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The role of MscL amphipathic N terminus indicates
a blueprint for bilayer-mediated gating of
mechanosensitive channels
Navid Bavi1,2, D. Marien Cortes3,w, Charles D. Cox1,2, Paul R. Rohde1, Weihong Liu4,w, Joachim W. Deitmer5,

Omid Bavi1,6, Pavel Strop7,w, Adam P. Hill1,2, Douglas Rees7, Ben Corry8, Eduardo Perozo3 & Boris Martinac1,2

The bacterial mechanosensitive channel MscL gates in response to membrane tension as a

result of mechanical force transmitted directly to the channel from the lipid bilayer. MscL

represents an excellent model system to study the basic biophysical principles of

mechanosensory transduction. However, understanding of the essential structural

components that transduce bilayer tension into channel gating remains incomplete. Here

using multiple experimental and computational approaches, we demonstrate that the

amphipathic N-terminal helix of MscL acts as a crucial structural element during

tension-induced gating, both stabilizing the closed state and coupling the channel to the

membrane. We propose that this may also represent a common principle in the gating cycle

of unrelated mechanosensitive ion channels, allowing the coupling of channel conformation to

membrane dynamics.
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M
echanosensitive channels (MSs) are a ubiquitous type of
molecular force sensor1–3. They convert the various
mechanical forces that regulate and define life at all

levels into electrical signals4. For this to occur, the applied
mechanical force must generate a conformational change that
leads to channel gating5. Current knowledge suggests that force
maybe transmitted via the lipid bilayer as shown for bacterial MS
channels, two-pore domain potassium channels and Piezo
channels or via tethering of the channel to structural scaffold
proteins6–10. Indeed, MS channels represent a structurally diverse
class of proteins, a fact that has largely precluded the
identification of a universal ‘force-sensing’ motif11–14. Despite
this lack of structural similarity much of the knowledge of the
basic biophysical principles that govern bilayer-mediated gating
of this class of channels comes from studies of the MS channel of
large conductance (MscL) from Escherichia coli and its
homologues15,16. MscL is a homopentamer, each monomer
consisting of two transmembrane (TM) helices: TM1 lines the
pore and TM2 interacts with the lipid bilayer and is connected to
a coiled-coil C-terminal helical bundle14,17,18. The last structural
feature is an amphipathic N-terminal helix, previously named S1
that is connected to the pore-lining TM1 helix via a glycine hinge
(G14). During gating and in response to forces transmitted
directly from the bilayer, the channel undergoes a large in-plane
area expansion15,19–22, where the pore-lining TM1 helix tilts and
rotates in response to tension, culminating in solvation of a
hydrophobic gate23,24. MscL activation results in the development
of a large non-selective pore with a diameter approaching B3 nm
and a unitary conductance in the range of B3 nS (refs 15,20).

While there is a consensus on most of the major global
conformational changes that occur during gating, the critical role
of the N-terminal helix in MscL gating cycle remains con-
troversial19,25. Two competing models have been proposed. The
first model suggests that the N-terminal domain acts as a second
gate, providing an additional constriction point on top of the
hydrophobic lock formed principally by L19 and V23 (refs 24,26).
This model was largely built on the initial MscL crystal structure14

that was later refined, particularly concerning the position of the
N-terminal helix17. The second model suggested by Blount and
co-workers25 is one in which the N terminus has a close association
with the lipid bilayer and acts as a crucial mechanosensing element.

Here using patch-clamp electrophysiology, site-directed spin-
labelling electron paramagnetic resonance (EPR) spectroscopy
and multiple computational approaches we show that the
N-terminal helix of MscL acts as a dynamic membrane-coupling
element. In its dual role, the N-terminal helix both associates with
the bilayer at the lipid–solvent interface and drives the tilting of
the pore-lining TM1 helix, leading to the radial expansion of the
pore. The juxtaposition of an amphipathic coupling helix (for
example, N terminus) with a pore-lining helix (for example,
TM1) through a flexible linker might also be the architectural
foundation underlying bilayer force transmission in MscS-like
and two-pore domain Kþ (K2P) channels11,27–30. This
mechanism might also be involved in force transduction for
some members of the TRP channel family31. Our data suggest
that the gating mechanism of MscL, a primordial MS, might
reveal a unifying fundamental blueprint that underlies the
mechanosensitivity of structurally unrelated ion channels.

Results
Conservation of the N-terminal helix. The N-terminal helix of
E. coli MscL (EcMscL) is widely conserved throughout its
homologues. While the absolute length of the helix varies among
bacterial species (B10–14 amino acids), there is a conserved
amphipathic region at the distal end of the N-terminal helix,

preceding the pore-lining TM1 helix, with the consensus
sequence F-[K,R]-x-F-[A,I,L]-x-[K,R]-G (Fig. 1a). These helices
have a relatively high % of charged residues (B20–30 %) indi-
cative of interfacial helices (c.f. 5–10 % in TM helices). In addi-
tion, all these N-terminal helices have a net positive charge with
the exception of AbMscL, as one would expect from an intra-
cellular helix, in agreement with the positive inside rule. These
helices also have a high hydrophobic moment (omH4), again a
characteristic of interfacial amphipathic helices (Fig. 1b). Using
the consensus sequence shown in Fig. 1a as a search motif
identifies a number of proteins known to associate and bind to
membranes, for example, phycobiliprotein ApcE, C2 domain
containing proteins and bacterial glucosyltransferase enzymes.

This interfacial positioning is supported by our equilibrated
molecular dynamics (MD) simulations, which are discussed fully
later in the text (Fig. 1c–e).

Interfacial positioning and dynamics of the N-terminal helix.
Although the N-terminal segment could not be modelled in the
original crystallographic analysis of the Mycobacterium tubercu-
losis MscL (MtMscL), a subsequent re-refinement of the original
diffraction data revealed ordered density for this region14,17.
MscL crystals were obtained from a construct with an additional
23 residues at the N terminus, including a decahistidine tag, and
removal of this tag was not necessary for crystal growth. These
residues are presumably disordered in the crystal structure.

To probe both the interfacial nature of the N terminus and the
influence of the N-terminal tag on structure and dynamics, we
generated three different constructs (Supplementary Fig. 1a) with
histidine tags at the N- and C termini, plus an additional
construct with a deleted C-terminal helical bundle (D110).
Individual cysteine mutants were introduced in each construct
background at positions 2–12. In all cases, mutants were purified
as detergent-stabilized (n-Dodecyl b-D-maltoside) pentamers and
were stable at room temperature, as has been the case in previous
studies for the majority of cysteine mutants of EcMscL15,32. This
is taken as an indication that, overall, cysteine mutagenesis does
not have major consequences for the structural integrity of this
region of the channel molecule. However, this is not to suggest
that these mutations are functionally irrelevant (Supplementary
Fig. 1b). Most mutations in the N terminus showed an increased
pressure threshold and many displayed frequent subconducting
states, with one of the most severe in our hands being K5C. In
order to show that, despite this loss of sensitivity, the channel
could still adopt the open state we compared K5C with the wild-
type (WT)-like mutant I24C (Supplementary Fig. 2). The K5C
mutant required more lysophosphatidylcholine (LPC) to gate in
EPR experiments but ultimately reached the fully open state. This
suggests that under conditions that favour ion flux, attaching spin
labels in the N terminus does not preclude the channel from
making the closed to open transition. We also confirmed the
spin-labelling efficiency at these sites using mass spectrometry
(Supplementary Fig. 3).

