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Abstract

An increasing number of studies that are widely used in the demographic research community 

have collected genome-wide data from their respondents. It is therefore important that 

demographers have a proper understanding of some of the methodological tools needed to analyze 

such data. Our paper details the underlying methodology behind one of the most common 

techniques for analyzing genome-wide data, Genome-Wide Complex Trait Analysis (GCTA). 

GCTA models provide heritability estimates for health, health behaviors, or indicators of 

attainment using data from unrelated persons.. Our goal is to describe this model, to highlight the 

utility of the model for biodemographic research, and to demonstrate the performance of this 

approach under modifications of the underlying assumptions. The first set of modifications 

involves changing the nature of the genetic data used to compute genetic similarities between 

individuals (the genetic relationship matrix). We then explore the sensitivity of the model to 

heteroscedastic errors. In general, GCTA estimates are robust to the modifications proposed here 

but we also highlight potential limitations of GCTA estimates.

 1. Introduction

Demographic research often describes the factors responsible for variation in population 

health (Majer et al. 2013;Masters et al. 2014), health behaviors (Pampel and Denney 2011), 

birth outcomes (Fuller 2014), and mortality (Ross et al. 2012). Importantly, each of these 

outcomes has evidenced moderately sized heritability estimates (e.g., Rice et al. 2014; Daw 

et al. 2013). Not only are most physical health morbidities influenced by genetic factors 

common to family members (Pilia et al. 2006) but so are health-related lifestyles such as 

smoking (Boardman et al, 2011), exercise (Bartels et al. 2012; Mustelin et al. 2012) and 

birth outcomes including birth weight and gestational age (Clausson et al. 2000) and even 

mortality (Wienke et al. 2001). Given that genes influence nearly all of the outcomes of 
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interest to demographers, characterizing the relative contribution of genetic influences to 

health, health behaviors, birth outcomes, and mortality is critical for demographic 

researchers.

Heritability is the traditional approach for quantifying genetic influence on a trait. 

Heritability studies date back to Galton’s work in the 19th century (e.g., Galton 1869). The 

workhorse during the pre-genomic era for estimating heritability had been the twin study, 

which utilizes family pedigrees. Currently there is a proliferation of genome-wide data from 

unrelated individuals in large, representative, longitudinal data sources such as the Health 

and Retirement Study, the National Longitudinal Study of Adolescent to Adult Health 

(McQueen et al., 2014), and many other, more targeted, datasets (e.g., Framingham Heart 

Study; Splansky et al., 2007). These studies have begun genotyping respondents and 

providing information on single nucleotide polymorphisms (SNPs) across the entire human 

genome. SNPs are common genetic variants and are the most convenient form of genome-

wide data available for use by non-geneticists (Guo and Adkins 2008).

Initially, SNP data were the backbone of genome-wide association studies (GWAS) in which 

specific positions on the human genome are correlated with health phenotypes. This 

technique generates hundreds of thousands (and now several million) of regression estimates 

comparing genotype (e.g., 0, 1, or 2 copies of the minor allele of the SNP) to phenotype 

(e.g., height) for each SNP. Novel genetic associations with many diseases have been found 

(Welter et al., 2014) but these individual loci only predict a small amount of observed 

phenotypic variation. For example, the associations identified in a GWAS for educational 

attainment (Rietveld et al., 2013b) explain only 0.02% of the observed variation.

It is also possible to utilize genetic similarity, based on information from the entire genome, 

among unrelated persons to decompose overall phenotypic variation into genetic and 

environmental components. The most common maximum likelihood methods used in these 

analyses are bundled in GCTA, a suite of software for Genome-wide Complex Trait 

Analysis (Yang et al., 2010, 2011). Although alternative techniques exist for computing such 

heritabilities (e.g., Ge et al., 2015), GCTA has been widely used and is relatively 

straightforward.

The key insight embedded in the GCTA approach is that measured SNP-level variation can 

be used to estimate the genetic similarity between two unrelated individuals, and this 

estimated genetic similarity can be compared to phenotypic similarity to produce a 

heritability estimate. A number of scholars are beginning to utilize these techniques. Table 1 

contains a range of heritability estimates produced using GCTA that may be of interest to 

demographers. This is not intended as a comprehensive list of papers published using GCTA 

but is rather meant to provide a description of the types of GCTA outcomes that may be of 

interest to demographers and to illustrate the range of the associated heritability estimates. 

