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Abstract: Viruses constantly face the selection pressure of antibodies, either from innate immune

response of the host or from administered antibodies for treatment. We explore the interplay
between the biophysical properties of viral proteins and the population and demographic variables

in the viral escape. The demographic and population genetics aspect of the viral escape have been

explored before; however one important assumption was the a priori distribution of fitness effects
(DFE). Here, we relax this assumption by instead considering a realistic biophysics-based

genotype-phenotype relationship for RNA viruses escaping antibodies stress. In this model the

DFE is itself an evolvable property that depends on the genetic background (epistasis) and the
distribution of biophysical effects of mutations, which is informed by biochemical experiments and

theoretical calculations in protein engineering. We quantitatively explore in silico the viability of

viral populations under antibodies pressure and derive the phase diagram that defines the fate of
the virus population (extinction or escape from stress) in a range of viral mutation rates and

antibodies concentrations. We find that viruses are most resistant to stress at an optimal mutation

rate (OMR) determined by the competition between supply of beneficial mutation to facilitate
escape from stressors and lethal mutagenesis caused by excess of destabilizing mutations. We

then show the quantitative dependence of the OMR on genome length and viral burst size. We also

recapitulate the experimental observation that viruses with longer genomes have smaller mutation
rate per nucleotide.
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Introduction

Viruses face the stress of various environments.1 It

has been hypothesized that an adaptive strategy

among viral populations to fight this pressure is to

modulate their mutation rates2 and previous works

have studied the existence of an optimal mutation

rate for viruses.3 An upper bound to the rate of

mutation exists due to lethal mutagenesis whereby

mutational load leads to a population decline.4–6

Lethal mutagenesis is the presumed mode of action

of some anti-retroviral drugs, such as ribavirin, that

increase the mutation rate to lethal levels.7,8 A

lower bound for mutation rate has been hypothe-

sized for several reasons. First, there is the require-

ment for an elevated mutation rate to increase the

supply of beneficial mutations. These mutations

could help the virus to adapt to the changing
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environmental stress that can come from the

immune response of the host cell. This scenario is

supported by the observed hypermutability of bacte-

ria isolated from natural populations.9,10 Another

potential explanation of the lower bound on the

mutation rate is the high cost of maintaining repli-

cation fidelity,2,11,12 although such cost remains to

be experimentally demonstrated. The existence of an

optimal mutation rate due to the balance for the

requirement for beneficial mutations and the avoid-

ance of the lethal mutagenesis have been postulated

in the past.3 There have been several theoretical

models on how such an optimal mutation rate could

arise.3,12–15 However, these models are largely phe-

nomenological and lack molecular realism. Where

this balance occurs and what is the underlying

molecular (or cellular) mechanism is still being

debated both from theoretical and experimental

standpoints because the structure of the fitness

landscape, and consequently the distribution of fit-

ness effects (DFE), is unclear. Assuming the DFE a

priori is challenging because the DFE itself can

change during evolution, as demonstrated in experi-

ments16 and in forward evolutionary simulations on

biophysics-based fitness landscapes (in the context

of protein folding and binding landscape17,18 or in

the context of transcription factor binding19).

We present here an alternative approach where

the fitness landscape of the virus is projected on the

biophysical properties of the essential proteins.

Indeed, Bloom et al. provided direct experimental sup-

port of the mapping between folding stability and the

fitness of a virus in the case of the neuraminidase of

Influenza.20 The biophysics-based fitness landscape

has also been used to explain the measured DFE

among viruses21 and evolution of mutation rates.18,22

More importantly, the distribution of changes induced

by random mutations on key biophysical properties

such as folding stability are well-defined and estab-

lished.6,23 Thus, the DFE does not need to be an

assumption in the evolutionary model. Several groups

including our own recently showed that a biophysical

approach could account for the influences of muta-

tions on proteins and could have an effect on the dis-

tribution of fitness effects and the dynamics of

adaptation.5,6,17,21,24–26 Our goal here is to provide the

simplest model, although sophisticated enough at the

level of biophysics, to determine the underlying molec-

ular mechanism to investigate the contribution of bio-

physics to evolution. We investigate in this report the

balance between two competing forces (the lethal

mutagenesis and the maintenance of supply of benefi-

cial mutations) during the evolution of viral popula-

tions under antibodies stress by providing biophysical

details into the molecular effects of mutations.