Initial examination of the EPR spectra derived from the spin-
labelled N terminus mutants (Supplementary Fig. 1a) reveals that
the overall dynamics of this region increases considerably when
the His-tag peptide is covalently attached. Changes in individual
probe mobility were assessed from line shape differences (the
inverse of width in the central resonant line, DH � 1

o ). In
particular, for the N-terminal His-tag constructs spin labels at
positions 2–6 show mobility parameter values typically associated
with flexible loops or disordered regions (DH � 1

o 40.3). When the
His-tag peptide was attached to the C terminus, of either the full
length or truncated channel, local dynamics were periodic,
suggestive of a better-defined secondary structure.
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We then looked specifically at the lipid and water accessibility
of the N-terminal helix using our C-terminally linked His-tag
construct. Figure 2a shows spectra from residues 2 to 12 of the
MscL N-terminal region. The probe mobility (DH � 1

o ) at each of
these positions in the resting state is shown in the upper panel of
Fig. 2b. These values are matched to the individual spectra shown
in Fig. 2a to visualize the degree of mobility of each residue. In
particular, the mobility parameter is high prior to residue E6,
suggesting that even without an N-terminal His-tag the most
proximal end of the N terminus is not helical. Of note there are a
number of residues that are particularly restricted, including K5,
F7 and F10 (Fig. 2b, upper panel). There is also an increase in the
periodicity beginning at F7, indicative of a helical structure, which
matches well with our consensus sequence for the bacterial
N-terminal helices (Fig. 1a). Figure 2b also indicates the degree of
membrane lipid accessibility (O2 collision frequency, PO2) and
accessibility to the aqueous environment (NiEdda collision
frequency, PNiEdda) of residues 2–12 of the N-terminal domain
using power saturation experiments15,33. When we map the
degree of accessibility of all these residues on to the crystal
structure of MscL, we observe not only the interfacial positioning
of the N-terminal domain but also a lipid-accessible inter-subunit
cavity (Fig. 2c). As shown in Fig. 1c–e, this is also supported by
our MD simulations, demonstrating that lipid acyl chains
protrude into these regions in a similar way to that suggested
for MscS34.

Global rearrangement of the N-terminal helix. As a proof of
principle for the dynamic role of the N-terminal domain in the
gating of MscL, we created a novel finite element model. Finite

element (FE) simulations lack the atomistic resolution and
information provided by MD including solvation effects, but the
advantage of FE simulations being computationally inexpensive
means that larger timescales can be probed. The FE models of
MscL presented in this study were developed to provide a
structural framework for a mechanistic understanding of the
gating mechanism of MS channels at the continuum level
(Fig. 3a,b). The FE model displays many of the attributes and
features of MscL channel gating, reflecting well the pore expan-
sion, TM tilting and their movement away from the central
fivefold axis of the channel that is suggested in other studies
(Fig. 3c,d)15,19–22,35–37. Moreover, in the open state, the lipid
bilayer thins B15% (B5 Å), which is in good agreement with
previously reported results38,39. In response to membrane
tension, the TM1 and TM2 helices move together in an
outward radial direction tilting towards the plane of the
membrane. The helical axis for TM1 tilted by 21� with respect
to the central fivefold axis, whereas the TM2 helices tilted by
more than 19�. One important point to note is that the
N-terminal helix begins to align with TM1 as a contiguous
helix in the open state (Fig. 3c). In addition, a stress analysis
illustrates a high level of stress in the N-terminal helix, which
points towards it being an important structural mechanosensing
entity (Fig. 3d).

When we removed the N terminus, the global rearrangements
of the channel were very different under the application of
membrane tension (Fig. 3e–h). The tilt of TM1 was not as
pronounced and the effective pore radius under the same applied
force was almost 50% smaller. The model lacking the N terminus
also displayed a lack of stability. It is important to note that,
because of the instability of the model without the N terminus,
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Figure 1 | Conservation and amphipathic nature of the N-terminal helix in bacterial homologues of MscL. (a) Sequence alignment of MscL homologues

from different bacterial classes with the consensus sequence shown below. (b) Helical wheel diagrams showing the amphipathic nature of the N-terminal

helix of both E. coli (EcMscL) and M. tuberculosis (MtMscL) MscL. Amphipathic helices classically have high hydrophobic moments (40.45 mH). (c,d) This

type of helix with a high hydrophobic moment usually interacts at the interfacial region of a lipid bilayer with the hydrophobic face buried. Here the

orientation of the N-terminal helix parallel to the membrane plane is shown from an equilibrated MD simulation model of EcMscL (see Fig. 4). Here we can

also clearly see how the acyl chains bend over the N-terminal helix and protrude into an inter-subunit cavity. (e) Top view of the N-terminal helix showing

its orientation and membrane association.
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the MscL structures shown in Fig. 3e–h were modelled at half of
the nondimensional membrane tension required for the full
opening. Thus, the structures shown do not represent fully open
states of the channel. Moreover, the ‘effective’ pore only takes into
account the backbone of the helices. This is because of the fact
that both TM1 and TM2 are modelled as elastic rods with a
diameter of 5 Å. Therefore, what we define as the effective pore
does not represent the exact diameter of the hydrophobic
constriction point of the channel. Despite this, the FE model
provides us with insights that can be further probed using EPR,
MD and mutational analysis.

Probing the effect of N-terminal deletions. In order to provide
unequivocal experimental support for the effects of N-terminal
deletion seen in FE simulations, we used sequential deletion of the

N-terminal helix in combination with site-directed spin-labelled
EPR spectroscopy (Fig. 4).

First, all truncations produce loss of sensitivity phenotypes
where expression of these constructs cannot rescue MJF465 E. coli
cells from hypo-osmotic downshock (Fig. 4a)40. The most severe
loss of sensitivity was seen with the D2–7 construct, with all
constructs requiring considerably more force to gate when probed
using patch-clamp electrophysiology (Fig. 4b and Supplementary
Fig. 4)41,42. In the crystal structure of MscL, the N terminus of
one subunit (i) comes within close proximity of TM2 of the
second-next neighbouring channel subunit (iþ 2). Using the
calculated mobility parameter at position M94-SL, as a surrogate
for the mobility of TM2, we see a sharp increase in mobility when
more than five residues were deleted from the N terminus. The
spectra for the WT channel and the deletion mutants in the
resting state are shown in Fig. 4c, and the associated mobility
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Figure 2 | Site-directed spin-labelling analysis of the MscL N terminus. (a) X-band CW-EPR spectra of spin-labelled N-terminal mutants reconstituted

into azolectin liposomes. Spectra are colour-coded according to their overall probe dynamics as shown in the colour gradient (bottom right).

