
The tangled bank of amino acids

Richard A. Goldstein1* and David D. Pollock2

1Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
2Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, 80045

Received 18 January 2016; Accepted 24 March 2016
DOI: 10.1002/pro.2930

Published online 29 March 2016 proteinscience.org

Abstract: The use of amino acid substitution matrices to model protein evolution has yielded
important insights into both the evolutionary process and the properties of specific protein fami-

lies. In order to make these models tractable, standard substitution matrices represent the average

results of the evolutionary process rather than the underlying molecular biophysics and population
genetics, treating proteins as a set of independently evolving sites rather than as an integrated bio-

molecular entity. With advances in computing and the increasing availability of sequence data, we

now have an opportunity to move beyond current substitution matrices to more interpretable
mechanistic models with greater fidelity to the evolutionary process of mutation and selection and

the holistic nature of the selective constraints. As part of this endeavour, we consider how epi-

static interactions induce spatial and temporal rate heterogeneity, and demonstrate how these
generally ignored factors can reconcile standard substitution rate matrices and the underlying biol-

ogy, allowing us to better understand the meaning of these substitution rates. Using computational

simulations of protein evolution, we can demonstrate the importance of both spatial and temporal
heterogeneity in modelling protein evolution.

Keywords: protein evolution; molecular evolution; epistasis; epistatic interactions; substitution mat-
rices; substitution rates; evolutionary process; phylogenetics; evolutionary Stokes shift

Introduction
Darwin noted that the fitness of any organism is

largely determined by its interactions with other

organisms and the environments they produce,

resulting in a ‘tangled bank’ of plants, birds,

insects, and worms, all ‘dependent upon each other

in so complex a manner’.1 This network of interac-

tions extends the entire range of biologically rele-

vant time and length scales, from the co-

evolutionary dynamics of hosts and their parasites,

to selection for communal behaviour found in social

insects, blind mole rats, and humans, to our

dependence on the oxygen-rich atmosphere formed

by bacteria and plants.

When Perutz and Kendrew obtained the high-

resolution structure of myoglobin and haemoglobin, it

became clear that the ‘tangled bank’ perspective is

relevant for intra-molecular interactions as well.2,3

Proteins are structured, highly integrated entities.

Natural selection acts on the ability of proteins to

function and (for most proteins) to fold and be stable

under physiological conditions. These properties are

holistic, meaning that they are properties of the

entire protein (or complex of proteins). Structure and

stability depend on hydrogen bonds, ion pairs, pack-

ing interactions, and the formation of hydrophilic

surfaces. Function involves forming high affinity

binding sites and specific geometries of catalytic resi-

dues. The properties of the proteins are generated by

the interactions between amino acids, so the selective

constraints on a site in a protein can only be under-

stood in the context of the amino acids forming the

rest of the protein. A substitution at one site in a
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protein can affect the preferences for amino acids at

other sites; the resulting substitutions at these other

locations can then alter the selection at the first site,

resulting in a complex network of feedback loops, a

tangled bank of interactions. One aspect of this is the

evolutionary ‘Stokes shift’, in which the rest of a pro-

tein adapts itself to a new amino acid resident at a

given site, tending to make the resident amino acid

more evolutionarily stable over time.4,5

Because epistatic interactions result in great

complexity, it is not surprising that they are strate-

gically ignored in most phylogenetic modelling of

protein evolution. This neglect has led to the pro-

duction of powerful and computationally feasible

approaches in which each site in a protein is

assumed to evolve in a manner independent (and

often identical) to evolution at other sites. These

models can be adjusted to infer the numbers of dif-

ferent types of substitutions correctly, and thus rea-

sonably well describe these consequences of

epistatic interactions despite their independent-site

assumptions. The successes of such models came,

however, at the cost of losing contact with the basic

biological phenomena underlying the substitution

process. For instance, models that incorporate the

genetic code and represent some form of the process

of mutation and selection can provide important

insights about the selective forces acting on a pro-

tein inaccessible through purely empirical mod-

els.6–8 As computational methods advance and

sequence data becomes more copious, new opportu-

nities arise to go even further beyond empirical

models, to connect with our underlying mechanistic

understanding of protein biophysics and molecular

evolution. At the same time, it is increasingly clear

that epistatic interactions between sites in proteins

can provide valuable information on protein evolu-

tion and the evolving proteins,9 and that it is peril-

ous to ignore them.10

In this paper, we attempt to develop a unified

framework to link the standard empirical and

genetic code-based models with the biophysical prop-

erties of proteins and the dynamics of evolution, and

consider what these models can reveal about the

underlying ‘tangled bank’ of amino acids in a pro-

tein. In particular, we consider the questions: What

governs the relative rates of substitution? How do

the substitution rates in empirical models relate to

the underlying biophysics and evolutionary biology?