The estimates are grouped into different categories of phenotypes. One possible expectation 

might be for anthropometric phenotypes such as height to evince larger heritabilities than 

behavioral traits such as nicotine use and alcohol consumption. Height, for example, is 

driven largely by biology (outside of extreme nutritional environments) whereas decisions 

about nicotine and alcohol use are clearly influenced by peers and broader society. Yet, 
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heritability estimates between the two sets of outcomes are frequently quite similar. We also 

emphasize that heritabilities do not capture fundamental unchanging biological mechanisms 

but are instead highly contextual. Dating back to at least Feldman & Lewontin’s 

characterization of heritability estimation as “local perturbation analyses” (1975, p. 1163) it 

has been understood that heritabilities are not fixed, immutable quantities but are contingent 

upon the social world in which the relevant actors are embedded.

Although GCTA holds promise, great care needs to be used in the application of these 

methods to obtain credible results. This paper is meant, in part, to act as a guide for 

demographers who are potentially new to genetic analyses and are interested in conducting a 

heritability study. It builds on the work of the GCTA development team (e.g., Visscher et al., 

2010; Yang et al., 2010; Yang et al., 2011) and others (Conley et al., 2014) who are well 

aware of the need for caution in the application of these methods. We begin by describing 

the method for an audience with minimal training in genetics. We then present three 

empirical examples demonstrating the sensitivity of GCTA estimates to certain “twists” in 

the typical approach to using this model. This work is not meant as a critique of the model 

but is meant to illuminate how the method works and its potential limitations.

 2. The method

The core insight underlying the estimation of heritability in both twin studies and with 

GCTA is that if genetic variation accounts for some measure of phenotypic variation then 

more genetically similar pairs should be more phenotypically similar. Clearly, this depends 

upon being able to measure genetic similarity. In twin, extended twin, or family studies, the 

estimation of genetic similarity occurs only between family members and is trivial since the 

family relationships are known and pairs receive their expected identity by descent (IBD) 

value (e.g, .5 for full siblings and dizygotic twins, .25 for half-siblings, etc.). With GCTA, 

we estimate genetic similarity between all pairs of unrelated individuals (with n unrelated 

individuals, there are  possible pairs) on the set of genetic markers in question.1 We 

emphasize that the metric for similarity used in GCTA is just one of many possible metrics 

(Speed and Balding, 2014 describe alternatives). Second, a restricted maximum likelihood 

(REML) estimate of heritability is computed by comparing phenotypic similarity to genetic 

similarity. We describe these steps in more detail below.

 2a. Estimating Genetic similarity

The genetic similarity Ajk between individual j and individual k is estimated as (Equation 3, 

Yang et al., 2011; Equation 5, Yang et al., 2010)

(Eqn1)

1GCTA analyses nearly always focus on SNPs rather than other genetic variants. In this paper, genetic markers and variants will be 
used interchangeably for SNPs.
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where N is the number of available genetic markers, i indexes these markers, xij and xik are 

the number of minor alleles at SNP i for individuals j and k respectively, and pi is the minor 

allele frequency.2 Genotypes are effectively standardized so that the sample variance is 

independent of allele frequency. At this stage, we pause to discuss consequences of the fact 

that the genetic similarity is estimated based on the full set of N markers and not the subset 

of causal variants that would, ideally, be of interest. The dilemma is that one does not know 

the set of true causal variants. The causal variants are unlikely to be a random sample of 

markers. In particular, they are likely to be a sample with relatively low minor allele 

frequencies (see Yang et al., 2011). This has implications as the quality of the heritability 

estimate based on Ajk will only be as good as the approximation of Ajk to the genetic 

similarity on the causal variants. For polygenic traits based on many common variants, 

heritability estimates based on Ajk should be accurate. However, traits associated with rare 

variants are not a good target for GCTA analyses (see Zuk et al., 2014 on working with rare 

variants).