Methods

Biophysical model of viral evolution
To determine the interplay between the viral muta-

tion rate, its demography, and the biophysical prop-

erties of viral proteins, we have decided to mimic in

silico a typical “serial passaging” experiment [Fig.

1(A)]. During these experiments, a fraction of an ini-

tial viral stock is added to a medium containing cells

and other stressors (e.g., drugs or antibodies). The

virus can then infect the cells under an external

pressure (the drugs or the antibodies) and new viral

particles are released, giving rise to a new stock.

These steps constitute a single passage. After multi-

ple passages, the virus titer can then be measured

or the virus can be sequenced and compared to the

initial viral stock. Our primary concern here is to

model experiments of viral evolution that use serial

Figure 1. Experimental and computational methodologies to study evolution of viral escape. The computational workflow starts

with a stock of N viral particles (with explicit sequences) from which 104 are randomly chosen and infect cells according to fitness

(which is assumed to map to the probability of infection Pinf). If the cell is infected, M new particles are released and each one of

them is mutated according to a mutation rate l, forming a new stock of particles. (a) Experimental workflow. (b) Computational

Workflow.
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passaging; a premise is that the results from these

kinds of studies are applicable to the evolution of nat-

ural populations. What is the appropriate demo-

graphic description of natural viral evolution can be

debated. There is a claim that periodic bottlenecking

resembles the inter-host infection, whereby only a few

viral particles are transmitted between hosts.27–31

We start the computational model with a stock

of N viral particles, from which 104 particles are

randomly chosen to infect cells according to their fit-

ness.32 The fitness of a virus is considered to be pro-

portional to its probability of infection Pinf which

itself is assumed to be a function of the folding sta-

bility of all viral proteins and of the affinity to the

antibodies. Thus, this model applies to lytic cycles

but not to lysogenic cycles where the integration of

the viral genome in the host genome would require

other parameters in the fitness function. We also

assume that the multiplicity of infection (MOI) is

equal to 1, meaning that each viral particle can

encounter at least one host cell. If a cell is infected,

M new particles are released. In our definition, the

“burst size” M is the number of progenies after a

successful infection of a mammalian cell. During

replication, each new particle can be mutated at a

specified per genome rate l.

In our model, the fitness is expressed as the

probability of infecting a cell (Pinf). We assumed that

for a viral particle to infect a cell, the viral proteins

must be folded (to be functional) and be free from

the neutralizing antibodies (while all proteins

encoded by the viral genome must be folded, only

one is considered to bind to the antibodies). Consid-

ering a thermodynamic equilibrium between the

antibodies-binding protein, the antibodies and the

complex (with an equilibrium constant of Kd), one

can write if p viral proteins are encoded by the viral

genome (with DG 5 Gfolded-Gunfolded and b 51/RT):

Pinf 5
ebDG1

11ebDG1 1ebDG1
½Ab�
Kd

� �
0
@

1
A3

Yp

k52

1

11ebDGk

� �
(1)

assuming a two-state folding thermodynamics.33

Here we distinguish between epitope-containing cap-

sid protein, which we denote as the first viral pro-

tein, and the rest of viral proteins which have to be

folded to function but do not interact with antibod-

ies. The first factor represents the probability that

the epitope-containing capsid protein is folded and

not sequestered by the antibodies Ab. Assuming that

the antibodies can bind only to the folded capsid pro-

tein, there are three distinct species: folded and free

capsid, folded and bound capsid, and unfolded cap-

sid. Thus, the fraction of folded and bound is deter-

mined by the ratio of the Boltzmann probability of

being folded and the total probability of being in any

of the three states. The second factor is the probabil-

ity that the remaining p-1 viral proteins are in their

native (functional) states under thermodynamic

equilibrium. Thus, we do not rely on an assumption

regarding the distribution of fitness effects as it has

often been done before. Instead, we rely on a bio-

physical model of the fitness, for which data can be

derived from theory or experiments. Here, the viral

fitness depends on two biophysical traits of the viral

proteins –the Gibbs free energy of folding of each

protein (DG) and the binding constant of the capsid

protein to the antibodies (Kd)– and on the external

pressure (the concentration of antibodies in the

medium [Ab]).