(b) Environmental parameter profiles derived from the spectra in a or from power saturation experiments. Mobility parameter DHo
� 1 (top panel, black

circles), oxygen-accessibility parameter DO2 (centre panel, red squares) and NiEdda-accessibility parameter DNiEdda (bottom panel, blue triangles). A

cartoon of the assigned secondary structure for this segment is shown on top. Bar represents 20 G. (c) EPR-derived structural data mapped on MtMscL.

The side and top (extracellular) views of the mapped EPR data are displayed on solvent-accessible surfaces calculated in UCSF Chimera with a probe radius

of 1.4 Å. Green tones, probe mobility (DHo
� 1). Red tones, oxygen-accessibility parameter (DO2). Blue tones, NiEdda-accessibility parameter (DNiEdda).

The dotted parallel lines represent the putative location of the lipid bilayer.
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parameters (DH � 1
o ) are quantified in Fig. 4d. We also show the

spectra associated with the WT channel in the presence of LPC,
which stabilizes the open state16,43. We can see that once we
remove K5 the spectra of the deletions become progressively
more like those encountered in the presence of LPC. This suggests
that once K5 is removed the TM2 helix becomes more mobile and
is consistent with the idea that an interaction between the N
terminus and TM2 is lost. When we probed these interactions
using MD simulations, we find that in fact a relatively strong
electrostatic interaction is present between Glu residues on the N
terminus (both E6 and E9) on subunit (i) and a Lys residue on
TM2 of the second adjacent subunit (iþ 2; K97), which is
B158.9±21 kcal mol� 1 (Fig. 4e). The K5 residue in fact seems to
interact in a molecular triad with a Glu residue that resides in the
loops between TM2 and the C-terminal bundle on the adjacent
subunit (E108) and the phosphate of the head group of a
phosphatidylethanolamine (PE) molecule (Fig. 4f). This image
again clearly shows that a lipid acyl chain protrudes into the
inter-subunit cavity. This type of interaction with a phosphate
group provides the necessary interaction between the channel and
the bilayer, although not discriminating against the lipid type, an
observation supported by the non-selective binding of lipids to
MscL in Laganowsky et al.44.

Structural rearrangements at the N terminus probed using EPR.
Using LPC/PC mixtures, we proceeded to investigate the
conformation of the N terminus as it transitions into the open
state to complement our FE simulations. Figure 5a shows the
spectra of each individual N-terminal domain residue (2–12) in
the presence (Red) and absence (Black) of LPC. The difference in
the mobility parameter and lipid and aqueous accessibilities are
then quantified in Fig. 5b as discussed previously. Here the resting
conformation is shown with open grey symbols and the filled
symbols represent LPC-treated experiments. There is a large and
periodic increase in NiEdda (aqueous) accessibility at positions 5
and 9. This ‘face’ of the helix is opposite to the side with the large
O2 (lipid) exposure, which includes residues 4, 7, 10 and 11. The
full periodicity of the N-terminal region shown in the upper panel
of Fig. 5b suggests that the N-terminal region is fully helical in the
open state. Combined with the lipid and aqueous accessibility
shown in Fig. 5b, we show that the N terminus is forming a single
contiguous helix with TM1. In light of our structural model of
open MscL we suggest that the transition into a fully helical
conformation helps extend the now tilted TM1 to span the length
of the bilayer15.

Simulating the extension of the Gly14 linker. All the data so far
support the integral role of the interfacial N-terminal helix as an
essential force transducing element in the gating cycle of MscL.
Given this importance, we wanted to further probe how the
connection between the N-terminal domain and TM1 affects
force transmission. In order to do this we extended the Gly14
linker that attaches it to the pore-lining TM1 helix. The idea here
is that increasing the linker length will impair the transmission of
mechanical force from the N terminus to the pore-lining helix.
This was achieved by the insertion of extra glycine residues
(either þ 2 or þ 5) in addition to the native Gly14
(Supplementary Fig. 5). Glycine was chosen because of its
inherent flexibility and low helical propensity.

Figure 3 | The crucial role of the N-terminal domain in the gating of MscL

shown by a parametric FE simulation. (a) Mesh representation of a

subunit of WT EcMscL obtained from an EcMscL homology model based on

MtMscL (PDB: 2OAR; left panel—red mesh)17 and the FE model of a

subunit of EcMscL without the C-terminal domain (right panel—solid red

rods). The a-helices are modelled as elastic rods and the loops are

modelled as nonlinear springs. (b) The FE structure of EcMscL is embedded

into the lipid bilayer with the mesh distribution shown. (c) Superposition of

FE EcMscL open structure with a previously obtained restrained MD

simulation of EcMscL20. (d) Effective (Von Mises) stress distribution in the

open state (top view). The membrane tensional stress is made

dimensionless using the Young’s modulus of EcMscL, E, that is, stress/E.

The nondimensional stress is 0.6. (e,f) Channel pore in an expanded state,

with and without the N terminus (top view). The nondimensional exerted

stress on the membrane is 0.3 in both models, and thus they do not

represent fully open structures20,35. The light grey dashed circles in e,f

represent the position of the effective pore with respect to the plane of the

membrane. This diameter is, however, not the actual pore size, since it does

not show the side chains on each TM1. The effective pore diameter of the

WT model is B24 Å, and the model that lacks the N terminus is B18 Å. (g)

Side view of a WT subunit showing that the angle between the N-terminal

domain and the TM1 helix increases as the channel begins to gate.

Moreover, they both tilt upwards towards the membrane midplane as the

membrane is stretched. (h) TM1 has less out-of-plane tilting in the absence

of the N terminus (y*¼ 33�) compared with the WT channel (y¼45�).

Overall, these results suggest that the N-terminal helices have a significant

role in transferring the force from the lipid to the pore-lining TM1 helix,

guiding both its tilting and expansion.
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Our MD simulations were carried out using an optimized
homology model of EcMscL based on the crystal structure of
MtMscL and the C-terminal region of EcMscL from a recent
crystal structure reported by the Rees group17,18. We then
equilibrated a WT model and a model containing the additional
five glycines (þ 5G) in a POPE (1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphoethanolamine) bilayer for 62 ns (Supplementary
Fig. 6a,b). POPE was chosen as E. coli membranes contain
460% PE. The þ 5G mutant in the equilibrated closed state
(after 62 ns) is more expanded, with an angle between the
N-terminal helix and TM1 of 147±3� compared with 136±3�
(mean±s.e.m.) in the WT channel (Fig. 6a–d). The s.e. is
measured based on the difference observed among the angles in
the five subunits over three repeated simulations (Supplementary
Figs 5– 7). Consequently, the upper regions of the þ 5 G model in
the closed state are substantially more expanded compared with
WT because of the increased tilt of TM1 helices (Fig. 6c,d; repeats
shown in Supplementary Figs 6 and 7). This also corresponds to a
slight movement of the hydrophobic gate, which in the þ 5G
mutant is centred around the V23 residue, whereas in the WT the
gate is a composite of both L19 and V23 (Fig. 6 and
Supplementary Fig. 7).