 2b. Estimating heritability

The model for decomposing phenotypic variation is

(Eqn2)

where X is an optional matrix of covariates, g is a vector of random effects, and ε is a vector 

of errors each with variance . Standard assumptions regarding ε apply, namely that it is 

independent of X and g. The genetic similarity matrix A enters here through the assumption 

that

(Eqn 3)

where A is the matrix of similarity estimates. Heritability is defined as a ratio of the variance 

of genetic effects to the total variance:

(Eqn 4)

Heritability is intuitive in Eqn 4 in the sense that we see it is the fraction of total variance 

accounted for by genetic random effects.

Eqn (2) is estimated via REML. REML is preferred to normal maximum likelihood (ML) 

estimation, since it leads to improved estimation of variance components (Harville, 1977). In 

contrast to ML estimation, REML focuses on a likelihood function that is independent of 

nuisance parameters and should, therefore, provide more reliable variance parameter 

2Diagonal elements of A (when j=k) are inbreeding coefficients. We do not discuss them further here since they are of marginal 
interest in the estimation of heritability (see Yang et al., 2011 for information on their calculation)
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estimates. Additional details on the estimation technique used here can be found in Gilmour 

et al. (1995).

 2c. Key data requirements

GCTA should only be applied to a sample that has already been through a quality control 

(QC) process including: pruning for missingness, minor allele frequency (MAF) thresholds 

(e.g. a MAF below 0.05, a common threshold for identifying a SNP as a “common” rather 

than a “rare” variant), and Hardy-Weinberg equilibrium3. Dichotomous traits may require 

even stricter controls (Lee et al., 2011). Statistical power is an important aspect of GCTA 

(Visscher et al., 2014) and while an online tool4 is available, a rule of thumb is that at least 

5,000 respondents are needed to detect heritability less than 0.2 (see Figure 3 of Visscher et 

al., 2014). It is also important that the data be comprised of genetically homogeneous 

respondents. This is due to the sensitivity of Eqn 1 to population stratification in which allele 

frequencies may differ across socially defined racial and ethnic groups (i.e., pi in Eqn 1 

changes substantially across groups). The significance of this issue is shown quite clearly in 

Figure S5 of Domingue et al. (2014) which demonstrates that black spouses from the Health 

and Retirement Study are estimated to have extreme genetic similarities due to the fact that 

the majority of the sample is made up of non-Hispanic whites. That is, small and typically 

meaningless differences in minor allele frequencies among non-Hispanic black and white 

populations for certain portions of the human genome translate to excessive levels of 

similarity among same race-groups that may have important implications for the 

interpretation of heritability estimates.

Even amongst a racially homogeneous groups of respondents, there may still be a concern 

that population stratification is biasing the results. Figure 2 of Nelis et al. (2009) suggests 

that even amongst racially homogenous groups, there is remaining population stratification. 

One standard technique for adjusting for such population stratification is through the 

inclusion of principal components (Price et al., 2006). Such an approach was taken in the 

original study of height (Yang et al., 2010) and it is probably prudent to consider such 

adjustments. However, principal components may also adjust for meaningful differences (in 

terms of the trait in question) between individuals and thus may lead to under-estimated 

heritabilities. We would thus encourage users to report adjusted and unadjusted estimates of 

heritability when appropriate (i.e., when the values differ).

 2d. Caveats

The GCTA approach bypasses our lack of knowledge regarding the true causal variants by 

assuming that these causal variants are distributed throughout the genome in such a way that 

an estimate of genome-wide similarity is a suitable proxy for similarity on the causal SNPs. 

It is important to note that this logic only applies to certain traits. Alzheimer’s is an 

interesting counterexample. The e4 allele of APOE is well known to be a strong genetic risk 

3Hardy-Weinberg equilibrium (HWE) occurs when observed genotypes match expected genotypes given a particular minor allele 
frequency. If the minor allele, a, has frequency p, then the genotype frequencies should be p2 (for homozygous minor allele-aa), 2pq 
for the heterozygotes (e.g., ab and ba), and q2 for the homozygous major allele. Deviations from HWE are used to detect genotyping 
errors, deviations from random mating, and genetic drift.
4http://spark.rstudio.com/ctgg/gctaPower/
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for developing Alzheimer’s (Genin et al., 2011). For carriers of e4, their probability of 

developing the disease is substantially elevated compared to non-carriers, regardless of their 

overall genetic similarity to fellow carriers. For complex traits that are completely polygenic 

(e.g., the causal variants are large in number but weak in effect size), it is reasonable to 

inquire how consistent estimates of genetic similarity are over different sets of markers 

which might be used to compute heritability. This is the empirical focus of Example 1.

