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Abstract: The last decade has seen a growing number of experiments aimed at systematically

mapping the effects of mutations in different proteins, and of attempting to correlate their biophys-

ical and biochemical effects with organismal fitness. While insightful, systematic laboratory meas-
urements of fitness effects present challenges and difficulties. Here, we discuss the limitations

associated with such measurements, and in particular the challenge of correlating the effects of

mutations at the single protein level (“protein fitness”) with their effects on organismal fitness. A
variety of experimental setups are used, with some measuring the direct effects on protein function

and others monitoring the growth rate of a model organism carrying the protein mutants. The man-

ners by which fitness effects are calculated and presented also vary, and the conclusions, includ-
ing the derived distributions of fitness effects of mutations, vary accordingly. The comparison of

the effects of mutations in the laboratory to the natural protein diversity, namely to amino acid

changes that have fixed in the course of millions of years of evolution, is also debatable. The
results of laboratory experiments may, therefore, be less relevant to understanding long-term

inter-species variations yet insightful with regard to short-term polymorphism, for example, in the

study of the effects of human SNPs.
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Introduction

Systematic mappings of the effects of protein muta-

tions have increased in popularity. By now, such

mappings have been conducted in well over a dozen

proteins, and for a few proteins, several independent

datasets are available (for a recent review, see

Ref. 1). Systematic mappings are clearly insightful

and valuable, for example, in the context of protein

engineering, in predicting the effects of protein

mutations in general. Such mappings also promote a

better understanding of the linkages between
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genotype, phenotype, and fitness. These linkages are

far from trivial, with the correlation between the

biophysical and biochemical effects of mutations and

their effects on physiology and organismal fitness

often being a key missing link.2

Systematic mappings examine either a large set

of mutations, typically by saturation mutagenesis at

a given set of positions (e.g., using NNS codons to

diversify individual sites), or exhaustively, by random

mutagenesis of the encoding gene (for early examples

see Refs. 3–5). The resulting gene repertoires are sub-

sequently subjected to a functional screen, or a selec-

tion, with the aim of quantifying the effects of

individual mutations (in the simplest manner, delin-

eating deleterious mutations from neutral and benefi-

cial ones). Although systematic mutational mappings

are routinely performed, there remain technical chal-

lenges and open conceptual questions. For example,

how do the results of laboratory experimental map-

pings relate to natural protein evolution? The focus

of this perspective is on the utility as well as the limi-

tations of systematic mappings in measuring the fit-

ness effects of mutations. However, a comprehensive

description of these approaches is beyond the scope of

this review. We thus discuss a specific aspect of these

experiments—fitness values. What do laboratory fit-

ness values mean? What are the limitations when

measuring fitness values in the laboratory? How do

laboratory measured fitness values compare to fitness

values in living organisms?

Fitness Is a Multidimensional Parameter

Fitness, usually denoted as W, relates to the reproduc-

tion potential of competing alleles, or genotypes. Given

a competition between two alleles, to take the simplest

case, their ratio in a growing population will change

in accordance with their individual fitness values. One

allele is typically assigned as the reference, or wild-

type, with its fitness defined as 1. The other allele(s)

would have a fitness value (W0) that may be equal to,

less than, or greater than W. The difference in fitness

between the alleles is defined as the selection coeffi-

cient, or the fitness effect, and is denoted as s:

s5 W0 – 1

whereby W for the reference (wild-type) allele is

defined as 1, and s> 0 denotes beneficial mutations.

In an exponentially growing population, the

fraction of an allele (f) competing against wild-type

would then be:

f 5 f0exp s �1 1ð Þn½ � (1)

whereby f0 is the fraction of the competing allele at

generation zero, s is its selection coefficient, and n is

the number of generations.

However, despite an unambiguous mathematical

definition, fitness is not a simplistic parameter, par-

ticularly in natural populations.6 Selection can act

equally strongly, sometimes even stronger, on sur-

vival rather than growth (e.g., during stationary

phase in bacteria or in host-pathogen arms races).