In order to see a partial gating transition over the time frame of
our simulations (B270 ns), it was necessary to apply higher
tensional forces than those defined experimentally, taking into
account that the first and midpoint activation tensions of MscL
are 9 and 12 mNm� 1, respectively43. We used 75 and
100 mNm� 1 surface tension, but in an NgPzT ensemble45.
This means when a surface tension of 75 mNm� 1 is applied to a
POPE bilayer, the bilayer is only stressed by B25 mNm� 1

(Supplementary Fig. 6c). This is because each lipid bilayer has an
intrinsic surface tension (for example, B50 mNm� 1 for POPE)
to keep its area per lipid constant when it is stress-free46,
otherwise the bilayer would shrink45. Therefore, when we set the
surface tension to 75 mNm� 1, in fact we are increasing the
surface tension of the bilayer by B25 mNm� 1. In order to
systematically show this, we have calculated the surface tension of
the bilayer in the presence of MscL when it is stress-free and
when it is stressed. Thus, the highest value we applied on our lipid
bilayer is actually 3–5� of the experimental value. Using higher
membrane tension than the experimental range for MscL
activation is a common issue with these types of MD
simulations. However, it is currently a ‘necessary evil’ in order
to be able to capture full gating transitions, given existing limited
computational timescales.

Our expanded structure obtained from MD simulations aligns
well with the expanded structure in our FE model
(Supplementary Table 1). This is a clear illustration that the FE
model shows a similar trajectory to that of MD simulations, in
particular, the formation of an almost contiguous helix (Fig. 6a–e
and Fig. 3c) and is consistent with our extensive EPR data. It is
important to note here that the addition of extra glycines does not
affect the total lipid–protein interaction energy of our N-terminal
helices, and it is instead a completely mechanistic insertion
designed for testing our hypothesis (total interaction energy of the
N terminus (the initial 13 residues) with the bilayer; WT
797.7±44 kcal mol� 1, þ 5G mutant 841.3±63 kcal mol� 1).
Moreover, the interaction of the added five glycine residues with
the lipid bilayer is in comparison negligible during our
simulations (o1.6 kcal mol� 1).

After 268 ns of MD simulation under identical conditions (for
the exact force regimen see Methods), the level of upward tilting
of TM1 is not as pronounced in the þ 5G mutant when
compared with the WT (Fig. 6b, side view). In addition, the pore
of the WT model is substantially more expanded than the pore in
the þ 5G model (Fig. 6b,e). This is because of the significant role
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Figure 4 | Probing the functional role of the N-terminal domain and the

physical interaction between the N terminus and TM2 by deletion

analysis. (a) Survival of MJF465 (MscL� MscS� MscK� ) E. coli expressing

different deletion constructs of MscL after downshock from LB supplemented

with 500 mM NaCl to LB (B1,000 mOsm). Data shown as box plots indicating

the mean, 25 and 75 percentile (box) and ±s.d. (capped lines). (b) Midpoint of

pressure activation of individual deletion constructs determined from

multichannel patches (n¼4, D2–7, n¼ 3; mean±s.d.). The dotted horizontal

line represents the mean value for WT MscL. (c) Local dynamics at the

intracellular end of TM2 (spin-labelled at position M94) as a function of

N-terminal deletions. Left, cartoon representation of subunits i and iþ 2

showing the position of the spin-labelling site (blue sphere) and the individual

residues in the N terminus that were deleted (red spheres). Right, EPR spectra

of M94-SL in a WT background, four different deletions (D2–4, D2–5, D2–6 and

D2–7) and the WT background opened in the presence of LPCs. The N-terminal

sequence of MscL is shown with the region of deleted residues in red. Bar

represents 20 G. (d) Calculated mobility parameter at position M94-SL for the

different spin-labelled constructs in a,c. (e) A cartoon representation of the

electrostatic interaction of the Glu (E6 and E9) residues on subunits i with Lys

(K97) residue of the second adjacent (iþ 2) subunit. (f) A cartoon

representation of the electrostatic interaction of the Lys (K5) residue on

subunits i with Glu (E108) residue of the adjacent (iþ 1) subunit and phosphate

group of a POPE lipid molecule. The position of M94 has been indicated as a

purple sphere with respect to these residues in e,f.
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of the N-terminal domain in tilting TM1 in the membrane plane
and in expanding the pore by driving the movement of TM1 away
from the central axis of the pore. This ability is impaired by
extending the Gly14 linker between the N terminus and TM1. To
be able to expand the þ 5G pore to the same level as the WT
pore, the same level of tension is needed for a further 5 ns
(Fig. 6c–f).

Here we should also note that during the expansion of the WT
model the tight association of the lipid molecules with the
N-terminal helix is conserved (Fig. 2c–e). While these lipids are
‘dragged’ away from protruding into the structure (Fig. 1c–e),
their interactions with the protein, nevertheless, remain.

Electrophysiological effects of extending the Gly14 linker. In
order to examine the functionality of mutant MscL channels with
extended Gly14 linkers (þ 2G and þ 5G mutants), we purified
the proteins and reconstituted them into azolectin liposomes
(Fig. 7a–d). Owing to the complexity of electrophysiological
patches and the impact of pipette geometry on membrane tension
here we use MscS as a gauge to determine whether the extension
of the linker between the N-terminal and the TM1 helix affects
the MscL activation threshold47,48. When co-reconstituted with
MscS, a severe loss of sensitivity to applied force was seen for both
the þ 2G and þ 5G mutants (WT P1/2 ratio: 1.8±0.07
(n¼ 6)þ 2G P1/2 ratio: 2.6±0.06 (n¼ 8) and þ 5G P1/2 ratio:
3.0±0.21 (n¼ 9)). In addition to these pronounced effects on
opening, the lengthening of the G14 linker also mildly delayed
closing (pressure-of-first-opening/pressure-of-last-closing ratio—
WT: 1.0±0.03 (n¼ 11), þ 5G 1.5±0.12 (n¼ 19)) (Fig. 7d,e and
Supplementary Fig. 9). However, the effect on closing was not as
large as the effect on the mechanical force required to open the
channel.

We saw the same loss of sensitivity in native membranes of
E. coli spheroplasts (MJF612: MscL� , MscS� , MscK� and
YbdG� ) when expressed with MscS (Supplementary Fig. 8). In
fact, it was extremely difficult to apply sufficient force to gate the

þ 5G mutant in spheroplasts and this is why we chose to
characterize these channels in liposomes (Supplementary Fig. 9).