Although we still have only limited knowledge about the variants which underlie complex 

traits, over the last 10 years there has been a large-scale hunt for the genetic variants which 

underlie specific diseases, traits, and other attributes such as education (Rietveld et al., 

2013b). The key technique in linking phenotype and genotype is the previously discussed 

GWAS approach. Given that we now have a large number of GWAS results it is natural to 

inquire about potential changes in GCTA estimates if estimates were computed based on 

genetic similarities from SNPs known to be associated with the relevant outcome. We use 

information from a GWAS on height to inquire about the sensitivity of GCTA estimates to 

causal variants which are known to underlie a trait in Example 2.

Estimation of Eqn 2 is premised with additional assumptions that one might question. Just as 

in the case of a simple linear model, one key assumption underlying estimation is that the 

errors are of constant variance (homoscedastic). Heteroscedasticity is a common problem in 

applied settings typically leading to incorrect estimates of standard errors. Given that GCTA 

is focusing on a ratio containing the estimated error variance, heteroscestasticity could have 

important implications here. We examine the consequences for heritability estimates if the 

error term is heteroscedastic in Example 3.

 3. Examples

The below examples rely upon data from non-Hispanic white adults (born between 1900 and 

1970, but with the majority born between 1930 and 1940) in the Health and Retirement 

Study.5 DNA samples were collected via buccal swabs in 2006 and via saliva samples in 

2008. Genotype calls were then made based on a clustering of both data sets using the 

Illumina HumanOmni2.5-4v1 array. Details on this process can be found online at the HRS 

website. After standard quality control procedures (e.g., removing SNPs that were missing 

in more than 5% of samples, MAF below 1%, failure to meet Hardy-Weinberg equilibrium; 

complete details are available upon request), we retained 1,698,845 SNPs. From this sample 

of SNPs, the main genetic similarity estimates are computed based on 1,473,658 SNPs (only 

autosomal SNPs which are also pruned slightly due to a second MAF filter imposed by 

GCTA) for 4,950 non-Hispanic whites (those from the full sample of non-Hispanic whites 

who had no missing data on several key variables). With this sample, we obtain reasonable 

heritability estimates: cognition 0.23, height 0.40, weight 0.25, educational attainment 0.33 

(all standard errors are 0.09 which is to be expected given Figure 1 of Visscher et al., 2014).6

5Specifically the RAND fat files, available at http://www.rand.org/labor/aging/dataprod/enhanced-fat.html.
6All variables except educational attainment taken from Wave 8.
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 3a. Example 1: Sensitivity of genetic similarity to the set of SNPs

Heritability estimates rely upon genetic similarity which may be sensitive to the choice of 

markers. We first choose SNPs that are pruned from the full set to ensure that they are in 

linkage equilibria (for different thresholds). Linkage disequilibrium arises when genetic 

markers at nearby locations are correlated due to the fact that large segments of DNA are 

inherited together. Although genetic similarity is frequently computed via sets of markers 

which have not been pruned for LD (linkage disequilibria), Speed & Balding (2014, p. 8) 

note that the use of multiple SNPs in regions of high LD can have consequences for 

heritability estimates. We also consider randomly chosen sets of markers that are 10%, 30%, 

and 50% of the full sample of SNPs. Given the underlying philosophy of GCTA, heritability 

estimates based on reasonably large subsamples of markers should be similar to those based 

on the full sample of markers. This requires that the different samples of markers produce 

similarity estimates that are highly correlated.

Table 2 presents the correlations between the genetic similarity estimates (greater than 

0.025, as might be used in a heritability analysis) based on the various sets of markers. We 

focus on the correlations between the similarity estimates from the full set of markers and 

the similarity estimates from the various subsets (the bolded column). To begin, consider 

that the genetic relationship values for all persons i and j are correlated at 0.57 when we 

examine their genetic similarity based all SNPs compared to their genetic similarity using 

only SNPs that are not in LD using the most conservative threshold. However, when we 

increase the r2 threshold from 0.01 to 0.2 the correlation jumps from 0.57 to 0.75. Increasing 

the threshold again to 0.5, the correlation is at 0.88. These values can be interpreted via a 

comparison to correlations between the full set of markers and a random subset of markers. 