The effects of mutations are often pleiotropic, and

thus the fitness effect of a mutation typically

depends on the environment and growth phase. For

example, tradeoffs between growth and survival

commonly exist, such that a given mutation may have

a deleterious fitness effect during growth under

standard conditions yet become beneficial for survival

under stress.7 Fitness is also an elusive parameter

when it comes to laboratory measurements, specifi-

cally in relation to the fitness effects of protein muta-

tions. The results of essentially all systematic

mappings are presented as fitness values under a cer-

tain experimental condition. This is largely justified,

especially when the distributions of fitness effects

(DFEs) of mutations are sought (addressed later in a

section devoted to DFEs). However, as discussed

below, the derived fitness values relate to different

experimental setups and/or were calculated in differ-

ent ways, and may thus have a different meaning

and relevance. The authors’ own works are not an

exception in this respect.

Laboratory Fitness Measurements
of Protein Alleles

A detailed description of the many different ap-

proaches taken to systematically measure the effects

of mutations is beyond the scope of this perspective.

Indeed, a whole variety of experimental setups have

been employed primarily depending on the protein

in question. Alternative approaches include parallel

analyses of many individual clones, whereby each

clone carries a protein variant with a different

mutation. Clones are then pooled according to their

levels of function and the pools are subjected to deep

sequencing. Alternatively, a competition mode is

applied whereby all clones are grown in bulk, and

deep sequencing of the entire population reveals the

frequency and hence the relative fitness of each

mutation in the repertoire. In the context of our dis-

cussion here, laboratory experiments generally fol-

low two different modes: (i) direct measurements of

the effects of mutations on “protein fitness”; or, (ii)

measurements of the effects of mutations on organis-

mal fitness under a defined condition. In the first

mode, protein fitness effects, the selection or screen

is applied directly to the biochemical or biophysical

properties of the protein under study, for example,

measuring fluorescence levels to map the effects of

GFP mutations. In the second mode, organismal fit-

ness effects, the protein under study impacts growth

rate under the conditions of the experiments and

the selection is accordingly applied for organismal
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growth and/or survival—for example, systematically

mapping the effects of mutations in ubiquitin on

yeast growth rates.8

While we schematically categorized two mea-

surement modes: direct, protein fitness versus

organismal fitness, certain experiments fall some-

where in between these categories. For example,

measuring the levels of antibiotics resistance con-

ferred by mutants of a resistance enzyme formally

addresses organismal growth rates. However, in

effect, this setup directly measures the enzyme’s

functional capacity as defined above (e.g., Refs. 9

and 10).

When directly measuring protein fitness effects

or protein fitness landscapes,11 protein fitness, or

WP, actually relates to the functional capacity of the

protein in question. The latter relates to both the

levels of soluble, functional protein and the protein’s

specific activity (e.g., kcat or kcat/KM for an enzyme).

Protein fitness may, therefore, be addressed, cer-

tainly in the case of enzymes, as the multiplication

of these two parameters (WP a [E] kcat/KM, or [E]

kcat, depending on cellular substrate concentrations).

However, the relationship between the functional

capacity of a given protein (WP) and organismal fit-

ness (W) is highly complex. Even in relatively simple

cases, the correlation is almost always nonlinear

(detailed below). And thus, the functional capacity of

protein alleles may not linearly, or even directly, cor-

relate with allele frequencies in living organisms

carrying these protein variants.

Buffering the Effects of Mutations

In both the direct, protein fitness mode and the

organism mode, laboratory experiments generally

buffer the effects of mutations. Buffering may be

due to experimental design, such as altering the

expression of the protein under study using multiple-

copy plasmids and/or variable-strength promoters.12

Proteins are often expressed with fusion tags that

may “float” mutants with impaired stability. Mutants

with impaired stability may also be masked by

expression at sub-challenging temperatures—for

example, E. coli’s optimal growth temperature in rich

media is 428C, but 378C or even lower temperatures

are often applied. Indeed, most destabilizing muta-

tions cause misfolding and loss of protein function at

higher temperature. Whatever the specific reason(s)

may be, it is clear that mildly deleterious effects are

often masked, certainly when the effects of single

mutations are measured. Indeed, when the cumula-

tive effects of mutations were measured in a mode of

a prolonged drift, namely, by iterative rounds of

mutagenesis and selection, a much higher fraction of

deleterious mutations was observed (>80% of all pos-

sible mutations).13

However, buffering is not a phenomenon limited

to laboratory setups, as it is also widely observed in

the natural context (i.e., chromosomal genes, endog-

enous promoters, etc.). This is primarily because the

relationship between the functional output of a pro-

tein which mutations affect directly (WP), and organ-

ismal fitness (W) is non-linear. Buffering, therefore,

applies also to the mode of organismal fitness effects.

