 
be affected by lack of cholesterol/increased levels of 7-DHC. Thus, signaling by FGF10 is able to induce kidney 
morphogenesis in animals lacking Ret and Sprouty141. Similarly, perturbation of Shh signaling causes kidney 
defects in mice ranging from kidney hypoplasia to kidney agenesis42,43. Interestingly, altered SHH signaling is 
consistent with some SLOS features such as holoprosencephaly and polydactyly, and previous cell culture work 
demonstrates diminished responses to Shh in cholesterol-depleted cells44. However, the effect of Dhcr7 on the 
activity of the Shh pathway is controversial. Studies in Xenopus show that Dhcr7 negatively regulates the pathway 
by inhibiting Smo, in a reductase-independent manner45. In contrast, Bijlsma and colleagues46 show that secretion 
of pro-vitamin D3 (whose precursor is 7-DHC) inhibits Smo activity, suggesting that Dhcr7 should activate the 
pathway by keeping the levels of 7-DHC low. In contrast, a more recent work provides compelling genetic and 
pharmacological evidence that reduced cholesterol rather than increased 7-DHC or oxysterol levels block Shh 
pathway by impairing Smo activity47. All these observations point to a complex regulation of the Shh pathway 
by sterols beyond their role as covalent modifications of the Shh molecule. Another intriguing mechanism by 
which 7-DHC might regulate kidney morphogenesis is through modulation of the Wnt/β​-catenin pathway. Thus, 
a very recent report establishes that elevated 7-DHC but not diminished cholesterol levels are responsible for 
aberrant neuronal differentiation of induced pluripotent stem cells derived from SLOS patients, via inhibition of 
the Wnt/β​-catenin pathway48. Interestingly, genetic inactivation of β​-catenin in the ureteric bud in mice leads to 
kidney agenesis/dysgenesis owing to reduced ureteric bud branching49.

Figure 4.  Dhcr7−/− sympathetic neurons properly respond to GDNF stimulation. (A) Superior cervical 
ganglion neurons from wild type and Dhcr7 knockout were cultured and stimulated with GDNF as described in 
methods. Total lysates were resolved by SDS-PAGE and probed with the indicated antibodies (left panel). The 
graph on the right panel shows the relative intensity of phospho-ERK signal normalized by tubulin. (B) GDNF-
mediated survival of SCG neurons was evaluated after 48 hours in the presence of growing concentrations of 
GDNF. (C) Representative images of SCG explants after five days in the presence of 50 ng/ml GDNF.
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In conclusion, our results show that 7-DHC has the ability to support Ret signaling in several model systems, 
indicating that impaired Ret function is unlikely to contribute to the pathogenesis of SLOS.

Methods
Mice.  All experimental procedures involving mice were in accordance with national and regional guidelines 
and approved by the experimental Animal Ethic Committee of the University of Lleida. Dhcr7 null mice22 were 
purchased from Jackson Laboratories (Bar Harbor, Maine). Mice bearing a floxed Ret allele followed by EGFP 
(RetfloxEGFP) have been previously described27. These mice were crossed to transgenic mice expressing Cre recom-
binase under the control of phosphoglycerate kinase 1 promoter [Jackson Laboratories50] leading to widespread 
excision of the floxed Ret allele and subsequent expression of EGFP from the Ret locus.

Acetylcholinesterase staining.  Newborn mouse gut was dissected and fixed in 4% paraformaldehyde for 
1 to 2 h at 4 °C, transferred to saturated sodium sulfate, and stored overnight at 4 °C. Acetylcholinesterase staining 
was then performed exactly as described51. Quantification of enteric plexus fiber density was determined from 
randomly selected fields per mouse, by counting the number of upper and right side crossing fibers points of a 
defined grid as described by52.

Nephron number assessment.  Kidneys from wild type and Dhcr7 knockout newborn littermates were 
dissected, fixed in 4% paraformaldehyde, dehydrated and embedded in paraffin blocs. Histological analysis was 
performed on serial 5 μ​m sections stained with Hematoxylin and Eosin. Kidneys were sectioned and glomeruli 
were counted as previously described53.