Which aspects are well represented, missed, or in

conflict with these standard models? How does the

relative substitution rate between two amino acids

depend on their physicochemical properties, includ-

ing such factors as relative size, charge, and polar-

ity? How is this dependence encoded in standard

empirical and genetic code-based models? And per-

haps most importantly, how do both empirical and

mechanistic approaches need to change to better

represent the biological processes that they are

attempting to model?

Results

Understanding relative substitution rates: Why

substitutions are generally conservative

It has been observed many times that conservative

mutations between similar amino acids are more

likely to be accepted than mutations between dissim-

ilar amino acids. This is observed, for instance, in

the empirical substitution matrices created by Dayh-

off and others.11–15 In such matrices, the substitu-

tion rate QIV between the aliphatic and hydrophobic

amino acids isoleucine and valine is much higher

than the rate QDL for the nonconservative substitu-

tion from negatively charged aspartic acid to neutral

leucine. This can be interpreted as a simple conse-

quence of an argument made by Fisher, who consid-

ered the focusing of a microscope; if the sample in

the microscope is more or less in focus, turning the

fine adjustment knob is much more likely to yield

an improvement than turning the course adjustment

knob.16 If you are near a fitness optimum, large

steps (such as nonconservative amino acid changes)

will tend to move you away from the optimum,

rather than nearer to the peak, especially if the

number of adjustment knobs is large. The physio-

chemical distance between amino acids is symmet-

ric; both isoleucine to valine and valine to isoleucine

substitutions are conservative and therefore

expected to be fast, while both aspartic acid to leu-

cine and leucine to aspartic acid substitutions are

nonconservative and thus slow. This symmetry is

encapsulated in the standard formation of these sub-

stitution models, where QXY, the rate of substitution

from amino acid X to Y, is represented as QXY 5 SXY

pY, where pY is the observed equilibrium frequency

of amino acid Y in the protein or protein database,

and the exchangeability matrix SXY is symmetric

(e.g., SXY 5 SYX) with high values for pairs of simi-

lar amino acids and low values for dissimilar amino

acids. This formulation guarantees ‘reversibility’,

that is, at equilibrium the expected number of sub-

stitutions from X to Y (proportional to pX QXY 5 SXY

pX pY) is equal to the expected number of Y to X sub-

stitutions (proportional to pY QYX 5 SXY pX pY).17

In contrast to these standard empirical models of

substitution, protein biophysicists and bioinformati-

cians often model how appropriate different amino

acids are for a given site. This is, for instance, the

principle behind hidden Markov models (HMMs)

used to classify and cluster protein sequences;18–20 in

these models, each site in the protein is represented

as a node in a network characterised by ‘emission

probabilities’ equal to the probability of observing a

given amino acid at that site. Importantly, these

probabilities are specific to each individual site, with
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local preferences for hydrophobic or helix forming,

aliphatic, or specific amino acids depending upon

structural and functional constraints. Recognition of

distant homologues or proteins with similar struc-

tures depends on the site-specific nature of these

probabilities. This is in stark contrast to standard

substitution models which generally assume that the

same model applies at all sites in the protein at all

points in evolutionary time (or include a site-specific

scaling factor that allows differences in average rates

but does not affect relative rates21,22).