In a typical, although still simplified scenario, this

relationships follows a saturation curve that can be

described by14,15:

W 5 1 1Bð Þ WP= WP1 B
� �� �

(2)

whereby WP is the protein’s functional output, or

protein fitness (for the wild-type protein, WP 5 1),

and B is the buffering coefficient, or mid-value, that

is, the protein’s functional output level that results

in W 5 0.5; note that for WP 5 1, organismal fitness,

W, is also equal to 1 (Fig. 1).

The sensitivity of organismal fitness to changes

in protein fitness (as reflected in the B value) varies.

For one thing, per given growth condition, knockouts

of the majority of genes have no effect on organismal

fitness (i.e., B 5 0; for E. coli data see Ref. 16). How-

ever, even when under a selective growth condition,

essential proteins may exhibit very different B val-

ues. For example, for E. coli growing on lactose as

the sole carbon source, lactose permease exhibits

high sensitivity (i.e., mutations that mildly affect its

functional transport capacity have large effects on E.

coli growth rates). In contrast, for b-galactosidase, an

Figure 1. The relationship between organismal fitness (W)

and a protein’s functional output, or protein fitness (WP), that

is, the level of soluble, functional protein in the cell multiplied

by its specific activity (e.g., enzymatic kcat/KM, or kcat). Both

fitness values are given as relative, that is, taking the value of

1 for the wild-type protein and organism. The simulated

graphs follow Eq. (2) with the buffering coefficient (B) taking

the values of 0.01 up to 1.
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enzyme that is as essential for lactose utilization

(and belongs to the same pathway and operon), the

functional output could be reduced by nearly an order

of magnitude relative to wild-type with nearly no

effect on organismal fitness.14

The underlying reasons for this widely observed

buffering are largely unknown. It could be that

strong buffering (i.e., low B values) is typical to labo-

ratory growth conditions, or even, to the specific lab-

oratory condition applied in a given experiment. The

dependency of growth rate (organismal fitness) upon

the functional output of a given enzyme and, accord-

ingly, its metabolic control15 are bound to vary from

rich versus minimal media or from one temperature

to another. In natural environments, B will also dif-

fer, possibly even more dramatically. However, given

that the evolutionary history of an organism encom-

passes an entire range of different environments,

there would be certain environments or conditions

with no buffering. Buffering may also relate to cellu-

lar mechanisms of rescuing impaired protein

mutants, such as chaperones. In most likelihood, the

traits of natural proteins were shaped in response to

most relevant environment, that is, under the most

demanding conditions with respect to a given pro-

tein. These conditions may relate to the distant

past17 and are largely unknown, and would thus be

extremely difficult to reproduced in the laboratory.

Regardless of its origins, buffering results in

“robustness” to mutations—namely, mutations show

no experimentally measureable effects on organis-

mal phenotype unless they drastically decrease the

protein’s functional output.

Finally, we note that in reality, Eq. (2) is obvi-

ously an over-simplification. There would be cases,

for example, where an increase in a protein’s func-

tional capacity (WP) would result in a decrease in

organismal fitness (e.g., higher enzyme levels and/or

kcat/KM may result in metabolic imbalance, and may

thus decrease organismal fitness).

Limits in Detection of Fitness Effects

Laboratory fitness measurements have an additional

limitation, even when assuming a native-like con-

text, such as measuring the effects of mutations for

an endogenous protein expressed from a chromo-

somal copy under its original promoter, and with the

organism grown under challenging conditions (such

an experimental setup has been so far implemented

for measuring the fitness effects of a given set of

mutations (e.g., Ref. 18) but not for systematic map-

pings). This limitation relates to the low sensitivity

of detection for fitness differences. In the protein fit-

ness mode, sensitivity is limited by the magnitude of

error in the applied measurement, say GFP fluores-

cence levels as measured by FACS. Whilst every

experiment has its own error range, the error range

is considerable. Very small fitness differences that

may drive the purging or fixation of mutations in

nature are usually obscured in such laboratory

measurements.