The N terminus dictates the conformational freedom of TM1.
One striking feature of extending the glycine linker between the
N-terminal helix and the pore-lining TM1 helix is the change in
single-channel activity. The þ 5G mutant gates almost exclu-
sively in substates (Fig. 7f), making estimation of the channel
unitary conductance difficult. This is indicative of the increased
conformational freedom of TM1 enabled by the partial decou-
pling of the N-terminal helix. In the WT channel this tight link
coordinates the movement of single monomers within the
channel pentamer by efficiently coupling membrane tension to
the TM1 helix of a single subunit.

Further mutational analysis of the Gly14 linker reveals its
crucial role and the necessity for a relatively small hydrophilic
residue in this region. Substitution with large residues prevented
channel function completely (V, W), while the channel continued
to function with polar side chains (S, Q, E, R; Fig. 7g). Deletion of
G14 resulted in channels that were spontaneously active, giving
rise to a ‘leaky’ phenotype and retarded growth in E. coli. The
activity represented gating in lower substates, and full channel
openings could not be seen even with the application of high
pressure to the patch pipette (Fig. 7g). This may well be because
of a repositioning of the N-terminal helix as a result of a loss of
the ‘kink’ formed by G14. This is again further support for the
stabilizing role of the N-terminal helix in the closed state of MscL.

Discussion
Here we have fully investigated the role of the amphipathic
N-terminal helix in the gating cycle of E. coli MscL. These types of
helices are present in all sorts of membrane-associated proteins
(not just membrane-spanning channels) and were first suggested
by Segrest et al. 49 to interact directly with the lipid bilayer.
Mutagenic studies have previously shown the importance of this
region in gating, particularly the phenylalanine residues25,41,50.
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Using an interwoven multidisciplinary approach combining
experiment and simulation, we show that the short
amphipathic N-terminal helix of MscL acts as a horizontal
coupling helix linking membrane bilayer dynamics to protein
conformation, as initially proposed by Iscla et al.25. Our
simulations and EPR spectroscopy data suggest a firm
interaction between the amphipathic N-terminal helices of

MscL and the lipid bilayer, with numerous residues buried
within the acyl chains (Figs 1 and 2 and Supplementary Fig. 10).
This fits well with the work of Blount and colleagues, showing
that mutating these buried hydrophobic residues, especially F7
and F10, results in channels with a higher activation
threshold25,51. Thus, we postulate that the N-terminal helix (or
its equivalent) is essential in the process of coupling bilayer forces
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to the pore-forming helices in a plethora of MS channels, a fact
supported by robust experimental and computational data from
numerous laboratories11,27–31,52.

Further, our MD simulations show that the acyl chains of the
lipid molecules deform around the N terminus and protrude into
an inter-subunit cavity, in agreement with recent observations in
the bacterial channel MscS, and suggested for the two-pore
domain potassium channel TRAAK (Fig. 8)11,30,34. We note that,
while the acyl chains are removed from these cavities during
gating, they still have a tight association with the N-terminal helix
(Supplementary Fig. 11). Therefore, rather than a gating
mechanism based on entropy-driven lipid acyl chain removal,
MscL appears to open as a result of the direct ‘pulling’ of
structural elements in the channel such as the N-terminal helix.
Thus, the ‘exclusion’ of acyl chains from these cavities seems to be
a consequence rather than a cause of MscL gating.

A critical finding in this study was that, during MscL
activation, the N-terminal helix becomes a long, contiguous helix
with TM1, as shown by EPR spectroscopy and FE/MD
simulations (Figs 3 and 5). Overall, the results from FE and
MD are very comparable as shown in the Supplementary Table 1.
The overall stress map with high intensity in the N-terminal
domain is consistent with the stress values determined by our and
previous MD simulations (Supplementary Fig. 11)53. Complete
deletion of the N terminus in our FE model resulted in a channel
significantly less sensitive to applied membrane tension. This fact
is clearly shown by the reduced pore expansion in our model that
lacks the N terminus (Fig. 3e,f) and suggests that the N-terminal
helix is an essential mechanosensing entity within the MscL
structure. This is supported by electrophysiological data and
hypo-osmotic downshock experiments, which demonstrated
abrogated function of sequential N-terminal deletion constructs.
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EPR and MD simulations reveal that there are also essential
interactions between the N terminus and the TM2 helix of the
second subunit neighbour (iþ 2) in addition to the adjacent
neighbour. These tight interactions define the conformational
freedom of the TM2 helix (Fig. 4).

On the basis of the present data set and simulations, we suggest
that the ‘force from lipids’ is transmitted to the MscL pore-lining
TM1 helices via the N terminus. This amphipathic helix would
guide the tilting and movement of the five TM1 helices in a
coordinated manner, magnifying the resulting pore expansion.
Specifically, the conformational rearrangement that establishes

the continuity between the N terminus and the intracellular end
of the pore-lining TM1 helix allows a putative radial force on the
N terminus to be transduced into increased tilt in the TM1 helix
relative to the membrane. In this scenario, the link between the N
terminus and TM1 (G14) is likely to play a critical role in
mechanical coupling. Indeed, deletion of G14 leads to a ‘leaky’
phenotype with continuous spontaneous activity at subconduct-
ing levels (Fig. 7g). This suggests that G14 likely acts as a hinge,
positioning the N-terminal parallel to the membrane plane at the
bilayer-solvent interface and that its structural flexibility is crucial
for stabilizing TM1 (and thus, the closed state). This proposal is
further supported by our site-directed mutagenesis at this
position where less flexible residues (W, V) do not give rise to
channel currents but more flexible polar residues do54, where a
serine mutation gives rise to WT-like currents.

By averaging all the subunits, the N-terminal helix moves quite
significantly in the radial direction during gating: 8.3±1.3 Å in
MD simulations and 10.5±0.5 in FE simulations (Supplementary
Table 1 and Supplementary Movie 1 and Supplementary Software
1). To further address the mechanism of force transmission from
the N terminus to the TM1 helix, we designed mutants where the
N-terminal/TM1 linker was extended by the addition of two or
five glycines. In electrophysiology experiments, the linker
extension resulted in channels with a much higher gating
threshold, with these channels gating almost exclusively in
substates because of the lack of coordinated movement of single
subunits of the channel pentamer. A simple explanation for this is
that the resulting increase in conformational freedom of the TM1
helix associated with this partial decoupling from the N terminus
results in an abrogated ability of forces felt by the N terminus to
be transferred to the TM1 helix. From MD simulations, the
addition of five glycines should not affect the total interaction
energy between the N termini and the bilayer. Our equilibrated
þ 5G model displays a more expanded state, indicative of the
partial decoupling of TM1 helices from the N termini, ultimately
preventing the N-terminal stabilization of the closed state (Fig. 6).
These results are in agreement with the recently published
structural data on the role of the N-terminal domain in stabilizing
the closed state of an archaeal MscL homologue MaMscL55.
Therefore, in addition to the mechanosensing residues at the rim
of MscL, for example, F78 (ref. 56), we conclusively show that the
force transmission from the bilayer to the N terminus and thus to
TM1 is an essential driver of both the tilting of TM1 and the
radial expansion of the channel pore (Fig. 8a).