When we compute genetic similarities based on random subsets of SNPs, the correlations 

are generally high (>0.9) except for the 10% sample. Nevertheless, even when we only use 

10% of the SNPs, we present relationship estimates that are correlated with the overall GRM 

at a value of 0.83.

We now turn to the impact the differences in the estimates of genetic similarity have on the 

estimated heritability. To address this, we computed heritability estimates for height based 

on the various sets of SNPs (italicized column of Table 2). We drop any pair with a 

relationship greater than 0.025 since these are typically excluded in the calculation of 

heritability. The full set of markers produces an estimate of 0.40 which, it should be noted, is 

identical to the estimate in the original GCTA paper (Yang et al., 2010). The 10% random 

sample of SNPs produced a substantially lower estimate of 0.31, but the 30% and 50% 

samples produced estimates much closer to 40%. Interestingly, the sets of markers pruned 

only modestly for LD produced slightly higher estimates of heritability with the exception of 

the rather extreme case of r2=0.01. Although the rise isn’t large, this effect has also been 

observed (Vilhjalmsson et al., 2015) in the context of genetic risk scores (indices derived 

from GWAS studies meant to predict a given phenotype; see Belsky et al., 2013 for a review 

of this method). When the LD pruning threshold is quite stringent (0.01), the heritability 

estimate is only 0.1. Thus, calculating genetic similarity using only SNPs that are 

independent of one another, we reduce the heritability estimate by roughly three-quarters. 

However, this estimate is based on a relatively small number of SNPs (N=61,904). The next 
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example continues to examine the sensitivity of heritability results to the choice of SNPs, but 

in Example 2 the subsample of SNPs is chosen in a different manner.

 3b. Example 2: Incorporation of GWAS Information

For some traits, such as height, there is now high-quality information available about which 

SNPs “matter.” Thus, we can use published GWAS results to decide which SNPs to include 

in the GRM and heritability estimates can be limited to markers with significant p-values 

(Wood et al., 2014). To use the results from this GWAS, we first selected a set of 842,889 

SNPs which are in the GWAS and also in our genetic database of SNPs. Based on these 

SNPs, we estimate a GCTA heritability for height of 0.34, which is reduced from the 

original estimate of 0.40 using the full set of markers, but still significant (SE=0.077).7 This 

is an important observation (consistent with Example 1) because we eliminated ~50% of the 

SNPs yet the heritability was only reduced by roughly 20%. This bolsters support for the 

GWAS results but also highlights that much of the information across the genome is not 

necessary for reliable indicators of heritability.

For a given p-value threshold, we designate two sets of markers. The first set of markers, 

those with a p-value greater than the threshold, are designated by “ns” (for not significant). 

These are the markers that are unassociated with height as judged by the p-value threshold 

from the height GWAS (Wood et al. 2014). The second set of markers, those markers with p-

values less than the threshold (e.g., those SNPs that are deemed to be associated with 

height), are designated by “s” (for significant). Consider Figure 1. The horizontal line shows 

the GCTA heritability of 0.34. The other two lines show the GCTA estimates for the “ns” 

and “s” SNPs using a range of thresholds (the p-value threshold and the number of markers 

for each set of SNPs are shown on the x-axis). At the far left, we start with a threshold of 

1e-100. This is an extreme threshold (only 21 SNPs reach such a level of significance) and 

the heritability computed for the 842,868 “ns” markers is very nearly the original estimate. 

The estimate of the heritability from the “ns” markers above the threshold stays above 0.25 

until the 0.05 threshold. Even after the removal of 312,733 SNPs at the 0.5 threshold, there 

is a still statistically significant heritability “ns” estimate of 0.17. This is noteworthy since 

we have removed any marker remotely associated with height. The fact that GCTA does not 

explicitly utilize information related to causal SNPs is very clear.