Errors also stem from the fact that in system-

atic mappings, the mutational frequencies and the

corresponding fitness effects are typically derived by

deep sequencing. Although many datasets do not

provide an explicit estimate of the error range, the

cumulative noise level of such experiments is consid-

erable. One method to estimate experimental noise

is to use the frequency across synonymous muta-

tions as the error range, based on the assumption

that their fitness effects are negligible relative to

those of amino acid exchanges. Applying this crite-

rion, the error range in allele frequencies was found

to be �2.5% in a recent study.10 However, this error

range relates to wild-type whose frequency is rela-

tively high. In fact, for most alleles, the error range

is much higher (15–40% in Ref. 10). The error

ranges also relate to the fact that the allele frequen-

cies are far from being equally distributed in both

NNS libraries (due to synthesis biases) and error-

prone ones (due to base and position biases espe-

cially).13 The degree of sampling also affects the

error range and, therefore, the ability to detect small

fitness differences.19 The standard deviation (SD) for

the distribution of fitness effects of all synonymous

mutations indicates a much higher error range. We

found, for example, these SD values to be in the

range of 0.1.13 Applying a standard cutoff of 2xSD

means that fitness effects (i.e., s values per round of

selection) that are smaller than 0.2 could not be reli-

ably measured.13 However, these error ranges relate

to a particular experimental setup that is not appli-

cable to others.

The sensitivity of determining fitness effects is

also limited by the number of generations that can

be applied in the laboratory. Allele frequency differ-

ences are exponentially amplified along generations

[Eq. (1)], and thus, after many generations, compa-

ratively small fitness effects (small s values) result

in significant changes in allele frequencies. In the

laboratory, this amplification is typically achieved by

serial passages. However, there exists a tangible

danger of genomic mutations biasing the effects of

the measured alleles (background, or hitchhiking

mutations).20 When plasmid encoded genes are uti-

lized, recloning and retransformation can be per-

formed between passages in order to minimize any

biases due to background genomic mutations. How-

ever, even in this case, the total number of genera-

tions that can be applied in the laboratory is limited

and, thereby, so are the fitness effects that can be

discerned. In effect, s values on the order of 1024 or

even lower are highly relevant in natural popula-

tions, certainly for microorganisms (the effect of pop-

ulation size is discussed below). However, such

fitness effects cannot be resolved by laboratory
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experiments, as this would not only demand selection

to continuously act for �104 generations with no

hitchhiking, background mutations, but also a mark-

edly low error range in the measurement of allele fre-

quencies. The above caveats are obviously much more

dominant in systematic “multiplexing” experiments

compared to “binary” competitions (competing two, or

a few alleles) in which relatively small s values can

be measured (for example Ref. 21).

Distribution of Fitness Effects

of Protein Mutations
The results of systematic mapping experiments are

often provided in the form of a distribution of fitness

effect (DFE). The published data indicate quite dif-

ferent distributions, not only per protein but also

per experiment or lab. The differences are evident

even when sampling the results of just three map-

pings, two of which come from the authors’ labs

(Fig. 2).

The derived fitness effects in all systematic

mapping experiments are not fitness values per se,

but rather, relative fitness values at a scale that is

experiment specific. The snag is that, although these

distributions are all relative, that is, normalized to

wild-type, they were acquired via very different

experimental modes. One critical point is that the

fitness effects are usually provided per experiment,

or per round of selection or screening. However, fit-

ness effects (s values) are defined per generation (for

a normalization method, see Ref. 22). The variabili-

ty, however, goes far beyond the number of genera-

tions. Additionally, as discussed above, some

experiments directly measured protein effects whilst

others measured organismal effects. But there are

many other factors that vary between experiments.

Even when assuming the same selection mode, for

example, Ampicillin resistance, the growth and

selection regimes can vary. In most experiments, the

effects of single mutations within a wild-type back-

ground are measured. This strategy has clear advan-

tages, foremost because mutations can interact such

that their contributions to fitness are inter-dependent

or epistatic. However, a potential disadvantage of

measuring the effects of single mutations is the buf-

fering of mildly deleterious effects13—a tendency that

is further intensified when the protein under study is

expressed at high levels.12

The manner of calculating the fitness effects

also varies between experiments. Finally, the com-

parison between experiments is further complicated

by limited data availability—raw data are not avail-

able in most cases, certainly not in a format amena-

ble to downloading and further processing. Overall,

the differences between laboratory-measured DFEs

are large. However, these differences relate primar-

ily to differences in experimental setups rather than

to differences in the biophysical and functional prop-

erties of the analyzed proteins. For example, although

in the laboratory ubiquitin appears to be more

permissive to mutations [Fig. 2(C)] compared to a bac-

terial b-lactamase or a DNA methyltransferase

[Fig. 2(A,B)], in nature, it is the most conserved pro-

tein of the three examples shown here.