Halpern and Bruno included this biophysical

perspective in their evolutionary mutation-selection

models by incorporating the relative ‘fit’ of the wild

type and mutant amino acid at any site, where

amino acid fitness is similar to the concept of rela-

tive emission probabilities in an HMM.23 The muta-

tion rate is multiplied by the probability of fixation

to obtain the substitution rate; conservative changes

tend to be close to neutral and accepted at rates sim-

ilar to the neutral rate. Nonconservative substitu-

tions are slower or faster than neutral substitutions

depending upon whether they result in deleterious

or advantageous changes in the protein. As a result,

if a nonconservative change (e.g., from cysteine to

proline) is highly deleterious with a low fixation

probability resulting in a very low substitution rate,

the opposite nonconservative change (e.g., from pro-

line to cysteine) will be advantageous and thus have

a substitution rate substantially higher than neu-

tral, rather than lower as in standard substitution

models. Mutation-selection models have been used

to estimate selection on degenerate codons,24 gener-

ate amino acid propensity profiles,25 characterize

the distribution of fitness effects,26 and to identify

changes in selective constraints following host shifts

of pathogens.8,27

Site heterogeneity is explicitly included in the

mutation-selection models, with the relative fit-

nesses of the amino acids defined for each site. This

variation in relative fitness among sites leads to var-

iation in relative rates of a form generally missing

from standard empirical models, which must be con-

sidered if we wish to reconcile the standard substitu-

tion models with the biophysical description. Instead

of rates, let us consider the flux UL,XY from amino

acid X to Y at site L, that is, the number of times an

X to Y substitution occurs at this site in a specified

length of evolutionary time. The expected flux at

this site is equal to UL;XY5pL;XQL;XY, so the esti-

mated rate constant is Q̂L;XY5
UL;XY

pL;X
, where the site-

specific selective constraints are explicitly repre-

sented. Thus, the relative equilibrium frequencies

and substitution rates also depend on the site in the

protein. If we wish to develop a standard substitu-

tion model that ignores this site heterogeneity, we

must average both observed substitutions and equi-

librium frequencies over all of the sites, to generate

an estimated rate given by Q̂XY5
hUL;XYiL
hpL;XiL

5
hpL;XYQL;XYiL
hpL;XiL

.

This quantity can be calculated by modelling

the evolutionary dynamics using the diffusion-based

formulation of Kimura.28 According to this formula-

tion, the substitution rate from amino acid X to Y at

site L is given by:

QL;XY5vXY
4NeðmL;Y2mL;XÞ
12e24NeðmL;Y2mL;XÞ

(1)

where vXY is the codon-averaged relative mutation

rate, mX is the marginal Malthusian fitness of an

individual with amino acid X in site L, and Ne is the

effective population size. The corresponding equilib-

rium distribution of amino acids at this site is given

by

pL;X5
kXe4NemL;XX
X0

kX0e
4NemL;X0

(2)

where kX represents the results of the degeneracy of

the genetic code and codon biases. Reversibility in

the model requires that vXYkX5vYXkY5vS
XY where

vS
XY is symmetric (vS

XY5vS
YX). Using these relation-

ships, we can express the substitution rate in terms

of equilibrium frequencies as

QL;XY5vXY

ln
kXpL;Y

kYpL;X

� �
12

kYpL;X

kXpL;Y

� � (3)

If we approximate ln ðkYpXÞ ’ kYpX21, Eq. (3)

reduces to QL;XY ’ vS
XYpL;Y, an amino acid version of

the Felsenstein 81 model (F8129), except that the

equilibrium frequencies are specific for each site in

the protein. Note that selective constraints are not

otherwise present in this model—there is, for exam-

ple, no exchangeability matrix encoding physico-

chemical similarities.

Using this approximation, we can generate a

corresponding standard model by averaging fluxes

and equilibrium distributions over sites, leading to

Q̂XY5
hpL;XQL;XYiL
hpL;XiL

5vS
XY 11

CovðpL;X;pL;YÞ
Ŷ

Ŷ

� �
p̂Y (4)

where X̂5hpL;XiL. The corresponding symmetric

exchangeability matrix is given by

SXY5vS
XY 11

CovðpL;X; pL;YÞ
Ŷ

Ŷ

� �
(5)

As can be seen by (4)) and (5), the substitution rate

depends upon the covariances of the equilibrium
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frequencies, which represents the tendency of the

old and new amino acids to be acceptable at the

same sites.

Estimates for the covariances in the equilibrium

frequencies can be obtained by considering sets of

aligned homologous proteins. Figure 1 shows the

estimated equilibrium frequencies for isoleucine and

valine, and leucine and serine, at a random sample

of sites from alignments in the Pfam 29.0 data-

base.30 In these representative examples, as well as

with other pairs, the correlations between the site-

specific equilibrium frequencies are highly indicative

of the physicochemical similarities between the

amino acids.