Now let’s consider the curve associated with heritability estimates from the “s” markers. The 

21 markers that are the most predictive of height produce genetic similarity estimates that 

lead to a heritability estimate of 0.004. This is not surprising since collectively these markers 

predict only a very small amount of variability of height. One can observe a slow rise in the 

estimated heritability of height as the p-value threshold is relaxed (so that increasing 

numbers of SNPs are in the “s” category. The curves cross around the 0.05 threshold, 

7As noted above, it is a standard practice in GCTA to remove individuals from pairs with estimated genetic similarities greater than 
0.025 (in the metric established by Eqn 1) and is done to ensure that no closely related (e.g., parent-offspring, siblings, etc.) 
individuals are included. Such individuals may share a common environment and this common environment may bias the resulting 
heritability estimate. However, we do not include such a threshold here due to the fact that the changing numbers of markers has major 
implications for the number of pairs that fall below this threshold. We did remove 347 individuals from these analyses such that the 
original set of genetic similarity estimates are all below the 0.025 threshold.
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meaning that similarities in height are better explained by similarities on the 150,148 SNPs 

below this threshold rather than the 692,741 SNPs above this threshold.

 3c. Example 3: Heteroscedastic Outcome

In many empirical settings, the assumption of a constant error variance is questionable. To 

probe the performance of GCTA in such cases, we simulate an outcome where the variance 

of the errors is a function of an individual’s height. We generate data using

(Eqn 8)

where εi is normally distributed with variance  (where height is standardized). 

The degree of heteroscedasticity is controlled via α (note that when α = 0 the errors are 

homoscedastic) such that there is a greater variance in the εi for tall individuals. This has 

clear implications for the definition of heritability since Eqn 4 depends on . We fix 

and control the level of heritability via  (increasing this variance decreases heritability and 

vice-versa). In our simulation, we use the observed ratio of the variability of the genetic 

component to the total observed variability (these quantities are available only due to the fact 

that the data is simulated and thus completely known) as a metric for heritability, but advise 

the reader that this ratio is not identical to the GCTA definition. Indeed, the quantity of 

interest in GCTA is poorly defined due to the non-constant error variance. Thus, instead of 

exact recovery, we focus on the relevant patterns.

Figure 2 compares the variance ratio discussed above (solid line) and compares it to GCTA 

estimates that do not (dashed line) and do include height as a covariate (dotted line). The 

three sets of estimates consistently move together. The GCTA estimate when the control is 

included tends to be closer to the observed ratio of variances than the estimate without the 

control, but again we caution that the observed variance here is a somewhat amorphous 

quantity since the error variance is non-constant. Importantly, the baseline estimates of 

heritability from GCTA (estimates that do not include height as a predictor) are robust to 

heteroscedasticity. There may not always be an identifiable correlate of the error variance so 

it is reassuring to know that relatively reliable information regarding heritability can still be 

recovered in such cases.

 4. Discussion

The examples considered here help to illustrate two key points about GCTA. First, examples 

1 and 2 illustrate the fact that GCTA is a method for computing heritability based on 

genome-wide similarity. Example 1 illustrates the relative consistency of results as long as 

sufficient samples of SNPs are used. Example 2 illustrates the fact that one does not need to 

include SNPs thought to be causal for GCTA to estimate heritability. Of course, if too many 

of these SNPs are removed, the estimate may start to suffer (note the decline in the “ns” line 

to the right of Figure 2). Second, example 3 suggests that GCTA estimates are relatively 

robust to heteroscedasticity. Intuitively, there is reason to be concerned about 

heteroscedasticity since GCTA is based on estimates of variance components. While GCTA 
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estimates are likely to overestimate heritability in the presence of heteroscedasticity, the bias 

does not seem extreme and relevant information regarding heritability may still be obtained.

This paper adds to the evidentiary base regarding GCTA’s performance in the face of 

violations of the underlying assumptions. An additional concern is that genetic similarity 

may be associated with environmental similarities. If that was the case, then these 

environmental similarities could be the true cause of phenotypic similarities between 

respondents rather than the genetic similarities studied via GCTA. Other research (Conley et 

al., 2014) has considered this fact. The environments studied in that research (e.g., childhood 

urbanicity and parental education) did not seem to bias GCTA estimates for other, putatively 

heritable outcomes such as height. Later research (Conley et al., 2015) tries to explore this 

issue further in a more nuanced manner by decomposing the correlation between parent and 

offspring education levels into genetic and environmental components but focuses on genetic 

predisposition towards educational attainment (as determined by an educational polygenic 

risk score) rather than GCTA heritability.