Figure 2. The variation in laboratory measured DFEs of mutations of three different proteins. A. The DFE of TEM-1 b-lactamase

measured by saturation mutagenesis and deep sequencing.10 B. The DFE for a bacterial DNA methyltransferase, M.HaeIII,

derived by a prolonged drift (17 rounds of random mutagenesis and selection) and deep sequencing.13 C. The DFE for ubiquitin

obtained by systematic mapping using saturation mutagenesis and deep sequencing.8 The presented DFEs address nonsynon-

ymous mutations only. The fitness values were normalized (wild-type 5 1) and sorted to 0.1 bins to allow their histogram pre-

sentations on the same scale. Note that the 1.1 bin encompasses all mutations with fitness values �1.1. The dramatic

differences between these DFEs (e.g., the fraction of the most deleterious mutations, fitness<0.1 versus the fraction of benefi-

cial mutations, fitness>1) relate primarily to the experimental mode and the manner by which fitness effects were measured

and calculated, and less so to the different nature of these three proteins. For example, the highest fraction of deleterious muta-

tions is observed for M.HaeIII. This is due to the cumulative load of mutations under a prolonged drift that resulted in strong

purging, possibly at a level seen in natural evolution.13
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Laboratory Mappings Compared

with Natural Divergence
Compared to laboratory mapping experiments, diver-

gence in natural populations almost always occurs

over much longer time-scales and in more geneti-

cally diverse populations. These distinctions in time-

scale (or number of generations) and population

structure impact the interpretations and compari-

sons that can be made between sequences changes

seen under natural versus laboratory evolution.

The appearance of mutations and their fixation

across an entire population are a fundamentally

important process in evolution. Work led by Wright,

Fisher, Gillespie, Ohta, Kimura, and others devel-

oped the foundational theory that describes the

probability and time to fixation of a new mutation

based on its selective advantage.23 Population genet-

ics theory provides lessons that are increasingly val-

uable across all fields of biology, including protein

science, because of the explosion in our knowledge

of sequence diversity driven by next-generation

sequencing. Here, we will highlight a few of the key

features of population genetics theory and how they

relate to sequence diversity in nature and in the

laboratory.

Because evolution is heavily influenced by sto-

chastic events, not all beneficial mutations (W0>W)

that initially appear within a population become

fixed. The role of stochastic events in evolution and

our ability to model them is a key aspect of popula-

tion genetics that can seem counter-intuitive. Why

do not all adaptive mutations fix? And conversely,

why are not all fixed mutations adaptive? When any

new mutation, including those that are adaptive,

arises in a population, its initial frequency is so low

that the likelihood that it will survive in the popula-

tion is heavily influenced by stochastic processes

(e.g., the individual originally harboring the muta-

tion must survive to reproduce, which is never a cer-

tainty). Stochastic processes act on the reproductive

fitness of each individual in each generation.

If stochastic events influence evolution, then

what is meant by selective advantage? Selective

advantages, or positive fitness effects, are averages

over a large number of individuals and generations

such that the stochastic components are minimized

or hidden. This is analogous to a measure of the

bulk property of a population of cells or molecules,

which does not provide a detailed description of the

variation among individuals. For example, in an

experimental fitness competition, the selective

advantage of a mutation is measured as the average

growth rate increase, whereby the latter comprises

an average per millions of cells harboring that

mutation.

The primary parameter that determines the bal-

ance between stochastic drift and selection in evolu-

tion is the effective population size, Ne.11,24 The

larger the effective, or reproductive population, the

smaller the influence of random events. By analogy,

the more times that you flip a coin, the more likely

it is that the observed distributions of heads and

tails accurately represents the underlying probabil-

ity of the coin flip. In evolving populations, the rela-

tive influence of stochastic processes or drift

compared to selection depends on the effective popu-

lation size. In considering the fixation of a mutation,

drift and selection are balanced when Eq. (3) is

satisfied.

s 5 1=Ne (3)

Whereby s is the selection coefficient and Ne is the

effective population size of a haploid organism.