Horizontal membrane-coupling helices, such as the N-terminal
domain of MscL, appear to be a hallmark of MS channels that
gate according to the force from lipid paradigm and seems to be
independent of their evolutionary provenance (Fig. 8b). These
helices can be partly buried as we have shown here for the
N terminus of MscL. This may also be the case for TM3b of MscS
(it is important to note here that there are differing schools of
thought regarding the exact gating cycle34,57) and the S4–S5
linker of TRPV4 (refs 31,52). Alternatively, these mechanical-
force-coupling helices may be adsorbed on the membrane surface
through electrostatic interactions. Such regions are seen in the
current crystal structures of TREK1/2 and TRAAK where the
lower half of these channels seem to have a tight association with
the lipid bilayer11,12,30,58. In addition, the distal C terminus in
these force-sensitive K2P channels, which is not seen in any of the
TREK crystal structures, is predicted to be an extended
amphipathic helix functionally essential for mechanically
induced gating27–29. Regardless of the complexity of the gating
paradigms for these individual classes of channels, these
horizontal force-transmitting helices have repeatedly been
shown to play integral roles in the transmission of mechanical
stimuli according to the force from the lipid concept12,15,33,59,60.
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Horizontal membrane-coupling helices seem to be a hallmark of

mechanosensitive channels. These helices maybe buried as in the N

terminus of MscL, TM3b of MscS and the S4–S5 linker of TRPV4 or

adsorbed on the membrane surface as in the C terminus of TREK channels.

Owing to the various types of lipids present in different organisms and the

divergent ways in which these coupling helices can interact, there is little to

no necessity for sequence conservation despite the fact that they play an

almost identical role.
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Owing to the various types of lipids present in different
organisms and the divergent ways, these coupling helices can
interact (buried, adsorbed); there is little to no expectation for
sequence conservation, despite the fact that they play an almost
identical mechanical role. Given that Piezo1 has recently been
shown to be gated according to the force from the lipid
paradigm10, we speculate, taking into account functional data61,
that the a4anchor, which runs roughly parallel to the inner bilayer
leaflet13, may also serve the same purpose in the gating of Piezo1
channels as the N terminus does for MscL.

Methods
Bioinformatics. Sequence alignments were carried out using Clustal Omega. Motifs
were defined using Prosite. The following consensus motif was used to search
UniProt for proteins containing a similar sequence: F-[K,R]-x-F-[A,I,L]-x-[K,R]-G.
Helical wheel diagrams and hydrophobic moment (omH4) were calculated using
HeliQuest.

FE model. Owing to large deformations during MscL gating, we employed an FE
computational method implemented in the ABAQUS commercial software
(Abaqus/Standard; Dassault Systems Simulia Dassault Systemes Simulia Corp.,
Providence, RI, USA). In our model, the a-helices are modelled as elastic rods and
the loops are modelled as nonlinear wires. Elastic rods are fitted to the orientation
of backbone carbons of each TM helix, while the loops are modelled as nonlinear
wires. Although our FE model shares similarities with the previous FE mod-
els36,38,62, it differs from those in several important aspects as follows. Our model is
based on a homology model of a more recent MscL crystal structure
(PDB: 2OAR)17, showing that the N terminus connects the TM1 helix to the lipid
bilayer almost perpendicularly to TM1. The C-terminal helices are not included as
it has been shown that they have negligible effect on the gating of EcMscL41,63.
Glycine 14 (G14) between the N terminus and TM1 is modelled by a Hinge
Connector available in ABAQUS, reflecting the flexible nature of this residue. To
more accurately capture the lipid bilayer behaviour during gating, a mean field-like
lateral pressure profile for the bilayer is considered in the tail and head regions (see
ref. 47 for further details). This way, unlike the previous FE models36,38,62, our
simulation does not require any assignment of mechanical properties for different
areas of the lipid bilayer. Moreover, a nondimensional FE analysis is carried out,
which is independent of the protein elasticity modulus. The applied tensional stress
on the membrane as well as the stress outputs are also nondimensionalized using
the overall Young’s modulus of the protein. Pairwise interactions between the lipid
and outer surface of the TM helices are defined by fitting a van der Waals (vdw)
stress function64. The surface interaction stress can be computed as a function of
the distance between two hydrophobic surfaces by adopting the following
equation47.

S ¼ �AH=6pD3 ð1Þ

Here S is the stress, AH is the Hamaker constant and D is the distance between
the two surfaces. The normal tractions can be positive, indicating an attractive
interaction between the surfaces, or negative, in the case of repulsive forces. The
resulting expression of intralayer contact interactions has been implemented in an
ABAQUS-user subroutine called UINTER for computing the vdw stresses. The
lipid bilayer inner surface and the outer surface of each TM helix are defined as the
master and slave surfaces, respectively. The UINTER subroutine is called for each
individual slave node at every time increment through the analysis. Inputs to this
subroutine are the initial and the incremental relative positions of each slave node
with respect to its closest point on the master surface. The constitutive calculation
thus involves computing the tractions based on the increments in relative position
of the slave node with respect to the master surface. The energetic interaction
constants are obtained from fitting equation (1) to the overall interaction energies
obtained from our MD simulation of MscL in a POPE lipid bilayer. As a result, a
Hamaker constant of B21(±3)� 10� 21 J is obtained at the equilibrium state.

In the EcMscL crystal structure, the TM1 and TM2 helices of adjacent subunits
have a very large contact area stabilized by vdw interactions, and their crossing
angle is slightly positive (B10�). The contacts in the channel area involve the TM1
helices of the two adjacent subunits (crossing angle B–43�) and two TM2 helices:
one within the same subunit (crossing angle B135�) and the second from an
adjacent subunit (crossing angle B169�). The TM2 helices of neighbouring
subunits do not directly contact each other, but are separated by B20 Å
(refs 14,17). N-terminal helices make an B95� link, with the TM1 close to the pore
with the upper half of the N terminus buried in the lipid bilayer. Interhelical
interactions are ignored for simplicity and more importantly to check the gating
characteristics of MscL when only force transmitted from the membrane is
considered. Before any FE analysis, a mesh-sensitivity study was carried out to
ensure the independence of the results from the computational mesh. All the FE
computational analyses were conducted using a CPU 2.4 GHZ, 8-Gigabyte RAM
and at the maximum run time of B5 h.