Empirical amino acid substitution models (e.g.,

WAG,14 JTT,13 LG,15 and Blossum6212) calculate the

average substitution probabilities among amino

acids over a large number of proteins and sites. By

normalizing substitution matrices to one expected

substitution per unit time, we can directly compare

exchangeability parameters from these matrices to

those from substitution matrices obtained by apply-

ing Eq. (5) to data extracted from the Pfam database

(ignoring vS
XY). Although these substitution matrices

are obtained from quite different datasets, there is a

strong and consistent correlation between estimates

of exchangeabilities predicted by biophysical models

and those estimated by more standard methods (Fig.

2). This highlights the connection between the corre-

lations in equilibrium frequencies among a large

variety of different sites in the biophysics based

models, and the estimated exchangeabilities of

standard substitution models where this variation is

ignored. There is a discrepancy, however, in that the

exchangeability values derived from the Pfam data

have substantially faster relative rates for the

slower substitutions compared with the empirical

methods.

Understanding the magnitude of substitution

rates: the constraints at different sites

We can investigate the magnitude of substitution

rates by considering the strength of selection acting

on different positions. Individual sites in proteins

have different constraints—sites on the exterior of

the protein are often under weak selection and can

accept most hydrophilic (and some hydrophobic)

amino acids, while other sites are completely con-

served over long evolutionary time scales, indicating

that the site can only accept a single amino acid. We

Figure 1. Correlation between the equilibrium frequencies of a random selection of sites from the Pfam database,30 for two

similar amino acids [isoleucine (I) and valine (V), left] and two dissimilar amino acids [leucine (L) and serine (S), right].

Figure 2. Predicted relative exchangeabilities (S) calculated

from equilibrium amino acid frequencies and from a set of

standard substitution matrices. The site-specific amino acid

frequencies were based on Pfam protein alignments and cal-

culated with Eq. (5), whereas the substitution matrix exchan-

geabilities were calculated for Le and Gascuel15 (red), JTT13

(green), and Blossum6212 (purple). In all cases, the rate matri-

ces from which the exchangeabilities were derived were nor-

malized so that the average substitution rate was 1.0.
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can quantify the degree of acceptable variation at

different sites by calculating the sequence entropy,

using ideas from information theory.31 By taking the

exponent of the sequence entropy at any site L we

arrive at the effective number of acceptable amino

acids XL, equal to

XL5exp 2
X

X

pL;Xln pL;X

 !
(6)

XL is equal to the number of amino acids that would

have the same sequence entropy if all of these amino

acids were equally likely.

We can now ask, what is the relationship

between the strength of the selective constraints,

represented by the range of permissible amino acids,

and the expected and observed substitution rates in

different models. For standard substitution models,

every site has the same set of equilibrium frequen-

cies and thus the same effective number of accepta-

ble amino acids. Because every amino acid is

observed in a reasonable fraction of sites, XL is

approximately 18, corresponding to few selective

constraints. We can now ask, from a biophysical per-

spective, what substitution rates would we expect to

observe in sites with this value of XL? Calculating

the substitution rate for all pairs of amino acids

based on the Kimura formula [Eq. (3)], one would

expect a nonsynonymous rate (relative to the neu-

tral rate) in excess of 0.95 (Fig. 3), far above what is

commonly observed in proteins.32

According to our biophysical understanding,

selective constraints determine which amino acids

are acceptable in each location, represented by shifts

in equilibrium frequencies, which have an impact on

the probabilities of different mutations being

accepted. Stronger selective constraints manifest

themselves as fewer acceptable amino acids and cor-

respondingly slower substitution rates. General

empirical models, however, represent the equilib-

rium distribution at all sites with the same broad

range of acceptable amino acids, precluding the rep-

resentation of selection in a biologically coherent

manner: it is difficult to imagine a form of selection

acting on a various locations in a protein that would

reduce the substitution rate at some sites while

leaving the equilibrium distribution of amino acids

unchanged. Instead, these models allow for the

effects of selective pressure on substitution rates

using ad hoc multipliers. The most common

approach, used by the general substitution matrices

considered above, is to simply scale branch lengths

by amino acid substitutions decoupled from neutral

nucleotide substitution rates. Alternatively, average

and site-specific deviations from neutral expectation

may be accommodated in standard codon mod-

els6,7,33 using a set of values for the ratio of nonsy-

nonymous to synonymous substitution rates that

vary among sites.

The simplicity and computational tractability of

these empirical approaches has allowed their wide-

spread use in a range of different applications, but

is achieved at the expense of adding terms without a

clear biological basis. These approaches reduce our

ability to interpret the results of these models

directly in terms of the underlying biophysics and

evolutionary biology. In particular, investigations

into the nature and cause of varying selective con-

straint among sites are hampered by using models

that deny such variation.