There are several additional applications of GCTA that this paper does not explore. We focus 

here on two: heritability by environment and bivariate analyses. There is ample reason to 

think that the relative influence of genotype on phenotype varies across environmental 

context. GCTA allows one to model the effect of environment on heritability but the ability 

to adjust for environmental differences is not a cure all. The relevant environments may be 

unknown, unobserved, or poorly measured. Even when there is a promising candidate for the 

appropriate environment, GCTA analyses suggesting environmental differences must be 

interpreted with caution. For example, if environmental differences are associated with, say, 

ethnic differences, then population stratification could be an issue. In such a case, LD 

patterns between the causal SNPs and other markers across the two ethnic groups may be 

different. It could also be the case that genetic or phenotypic variation may be constrained in 

one environment relative to the other. For that matter, the phenotype could be measured with 

less fidelity in certain environments. All of these scenarios could potentially lead to HxE 

findings via GCTA and yet would not necessarily indicate that there is truly a difference in 

the influence of genotype across environment.

Finally, bivariate GCTA models (Lee et al. 2012) are an interesting method for engaging in 

genetically informed demographic research. This method yields an estimate of genetic 

correlation (rG) between two traits which indicates whether an observed correlation between 

traits, such as height and weight, is due to common genetic factors. For example, Boardman 

et al. (2015) used this method to show that a non-negligible proportion of the correlation 

between education and self-rated health appears to be confounded with genes that influence 

both traits. Such genetic associations may underlie many variables frequently considered in 

demographic inquiry and a failure to account for these associations may lead to forms of 

omitted variable bias.
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Figure 1. 
GWAS informed GCTA heritability results for height. The heritabilities are computed for 

different sets of markers. The “ns” lines are based on only those markers with a p-value 

above the given p-value threshold (not significant markers) while the “s” lines are based on 

only those markers with a p-value below the given p-value threshold (significant markers) 

where the p-value for each marker is taken from a large GWAS on height (Wood et al. 2014). 

Confidence intervals are omitted since they are consistent. Standard errors for “ns” estimates 

are less than 0.02 for p-value thresholds of 1e-04 and below and under 0.07 for larger 

thresholds. The standard GRM pruning threshold of 0.025 is not included since it led to the 

exclusion of large numbers of sample participants in the cases using relatively small (e.g., 

fewer than 100,000) markers.
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Figure 2. 
Comparison of true ratio of genetic to total variance to GCTA estimates (with and without 

control for the variable associated with the heteroscedastic error) in presence of 

heteroscedastic errors.
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Table 1

Heritability estimates from applications of GCTA.