MD simulations. All MD simulations were performed with NAMD2.10 (ref. 65).
Visual MD (VMD)66, Pymol and UCSF Chimera were used for all visualizations.
The three-dimensional structure of E. coli MscL and þ 5G mutant EcMscL were
generated based on the crystal structure of the MscL homologue of M. tuberculosis
(PDB ID: 2OAR) using Phyre2,67 and Swiss-Model68.

The resultant MscL models were embedded into a POPE bilayer comprising 222
lipid molecules using the VMD software. After deletion of lipids inside the channel
and those in very close proximity to the protein (o5 Å), the lipid heads and tails
were in turn randomized and equilibrated for B1 ns at 298 K, while the rest of the
system was fixed. The protein and lipids were next solvated with a
120� 120� 130–Å water box and 200 mM KCl. The TIP3P water molecule model
was used along with the SOLVATE programme. A further randomization of the
POPE lipid tails was performed, with the rest of system being fixed. Lipid, water
and ions packed around the protein for 1 ns with the Ca atoms of the protein were
restrained with a spring constant of 5 KJ mol� 1 Å� 2 at constant pressure (1 atm).
Then, the whole system was equilibrated for 62 ns with a time step of 2 fs with no
restraints. The equilibration step (62 ns) was run three times for each of the WT
and the þ 5G mutant models. After equilibration to see the channel expansion, a
surface tension of 75 mN m� 1 was applied on the lipid molecules for 200 ns with a
time step of 1 fs in an NgPzT (constant surface tension, constant pressure and
constant temperature) ensemble (262 ns total simulation time). To see a partial
gating event of the WT and þ 5G mutated channels, a further 25 mNm� 1 was
added to the previous surface tension (100 mNm� 1 in total) and applied to the
membrane for another 6 ns (268 ns in total) and 11 ns (273 ns in total), respectively
(1 fs time step). In all the simulations, the particle-mesh Ewald method was used
for computing electrostatic interactions beyond a real-space cutoff of 1.2 nm with a
Fourier grid spacing of 0.1 nm. A modified Nosé–Hoover Langevin piston pressure
control provided in NAMD was utilized to control fluctuations in the barostat (at
1 atm). This method is combined with a method of temperature control (at 298 K;
Langevin dynamics) in order to simulate the NPT ensemble. The CHARMM c36
Force field was used for all MD calculations. The pore shape of closed and open
MscL channels was interrogated using the HOLE programme with a probe of 1 Å
radius using the CHARMM36 vdw radii for the protein and energetic calculations
done using the NAMD energy plugin.

We wrote custom tcl codes (Supplementary Software 1) for calculating the
interaction energies, thickness, tilt angle and movement of the N-terminal helix. All
custom-written codes are available for download.

Mutagenesis and construct generation. In order to probe the role of the
N-terminal helix, we created constructs that expressed MscL with a hexahistidine
fusion purification tag specifically on the C terminus to prevent the tag from
interfering with N-terminal gating mechanisms that were to be analysed by elec-
trophysiology. MscL was subcloned into pETDuet-1 vector (Novagen) by PCR
using PfuUltra (Agilent) thermostable DNA polymerase. The PCR primers
(IDT; ‘BsaI-MscL-F’ acttaaGGTCTCcCATGCGCGGGAACGTGGTGGATTT and
‘HindIII-MscL-6his-stop’ tagctaAAGCTTTTAGTGGTGGTGGTGGTGGTGAGA
GCGGTTATTCTGCTCTT) were used to amplify the WT E. coli MscL-coding
sequence for the ligation into the NcoI and HindIII sites of pETDuet-1 after the
PCR product had been digested with BsaI and HindIII-HF restriction enzymes
(New England Biolabs). The reverse primer coded to the last WT amino acid,
immediately followed by hexahistidine purification fusion tag and stop codon,
while the forward primer allowed translation to start with the native start
methionine. The construct allows MscL expression by T7 RNA polymerase-based
E. coli extract cell-free synthesis systems (Exiprogen, Bioneer) or by E. coli
recombinant culture systems compatible with the T7 RNA polymerase promoter.

Two extra glycines were inserted into the N-terminal MscL domain of the above
construct immediately before G14 using a ‘Quikchange’ site-directed mutagenesis
method employing the following primers: ‘MscL R13RþGG-S’ GAATTTCGCGA
ATTTGCGATGCGCGGTGGTGGGAACGTGGTGGATTTGGCGGTG and ‘MscL
R13RþGG-AS’ CACCGCCAAATCCACCACGTTCCCACCACCGCGCATCGCAA
ATTCGCGAAATTC.

The construct to encode for five extra glycines adjacent to G14 was constructed
by performing megaprimer site-directed mutagenesis to the above ‘þ 2G’
construct. The primary megaprimer PCR reaction used the following primer ‘MscL
R13RþGGGGG-S’ GAATTTCGCGAATTTGCGATGCGCGGTGGTGGTGGTG
GTGGGAACGTGGTGGATTTGGCGGTG (to insert three more glycines ahead of
the two extra glycines), with the ‘HindIII-MscL-6his-stop’ primer. The secondary
megaprimer PCR reaction used the resulting primary PCR product as a reverse
primer with the ‘BsaI-MscL-F’ primer to create a full-length þ 5G MscL
C-terminal hexahistidine insert to be cloned as above into pETDuet-1.

Protein purification and incorporation into liposomes. MscS and MscL were
purified using immobilized metal affinity chromatography and either 6� - or
10� -His-tag combined with size exclusion chromatography69. Final elution
buffers contained 1-mM n-Dodecyl b-D-maltoside for both channel proteins.
Reconstitution into soybean azolectin (Sigma, CA) liposomes was carried out using
the dehydration/rehydration (D/R) method69,70. Briefly, mixed lipids were
dissolved in chloroform and dried under N2 flow to make a thin lipid film. D/R
buffer (200 mM KCl, 5 mM HEPES, adjusted to pH 7.2 with KOH) was added
before vortexing and in subsequent 10 min of sonication. MscS and MscL were
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added at a protein-to-lipid ratio of 1:500 (w/w) and incubated at 4 �C for 1 h.
Detergent was removed with the addition of Biobeads (Bio-Rad, Hercules, CA) and
incubated at 4 �C for further 3 h. The proteoliposomes were collected by
ultracentrifugation and resuspended in 30 ml D/R buffer. Aliquots of
proteoliposomes were spotted on cover slips and dehydrated overnight under
vacuum conditions at 4 �C. The dried proteoliposomes were then rehydrated with
D/R buffer at 4 �C for at least 6 h and subsequently used for electrophysiological
experimentation.