Figure 5.  The Ret co-receptor GFRα1 is properly located to lipid raft fractions in Dhcr7−/− mice.  
(A) Representative immunoblots of consecutive fractions from wild type and Dhcr7 knockout brain homogenates 
subjected to sucrose density centrifugation. Six equal fractions were taken from the top of the tubes and labeled 
from fraction 1 (non-rafts) to fraction 6 (rafts). Protein in fractions was resolved by SDS-PAGE and probed 
with the indicated antibodies. (B) Relative intensity of GFRα​1 bands (mean ±​ SEM) from three independent 
experiments.
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Cell culture.  Neurons from the sympathetic superior cervical ganglion of newborn Dhcr7 mice cultured 
as described54 with minor modifications. Briefly, ganglia were enzymatically digested, dissociated and plated 
on rat tail collagen-coated dishes in medium containing 50 ng/ml NGF (Alomone labs, Jerusalem, Israel) and 
10% lipid-depleted fetal bovine serum (Life Technologies, Carlsbad, CA) for 5–7 days. For survival experiments 
cells were incubated with the indicated concentrations of GDNF plus 100 ng/ml Fc-GFRα​1 (R & D Systems, 
Minneapolis, MN). Neuronal survival was assessed by counting neurons of designated fields before and after 

Figure 6.  7-DHC supports Ret signaling. (A) MG87 cells were treated or not with Mβ​CD for 30 min to deplete 
cholesterol (stripping), followed by 30 min replenishment step with Mβ​CD alone, loaded with 7-DHC or with 
cholesterol, or with 7-DHC in the presence of the Dhcr7 inhibitor BM15766. Cells were then stimulated with 
GDNF for 10 minutes. Total lysates were resolved by SDS-PAGE and probed with the indicated antibodies.  
(B) Representative extracted ion chromatograms and MS spectrum for 7-DHC and Cholesterol in samples from 
cells replenished with Mβ​CD:7-DHC complexes. Chromatograms shown retention times of the compounds and 
the MS peak used for quantification. The ions selected for quantification was m/z (M +​ H) +​ (−​H2O): 367.3360 
for 7-DHC and m/z (M +​ H) +​ (−​H2O): 369.3519 for cholesterol. (C) Relative abundances of 7-DHC and 
cholesterol measured by means of LC-QTOF-MS in two independent experiments. Numbers indicate the ratio 
of the indicated metabolite (7-DHC or cholesterol) with respect to an internal standard (13C-cholesterol).  
N.d.: not detected.
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treatments at the indicated time points. For immunoblots cells were treated in complete medium as above, 
deprived of NGF overnight, and stimulated for 10 minutes with 50 ng/ml GDNF plus 100 ng/ml Fc-GFRα​1. For 
SCG explants, whole superior cervical ganglion from newborn Dhcr7 mice were dissected and plated in collagen 
matrices in the presence of NGF and charcoal stripped serum (Life Technologies, Carlsbad, CA). Twenty four 
hours later, each well was washed three times with PBS and switched to medium supplemented with GDNF 
(50 ng/ml) and charcoal stripped serum for five days. MG87 fibroblasts stably expressing Ret and GFRα​1 were 
maintained in DMEM plus 10% lipid-depleted FBS.

Metanephric kidney explants.  Metanephroi were dissected from E12.5 embryos, placed on 0.4 μ​m 
pore PTFE inserts (Millipore), and cultured on air-fluid interphase with defined media in the bottom chamber 
[DMEM, 1x ITS supplement (Life Technologies) and 200 nM all-trans retinoic acid (Sigma, St. Louis, MO)]. 
Microscopy images were obtained at the indicated time points, and the number of ureteric buds was counted and 
expressed as percent of wild type. Culture media was changed every 48 h.

Flotation gradients.  A slight modification of the method used by Tansey and collaborators8 was used. 
Brains from newborn mice were homogenized in 0.5 ml of 0.1% Triton lysis buffer [50 mM Tris-HCl (pH 7.4), 
150 mM NaCl, 5 mM EDTA, 0.1% Triton X-100, 10 mM NaF, 1 mM Na2VO4, 50 mM β​-glycerophosphate, 2 mM 
Benzamidine, 1 μ​g/ml leupeptin and 1 μ​g/ml aprotinin] using a dounce tissue grinder, followed by four passages 
through a 22G needle. Homogenates were centrifuged at 3000 rpm at 4 °C for 10 min, and supernatants were 
adjusted to 35% sucrose, placed in a SW55Ti ultracentrifuge tube (Beckman), and overlayed with 3.5 ml of 30% 
Sucrose in 0.1% Triton lysis buffer and 0.5 ml of 0.1% Triton lysis buffer. After centrifugation (4 h, 200,000 ×​ g, 
4 °C), six fractions were collected from the top, TCA-acetone precipitated, air dried, and resuspended in 50 μ​l of 
Laemli sample buffer.

Western blot.  Western blot was conducted as previously described54 using primary antibodies listed in 
Supplementary Table 1. Immunoblots were developed using a VersaDoc device (BioRad, Hercules, CA), and 
densitometry performed using the software package ImageLab (BioRad). Ganglioside GM1 was visualized by 
directly probing membranes with HRP-conjugated cholera toxin B subunit (Millipore).