Outcome h2(SE) Sample
Size

Reference

Anthropometric Phenotypes

Height 0.44 (0.09) 2,000 Speed et al. 2012

Height 0.35 (0.12) 3,154 Plomin et al. 2012

Height 0.32 (0.06) 6,379 Conley et al. 2014

Weight 0.42 (0.12) 3,154 Plomin et al. 2012

BMI 0.43 (0.10) 4,233 Boardman et al. 2014

BMI 0.31 (0.07) 6,320 Conley et al. 2014

Medical/Clinical Phenotypes

Type 1 Diabetes 0.73 (0.06) 2,000 Speed et al. 2012

Type 1 Diabetes 0.28 (0.04) 2,599 Lee et al. 2011

Type 2 Diabetes 0.35 (0.06) 2,000 Speed et al. 2012

Rheumatoid Arthritis 0.57 (0.06) 2,000 Speed et al. 2012

Crohn Disease 0.61 (0.08) 2,599 Lee et al. 2011

Crohn Disease 0.54 (0.06) 2,000 Speed et al. 2012

Coronary Artery Disease 0.39 (0.06) 2,000 Speed et al. 2012

Pediatric Obesity 0.37 (0.15) 3,152 Llewellyn et al. 2013

Hypertension 0.42 (0.06) 2,000 Speed et al. 2012

Parkinson's Disease (Early-Onset) 0.15 (0.14) 7,096 Keller et al. 2012

Parkinson's Disease (Late-Onset) 0.31 (0.07) 7,096 Keller et al. 2012

Parkinson's Disease (All Types) 0.27 (0.05) 7,096 Keller et al. 2012

Parkinson's Disease 0.22 (0.02) 3,426 Do et al, 2011

Multiple Sclerosis 0.3 (0.02) 1,854 Watson et al. 2012

Cognitive Phenotypes

General Cognitive Ability 0.35 (0.12) 3,154 Plomin et al. 2012

General Cognitive Ability 0.29 (0.05) 6,609 Marioni et al. 2014

Nonverbal Cognitive Ability 0.20 (0.11) 3,154 Plomin et al. 2012

Verbal Cognitive Ability 0.26 (0.11) 3,154 Plomin et al. 2012

Language Ability 0.29 (0.12) 3,154 Plomin et al. 2012

Intelligence (age 7–12) 0.60 (0.26) 2,875 Trzaskowski et al. 2014

Intelligence 0.51 (0.02) 3,511 Davies et al. 2011

Intelligence from Childhood to
Old Age

0.24 (0.20) 1,940 Deary et al. 2012

IQ (Age 12) 0.32 (0.14) 3,000 Trzaskowski et al. 2014

IQ (Age 7) 0.28 (0.17) 3,000 Trzaskowski et al. 2014

Psychological Phenotypes

Bipolar Disorder 0.59 (0.06) 2,000 Speed et al. 2012

Bipolar Disorder 0.37 (0.04) 2,599 Lee et al. 2011

ADHD 0.42 (0.13) 1,040 Yang et al. 2013

Adult Anti-Social Behavior 0.55 (0.41) 2,172 Tielbeek et al. 2012
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Outcome h2(SE) Sample
Size

Reference

Depression 0.19 (0.10) 4,233 Boardman et al. 2014

Major Depressive Disorder 0.32 (0.09) 4,605 Lubke et al. 2012

Behavioral Disinhibition 0.19 (0.16) 3,452 Vrieze et al. 2013

Neuroticism 0.06 (0.03) 12,000 Vinkhuyzen et al. 2012

Borderline Personality Features 0.23 (0.09) 7, 125 Lubke et al. 2014

Callous-Emotional Behavior 0.07 (0.12) 2,930 Viding et al. 2013

Extraversion 0.12 (0.03) 12,000 Vinkhuyzen et al. 2012

Anxiety Related Behaviors 0.01–0.12
(0.12)

2,810 Trzaskowski et al. 2013

Substance Dependency Phenotypes

Drug Use 0.22 (0.16) 3,452 Vrieze et al. 2013

Drug Dependence 0.36 (0.13) 2,596 Palmer et al. 2014

Dependence Vulnerability 0.33 (0.13) 2,596 Palmer et al. 2014

Problematic Drug Use 0.25 (0.13) 2,596 Palmer et al. 2014

Alcohol Consumption 0.16 (0.16) 3,452 Vrieze et al. 2013

Alcohol Dependence 0.12 (0.16) 3,452 Vrieze et al. 2013

Nicotine Use/Dependence 0.18 (0.16) 3,452 Vrieze et al. 2013

Sociological/Health Behavior/Educational Phenotypes

Socioeconomic Background 0.18 (0.05) 6,533 Marioni et al. 2014

Socioeconomic Status (age 2) 0.18 (0.12) 3,000 Trzaskowski et al. 2014

Socioeconomic Status (age 7) 0.19 (0.12) 3,000 Trzaskowski et al. 2014

Subjective Well-Being 0.05–0.10
(0.05–0.10)

11,500 Rietveld et al. 2013a

Reporting Stressful Life Events 0.3 (0.15) 2,578 Power et al. 2013

Self-Rated Health 0.18 (0.10) 4,233 Boardman et al. 2014

Moderate to Vigorous Activity 0.17 (0.09) 4,244 Richmond et al. 2014

Sedentary Time 0.25 (0.09) 4,244 Richmond et al. 2014

Total Physical Activity 0.21 (0.10) 4,244 Richmond et al. 2014

Education 0.21 (0.05) 6,578 Marioni et al. 2014

Education 0.33 (0.10) 4,233 Boardman et al. 2014

Education 0.17 (0.07) 6,414 Conley et al. 2014
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