Spheroplast preparation. E. coli spheroplasts were prepared as using a standar-
dized protocol43,70. Briefly, MJF465 (DkefA::kan,DyggB,DmscL::Cm) or MJF612
(Dybdg::apr,DkefA::kan,DyggB,DmscL::Cm) cells were grown for 1.5 h in the
presence of the cephalosporin-type antibiotic cephalexin (final concentration
60mg ml� 1) to form E. coli snakes (length � 50 to 150 mm). Cells were then
digested for 3–7 min in the presence of 0.8 M sucrose, 60 mM TRIS, pH 7.2,
lysozyme (final concentration 0.2 mg ml� 1) and EDTA (6.3 mM). A stop solution
(0.8 M sucrose, 20 mM MgCl2, 60 mM TRIS pH 7.2) was added, and the
spheroplasts were collected by centrifugation.

Electrophysiology. An aliquot of proteoliposomes (1–3 ml) was introduced into
the recording chamber. Channel activity of WT MscL and mutant proteins (þ 2G
and þ 5G) were co-reconstituted with the WT MscS channel and examined in
inside-out azolectin liposome patches using the patch-clamp technique43.
Borosilicate glass pipettes (Drammond Scientific Co, Broomall, PA) were pulled
using a micropipette puller (PP-83; Narishige, Tokyo, Japan). Pipettes with
resistance of 3.0–5.0 MO were used for the patch-clamp experiments. Pipette and
bath solution contained 200 mM KCl, 40 mM MgCl2 and 5 mM HEPES (pH 7.2
adjusted with KOH). In the case of spheroplast patching, the bath solution was
supplemented with 400 mM sucrose. The current was amplified with an Axopatch
200B amplifier (Molecular Devices, Sunnyvale, CA), filtered at 5 kHz and data
acquired at 20 kHz with a Digidata 1440A interface using pCLAMP 10 acquisition
software (Molecular Devices) and stored in a personal computer. Negative pressure
was applied manually with a syringe or High-Speed Pressure Clamp-1 apparatus
(HSPC-1; ALA Scientific Instruments, Farmingdale, NY) and was monitored with a
pressure gauge (PM 015R, World Precision Instruments, Sarasota, FL).

Survivability of MJF465 cells. Survival of MJF465 (DkefA::-
kan,DyggB,DmscL::Cm) E. coli expressing different N-terminal deletion constructs
of EcMscL after osmotic downshock from LB supplemented with 500 mM NaCl
(B1,000 mOsm) to LB was carried out using a standardized protocol40. Briefly,
cells were exposed to osmotic downshock or control conditions for 15 mins, and
10ml of a fivefold dilution was aliquoted on an agar plate. Plates were incubated
overnight and the resulting number of colonies was counted the next day.

Spin-labelling and EPR spectroscopy. The purified MscL mutant proteins were
spin-labelled overnight with methanethiosulfonate spin label (Toronto Research) at
a 10:1 label/channel molar ratio and were reconstituted at a 500:1 lipid/channel
molar ratio by dilution in PBS16. Consequently, in a fully labelled channel, each of
the five subunits had one spin label attached. EPR spectroscopy was performed
using X-band CW EPR spectra obtained in a Bruker EMX spectrometer fitted with
a loop–gap resonator at 2-mW incident power, 100 kHz modulation frequency and
1 G modulation amplitude16. The accessibility parameter used in this study to
quantify the extent of solvent accessibility in a per-residue basis reports on the
individual collision frequency of a nitroxide spin label with paramagnetic test
compounds, and it is derived from the midpoints of signal saturation at increasing
microwave powers. Power saturation curves were obtained for each spin-labelled
mutant after equilibration in N2 as control, and air (21% O2), and N2 in the
presence of 200 mM NiEdda as relaxing agents. All EPR data were obtained at
room temperature.

Statistical analysis. One-way analysis of variance combined with a Holm–Šı́dák
post hoc test (Fig. 7 and Supplementary Fig. 8) or Student’s t-test (Supplementary
Fig. 9) were used for statistical analysis and differences were considered significant
at Po0.01. Statistical significance was confirmed in groups with low n number
using non-parametric Kruskal–Wallis test. The number of experiments and
replicates is mentioned in the figure legends. The values are mean±s.e.m., unless
otherwise specified.

Data availability. The authors confirm that the data that support the findings of
this study are available from the corresponding author upon reasonable request.
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11. Brohawn, S. G., del Mármol, J. & MacKinnon, R. Crystal structure of the
human K2P TRAAK, a lipid-and mechano-sensitive Kþ ion channel. Science
335, 436–441 (2012).

12. Dong, Y. Y. et al. K2P channel gating mechanisms revealed by structures of
TREK-2 and a complex with Prozac. Science 347, 1256–1259 (2015).

13. Ge, J. et al. Architecture of the mammalian mechanosensitive Piezo1 channel.
Nature 527, 64–69 (2015).

14. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of
the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive
ion channel. Science 282, 2220–2226 (1998).

15. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. & Martinac, B. Open
channel structure of MscL and the gating mechanism of mechanosensitive
channels. Nature 418, 942–948 (2002).

16. Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Physical principles
underlying the transduction of bilayer deformation forces during
mechanosensitive channel gating. Nat. Struct. Biol. 9, 696–703 (2002).

17. Steinbacher, S., Bass, R., Strop, P. & Rees, D. C. Structures of the prokaryotic
mechanosensitive channels MscL and MscS. Curr. Topic Memb. 58, 1–24
(2007).

18. Walton, T. A. & Rees, D. C. Structure and stability of the C-terminal helical
bundle of the E. coli mechanosensitive channel of large conductance. Protein
Sci. 22, 1592–1601 (2013).

19. Sukharev, S., Betanzos, M., Chiang, C. S. & Guy, H. R. The gating mechanism of
the large mechanosensitive channel MscL. Nature 409, 720–724 (2001).

20. Corry, B. et al. An improved open-channel structure of MscL determined from
FRET confocal microscopy and simulation. J. Gen. Physiol. 136, 483–494
(2010).

21. Gullingsrud, J. & Schulten, K. Gating of MscL studied by steered molecular
dynamics. Biophys. J. 85, 2087–2099 (2003).

22. Gullingsrud, J., Kosztin, D. & Schulten, K. Structural determinants of MscL
gating studied by molecular dynamics simulations. Biophys. J. 80, 2074–2081
(2001).

23. Iscla, I. & Blount, P. Sensing and responding to membrane tension: the bacterial
MscL channel as a model system. Biophys. J. 103, 169–174 (2012).

24. Blount, P. & Moe, P. C. Bacterial mechanosensitive channels: integrating
physiology, structure and function. Trends Microbiol. 7, 420–424 (1999).

25. Iscla, I., Wray, R. & Blount, P. On the structure of the N-terminal domain
of the MscL channel: helical bundle or membrane interface. Biophys. J. 95,
2283–2291 (2008).

26. Ou, X., Blount, P., Hoffman, R. J. & Kung, C. One face of a transmembrane
helix is crucial in mechanosensitive channel gating. Proc. Natl Acad. Sci. USA
95, 11471–11475 (1998).

27. Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. & Honoré, E. Mechano-or
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