One approach to resolving these issues is to

include spatial heterogeneity in the substitution

models. By encoding the selective constraints spe-

cific to each site, these constraints can be made

more specific, and therefore more restrictive, reduc-

ing the effective number of acceptable amino acids

at each site and reducing the expected substitution

rate relative to the neutral substitution rate in a

more biologically reasonable manner. Two ways in

Figure 3. Relationship between effective number of permissi-

ble amino acids and the corresponding amino acid substitu-

tion rate compared to neutral evolution, as calculated with

Equation 3. Standard substitution models (red: WAG,14 JTT,13

LG,15 Dayhoff (D),11 Blossum62 (B62)12) average over the

selective constraints at many sites, resulting in a large num-

ber of permissible amino acids corresponding to a near-

neutral rate of evolution, far from that observed in biological

proteins (shaded region).32 Including spatial heterogeneity as

in the CAT models (red: C10, C20, C30, C40, C50, C60)36

significantly restricts the acceptable amino acids, as does

computing equilibrium frequencies based on Pfam protein

alignments (brown),30 but still cannot generate reasonable

substitution rates. Simulations that include temporal hetero-

geneity (Stokes Fisher model, SF, blue)4,5,10,42 achieve substi-

tution rates close to biological proteins without ad-hoc rate

scaling factors, despite omitting selective constraints on

function. Averaging the Stokes Fisher simulation results to

remove temporal heterogeneity (SF-T) or both spatial and

temporal heterogeneity (SF-TS) yields results similar to other

approaches that ignore such heterogeneities.
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which this is currently achieved are by estimating

site-specific equilibrium frequencies,8,23 or by creat-

ing a mixture model that allows different substitu-

tion processes among classes.34–36 As an example of

the former approach, we used Pfam sets of aligned

sequences30 to define site-specific equilibrium fre-

quencies, and then used these frequencies to calcu-

late the average effective number of acceptable

amino acids, as well as the expected average substi-

tution rate. As an example of the latter approach,

Quang and colleagues developed sets of ‘CAT’ substi-

tution models in which the substitution process is

defined by equilibrium amino acid frequencies and

the fraction of all sites that would be expected to be

a member of each class.36 Both of these approaches

of including site heterogeneity result in a signifi-

cantly lower number of acceptable amino acids and

thus a lower expected substitution rate than the

general models (Fig. 3). However, the effective num-

bers of acceptable amino acids are still large enough

that the predicted substitution rates compared to

neutral expectation are substantially higher than

observed in biological proteins.

It appears that to reduce the expected substitu-

tion rate to levels compatible with observation with-

out the introduction of ad hoc multipliers, the

number of permissible amino acids must be less than

predicted by these spatial heterogeneity methods.

One possible explanation is temporal heterogeneity,

which we turn to next. Temporal heterogeneity arises

naturally from epistasis or coevolution, in which

changes in the protein modify evolutionary dynamics

at interacting sites. Kondrashov and colleagues previ-

ously argued that pervasive epistasis was required to

explain observed substitution rates,37 although Plot-

kin and colleagues demonstrated that the analysis

was fundamentally flawed and insufficient to prove

epistasis.38 The evidence for epistasis or coevolution

based on convergence data10 and phylogeny-based

coevolutionary or correlated mutation analyses9,39–41

is more direct and in our opinion more convincing.

Time heterogeneity of substitution rates
In earlier work, we performed long computational

simulations of the evolution of a 300-residue purple

acid phosphatase under selection for thermostabil-

ity.4,5,10,42 We will refer to these as Stokes–Fisher

simulations, or SF. We noted that the equilibrium

frequencies of the various amino acids varied over

time, as shown for three different sites in Figure 4.

Not only does the corresponding effective number of

available amino acids vary during the evolutionary

period, but the values are generally substantially

smaller than those calculated ignoring temporal het-

erogeneity, and result in substitution rates more

similar to those observed (see blue SF versus brown

pfam 68% credible regions in Fig. 3).