A key prediction of this equation is that organ-

isms with smaller population sizes will be more

heavily influenced by drift, resulting in proteins

that have been less stringently selected. It is impor-

tant to note that effective population sizes in nature

vary by over four orders of magnitude, so the strin-

gency of selection acting on different organisms is

tremendously varied. For example, the effective pop-

ulation size estimate for humans is about 104,26

which represents the most recent bottleneck in

human evolution, while microbial effective popula-

tion sizes can be as high as 10.10 For this reason,

the sequences of human proteins have not been as

stringently selected as those in microbes with larger

effective population sizes. This idea is supported by

observations that the fidelity of genetic replication

correlates with effective population size,27 and is low

for humans relative to species with larger Ne,

including flies, worms, and most microbes.

However, even in organisms with relatively

small effective population sizes, such as humans,

mutations with adaptive benefits beyond the limit of

detection in most experimental evolution studies can

be subject to positive natural selection. This makes

it challenging to utilize experimental results to dis-

tinguish mutations that may have been adaptive in

natural evolution from those that were non-adaptive

or nearly neutral. The detection limits of experi-

ments also make it difficult to know if a mutation

that is experimentally indistinguishable from wild-

type would be neutral, beneficial, or deleterious in

nature.

This article focuses on describing why experi-

mental mutational scanning results should be inter-

preted with care, and in particular with regards to

natural evolution. The issues discussed above are of

importance in the face of a rapidly expanding tech-

nology. However, there are many valuable lessons

about natural evolution that experimental muta-

tional scans have and can continue to provide. It is
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worth noting that not all adaptive mutations are of

such small effects that they cannot be observed

using experimental mappings approaches. Indeed,

the resolution limit of experimental mappings con-

tinues to improve, and many experiments have iden-

tified mutations that are adaptive to specific

environmental conditions.28,29 In addition, by per-

forming mutational mappings of both protein fitness

and organism fitness, links between biochemistry

(e.g., enzyme proficiency) biophysics (e.g., protein

stability) and physiology (e.g., growth rate) can be

revealed that are valuable for developing quantita-

tive models (e.g., see Refs. 2, 8, 9, 30, and 31).

Experimental mutational mappings also have a

tremendous potential in helping us understand poly-

morphism and genetic disease (Fig. 3). Mutations

that are deleterious enough to be identified as such

in mutational scanning experiments are almost cer-

tainly deleterious relative to 1/Ne, which means that

they will be deleterious in natural populations.

As more individuals of a species are sequenced,

we learn about the diversity of genetic polymor-

phism, but polymorphism data alone do not reveal

which polymorphisms are deleterious or contribute

to disease. Mutational mappings approaches have

recently been adapted to mammalian cells in cul-

ture32 and have been utilized to identify drug resist-

ant mutations in oncogenic bRAF, the principle

driver of melanoma.33 Further, the strongest drug-

resistant mutation seen in the laboratory mapping

was subsequently observed in samples from patients

undergoing drug treatment.34 In addition to identify-

ing the sequence determinants of resistance, the

ability to screen mutations under multiple condi-

tions can pinpoint the specific function(s) that muta-

tions are impacting, thus providing insights into the

mechanism underlying the disease state. As recently

reviewed,35 mutational mapping approaches provide

a potential approach to rapidly evaluate the disease

propensity of human polymorphisms, and could

thereby be influential in the transition to personal-

ized medicine.

Concluding Remarks

Systematic measurements of mutational effects can

provide broad insights spanning from protein evolu-

tion to protein engineering and personalized medi-

cine. However, several technical and conceptual

issues must be kept in mind. The current experi-

mental mappings clearly have a relatively high

threshold for acceptance of mutations, such that

mutations that would usually be purged in nature

(subject to population size considerations as dis-

cussed above) exhibit no measurable experimental

effects. The modes of laboratory measurements, and

the manner by which fitness effects are measured

and calculated, vary, presently, to an extent that

renders a reliable comparison between these meas-

urements, and between different proteins, a daunt-

ing challenge.

Further discussion of the above issues, and in

particular, standardization of the manner by which

fitness effects are defined and calculated,22 as well

as standardization of datasets and their public avail-

ability, would greatly increase the long-term value of

systematic mappings of protein mutations.
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