Whole-mount immunofluorescence.  Tissues were fixed in 4% paraformaldehyde and incubated in 
blocking buffer (PBS containing 0.2% Triton X-100 and 2% BSA) overnight at 4 °C. Tissues were then incubated 
with the indicated primary antibodies (Supplementary Table 1) in blocking buffer overnight at 4 °C, washed 
several times in blocking buffer at room temperature, and incubated with the appropriate DyLight-labeled sec-
ondary antibodies (Jackson ImmunoResearch Europe, Newmarket, Suffolk, UK) for 1 h at room temperature 
(metanephric explants) or overnight at 4 °C (guts).

Manipulation of membrane cholesterol.  Membrane cholesterol was depleted by adding 4 mM Mβ​CD 
(Sigma) dissolved in serum-free medium to cells for 30 min at 37 °C. For replenishment experiments, cholesterol 
depletion with 4mM Mβ​CD was followed by a 30 min incubation with 4 mM Mβ​CD alone, or complexed with 
0.4 mM 7-DHC or 0.4 mM cholesterol in serum free medium. 7-DHC was complexed to Mβ​CD following the 
method of Christian and collaborators55. Briefly, 7-DHC was dissolved in chloroform:methanol 1:1 (v:v) to a con-
centration of 50 mg/ml. An aliquot of this solution was added to a glass tube and evaporated. Then the appropriate 
volume of Mβ​CD dissolved in serum-free medium was added, sonicated and mixed overnight at 37 °C. Solutions 
were filtered through a 0.45 μ​M filter before use. Cholesterol: Mβ​CD complexes were purchased from Sigma and 
adjusted to 1:10 molar ratio with Mβ​CD. When indicated, BM15766 (Sigma) was included at a final concentration 
of 5 μ​M. Cells were then washed three times and stimulated with or without GDNF (50 ng/ml) for ten minutes.

Measurement of 7-DHC and cholesterol.  After depletion/replenishment, cells were lysed in 1 ml of 
ice-cold methanol, scraped off the dishes, and sonicated. Two ml of chloroform (containing 13C cholesterol as 
internal standard) were added to 1 ml of cell lysate and vortexed for 10 s. Then, 0.75 ml of KCl 0.7% were added 
and vortexed for 10 s. The samples were centrifuged at 1000 g during 15 min at 4 °C and chloroform phase (lower) 
was separated in a glass tube, evaporated using a Speed Vac (Thermo Fisher Scientific, Barcelona, Spain) and 
resuspended in 200 μ​l of methanol/chloroform (3:1)56. For LC-Q-TOF-based lipid molecular species analyses, 
lipid extracts were subjected to liquid chromatography-mass-spectrometry using a HPLC 1290 series coupled to 
ESI-Q-TOF MS/MS 6520 (Agilent Technologies, Barcelona, Spain). Two microliters of lipid extract were injected 
onto an XBridge BEH C18 shield column (100 mmL ×​ 2.1 mm ID ×​ 1.7 μ​m; Waters, Milford, MA, USA) kept at 
80 °C. The mobile phases, delivered at 0.5 ml/min, consisted of ammonium formate (20 mM at pH 5) (A) and 
methanol (B). The gradient started at 50% B and reached 70% B in 14 min and was followed by a slow gradient of 
70–90% B over 50 min and an isocratic separation at 90% B for 15 min. The mobile phase B subsequently reached 
100% over 5 min and was maintained for an additional 5 min57. Data were collected in positive electrospray 
ionization-TOF operated in full-scan mode at 100–3000 m/z in an extended dynamic range (2 GHz) (MassHunter 
Data Adquisition Sofware, Agilent Technologies, Barcelona, Spain), using N2 as nebulizer gas (5 L/min,  
300 °C). The capillary voltage was 3500 V with a scan rate of 1 scan/s.

For targeted search of cholesterol, 7-DHC and 13C-cholesterol (internal standard) MassHunter Qualitative 
Analysis Software (Agilent Technologies, Barcelona, Spain) was used. Specifically, “Find by formula” algorithm 
was applied to select the main ion for each compound. These ions ((M +​ H) +​ (−​H2O) =​ 367.3360 for 7-DHC, 
(M +​ H) +​ (−​H2O) =​ 369.3519 for cholesterol and (M +​ H) +​ (−​H2O) =​ 370.3519 for 13C cholesterol) were 
used for metabolite quantification56.



www.nature.com/scientificreports/

1 0Scientific Reports | 6:28534 | DOI: 10.1038/srep28534

Data analysis.  The Shapiro–Wilk test was used to determine whether variables followed a normal distribu-
tion. A Student’s t-test was used to determine differences between normally distributed variables, otherwise a 
Man–Whitney’s U-test was applied. Differences were considered statistically significant when p <​ 0.05.
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