We next considered what would happen to this

data if temporal and/or spatial heterogeneity were

ignored. When we averaged the SF data over tempo-

ral heterogeneity, recovered values of XL and

expected substitution rates were similar to that of

the site-specific CAT-60 model (green SF-T 68% cred-

ible region, Fig. 3). When we averaged over both

temporal and spatial heterogeneity the results were

just slightly lower than the general substitution

models (purple SF-TS point, Fig. 3). Thus, the effec-

tive number of amino acids and substitution rates

compared to neutral expectation predicted by cur-

rent general and site-specific substitution models

are consistent with our expectations from epistatic

fluctuations generated by thermodynamically stable

evolutionary simulations. This suggests that to

obtain a more extensive mechanistic explanation for

molecular evolution, we should include temporal, as

well as spatial, heterogeneity.

Conclusions
In this paper, we show that the presence of spatial

and temporal heterogeneity can be used to link bio-

physical models of proteins with standard substitu-

tion models. According to biophysical models, if a

nonconservative substitution from X to Y is deleteri-

ous at a particular point in time, and therefore slow,

Figure 4. Fluctuating equilibrium frequencies, permissible

amino acids and rates over time in SF simulations. (A) Equi-

librium frequencies of the amino acids at site three different

sites (243, exposed; 262, partially buried; 70 buried) during

evolutionary simulation. The simultaneous changes of pro-

pensities at different sites reflect the nature of a protein as an

integrated entity. (B) Effective number of permissible amino

acids (X), including instantaneous values (solid), and calcu-

lated using average equilibrium distributions (dashed), for

sites 243 (blue), 262 (red), and 70 (brown). (C) Instantaneous

substitution rates (x) at sites 243, 262, and 70, over the same

interval.
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the reverse substitution from Y to X should be

advantageous and therefore fast. Yet when averaged

over time and sites, the estimated rate for both sub-

stitutions should be slow. This seeming paradox can

be resolved by considering the number of such substi-

tutions observed. A substitution requires an initial

amino acid, generally with a high propensity for that

site (or else it would not be present there) and a new

amino acid, also with high propensity for that site (or

else this substitution is likely highly deleterious and

unlikely to occur). The number of observed substitu-

tions therefore depends on the number of sites where

both amino acids are acceptable, that is, on the corre-

lations between the propensities of the amino acids

at different sites in the protein, as expressed in

Eq. (4). As this correlation is higher for amino acids

with similar physicochemical properties, we expect

that the average substitution rate for similar amino

acids is higher than for dissimilar amino acids, as

observed in standard models. Even though standard

models misrepresent the rates at any specific site,

seemingly indicating that nonconservative substitu-

tions in either direction are deleterious, they can cap-

ture the manner in which the average flux relates to

the average equilibrium frequencies. In this way, the

heterogeneity ignored by standard substitution mod-

els is actually responsible for the resulting form of

these models, and their tendency to favour conserva-

tive substitutions.

As demonstrated with the CAT mixture models

as well as the models based on Pfam emission proba-

bilities, spatial heterogeneity alone is likely inad-

equate to explain the low number of amino acids

acceptable at any site and time, and it is difficult to

obtain substitution rates as slow as observed with-

out incorporating empirical rate factors that lack

biological meaning. This highlights the importance

of understanding temporal heterogeneity in any bio-

logically based model of substitution rates. The

importance and even existence of epistatic interac-

tions has sometimes been controversial, although

experimental observations indicate that only the

magnitude of the effects are debatable;5,43–47 such

interactions are, as would be expected, relatively

small when considering closely-related viral strains,

and larger when more substantial evolutionary dis-

tances are involved. Interestingly, recent work sug-

gests that such epistatic interactions are enhanced

in naturally occurring substitutions compared with

random mutations.47 The effect is also magnified

during adaptive functional changes, as the protein

has to adjust to more nonconservative substitutions.

It is doubtful that the equilibrium frequencies

estimated from the Pfam alignments accurately rep-

resent the true equilibrium amino acid frequencies.

Firstly, according to the perspective presented here,

the equilibrium acid frequencies are themselves

time-dependent, and thus cannot be uniquely

defined over a finite time period. Rather, models

such as Pfam represent the equilibrium amino acid

frequencies averaged over the evolutionary time

period covered by a sequence alignment. Moreover,

the equilibrium frequencies are based on a finite set

of examples, and will be influenced by the biases

present in current sequence databases. The exam-

ples are also not independent examples, but are phy-

logenetically related; sequence-weighting methods

for dealing with these dependencies remain imper-

fect, and the estimates would potentially be biased

even if the equilibrium amino acid frequencies were

not fluctuating over time. The similarity in the

results of the analysis of Pfam sequence alignments,

the CAT models incorporating site heterogeneity,

and the time-averaged SF models shown in Figure 3

suggest that the Pfam models are not grossly inad-

equate for our purposes.

Although it is our belief that time and spatial

heterogeneity in substitution rates need to be better

understood and incorporated in the models of the

future, there are two major challenges that remain.

Firstly, the computational challenges are substan-

tial, and classical methods of performing likelihood

calculations on trees are not adaptable to the chal-

lenge. We and others have been using next genera-

tion methods Bayesian methods that augment

substitutions where they most plausibly occurred on

the tree, updating the augmented substitutions with

successive Markov chain iterations (e.g., Refs.48–50)

Such methods can be made to scale well with large

numbers of models and states, particularly with par-

tial sampling of substitution histories and uniform-

ization.50,51 The second major challenge is to

understand how temporal and spatial variability

should be modelled and parameter space simplified

given an almost infinite number of possibilities. Sim-

ple rate-switching models such as covarion and

related models52,53 accommodate the effect of fluctu-

ating constraints on fluctuating rates, and may

therefore in some cases be useful, but they do not

reflect the fluctuating constraints themselves. It is

our view that such models should be carefully

defined based on biological mechanistic considera-

tions, and that much of future work should focus on

what these mechanisms are and what is detectable

given the limitations of sequence acquisition from

extant organisms.

Methods

Covariation between equilibrium frequencies

For the covariation between equilibrium frequencies

shown in Figure 1, random sites were selected from

the Pfam 29.0 database30 set of protein alignments.

For each of these states, the equilibrium frequencies

for each pair of amino acids was extracted employing

sequence weighting developed by Henikoff and
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Henikoff.54 Only alignments larger than 100 sites

with more than 100 sequences were considered, and

sites with gaps in over 50% of the (weighted) sequen-

ces were excluded. These equilibrium frequencies

were used to calculate exchangeabilities (Fig. 2) using

Eq. (5).

Effective number of accessible amino acids and

corresponding substitution rate

For standard substitution models (e.g., Dayhoff,

WAG, JTT, Blossum62, LG), published equilibrium

frequencies were used to calculate the effective num-

ber of accessible amino acids using Eq. (6). The over-

all substitution rate relative to the neutral rate x
was also calculated using these equilibrium frequen-

cies using

x5

X
hXYipXQXYX
hXYi

dX

61
vS

XY

; (7)

where QXY is calculated with Eq. (3) using the num-

ber of codons encoding each amino acid (dX) to calcu-

late kX, and vS
XY is computed based on the K80

nucleotide model (K52).55 Calculations with the

CAT models36 were performed in a similar manner,

averaging over the set of site class models. Each

point in the Pfam set30 represents the average over

a single protein alignment.

Evolutionary simulations

The evolutionary simulations have been described

previously.4,10,42 Briefly, we simulated the evolution

of a 300-amino acid phosphatase (PDB 1QHW56).

The free energy of a sequence in this structure was

estimated based on the sum of pair-wise contact

energies using contact potentials estimated by Miya-

zawa and Jernigan.57 We also calculated the free

energy for an ensemble of 55 alternative folds, and

these calculations were used to estimate the free

energy for a much larger ensemble (10160) of

unfolded structures. These calculations allowed us

to calculate the free energy of folding DG([Ai]) for

any amino acid sequence [Ai]. The fitness of a

sequence was then calculated as the probability of

being folded at equilibrium

f ðfAigÞ5
exp 2

DGðfAigÞ
kT

� �
11exp 2

DGðfAigÞ
kT

� � ; (8)

where kT is the product of the Boltzmann constant

and the temperature.

Starting out with a random sequence of codons

(excluding stop codons), the rate of all possible

single-base substitutions was calculated using Eq. 2,

using the K80 nucleotide model (K52).55 Time was

advanced by an amount chosen from an exponential

distribution based on the sum of the substitution

rates, while a substitution was accepted proportional

to the relative rates. Simulations were allowed to

reach a state of mutational drift–selection balance,

in which the selective pressure for increased stabil-

ity was in balance with the much larger number of

destabilising mutations. After this point, all results

were obtained with simulations in which the fitness

of the protein underwent random unbiased fluctua-

tions. The simulations were completely transparent,

meaning that the timing and nature of every substi-

tution, the instantaneous substitution rates, and the

instantaneous equilibrium frequencies at every loca-

tion were accessible.
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