In this model, we don’t explicitly consider the

capsid assembly, which would require additional

assumptions on the strength of the interaction

between individual capsid domains. The equation

also assumes that the antibodies could target only

one of the capsid domains. The motivation for the

latter assumption is that each antibody is large and

it probably occludes other antibodies from binding.

Biophysical effects of mutations

When a mutation occurs in the viral genome, we

estimate its effect on the folding Gibbs free energy

in the following way: DGmutant 5 DGwildtype 1 DDG.

The free energy of folding of the wild type

(DGwildtype) for all proteins is set initially to 25.0

kcal/mol, which is close to the average folding stabil-

ity of real proteins.34 This initial choice is not rele-

vant to the overall results because the population

will equilibrate to the folding stability dictated by

mutation-selection balance.35 The biophysical effect

DDG is drawn from a normal distribution with a

mean value of DDGmean520:13 DGmeanð Þ10:23 kcal/

mol and a standard deviation of DDGsd 5 1.7 kcal/

mol (Ref. 6 and 23). These values are derived from

the distribution of experimentally measured DG and

DDG values collated in the ProTherm database.34,36

The linear dependence between DDGmean and DG is

also derived from the ProTherm database.36 It mod-

els the observation that when the wild-type protein

is more stable, there are fewer sequences that can

lead to stabilization so arising mutations are on

average more destabilizing (sequence depletion).

That is, the more stable the protein is, the more

likely it is to find destabilizing mutations.36

Whereas all mutations can affect the free energy

of folding, it is not the case for the binding affinity.

The average number fraction of residues that partic-

ipate in protein-protein interactions is �15% accord-

ing to a bioinformatics study.37 Thus, we assumed

that the probability that a mutation hits a residue

belonging to the epitope of the viral capsid epitope-

containing protein is 0.15. We also assumed that the

perturbation of the protein2protein interaction is

statistically analogous to mutational effect on the
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folding Gibbs free energy (i.e., the distribution of

DDGbinding is the same as the one for DDGfolding):

Kd;mutant5Kd;wildtype exp bDDGbinding

� �
(2)

This equation reflects the assumption that the ener-

getics that drive protein2protein interaction are

largely similar to energetics that drive protein folding.

Indeed, the two distributions of DDGbinding and

DDGfolding have similar features in that most mutations

are deleterious—they mostly destabilize proteins and

perturb protein-protein interaction. Miller et al. found

through exhaustive computational mutagenesis of the

viral capsid of bacteriophage QX174 that the two distri-

butions are similar.38 Thus, the central part of our algo-

rithm is an assumption regarding the distribution of

biophysical effects of mutations. The average influence

of DG and of Kd on Pinf is shown in Supporting Informa-

tion (see Supporting Information Fig. S1). One must

note that there can be a trade-off between binding and

folding free energies. Manhart et al. found that during

evolution different regimes can be observed depending

on the values of DGbinding and DGfolding. For example,

when DGbinding is low and DGfolding is high, there is a

need to preserve the folding stability and epistasis

plays a strong role to evolve between sequences.39,40

This can also help to stabilize marginally stable

proteins.

Model system
Our model is not explicitly sequence-dependent

because the effects of mutations are inferred from the

distributions of DDGfolding and DDGbinding, but we

account for the number of proteins and the genome

length. We have used values for the murine norovirus

for which three proteins are important during infec-

tion: VP1 (541 amino-acids), VP2 (208 amino-acids)

and VPg (124 amino-acids).41 The remaining proteins

are only expressed once the virus has penetrated into

the cell and were not considered in the model [thus,

a value of p 5 3 was used, see Eq. (1)]. Should VP1 or

VP2 be unfolded, the capsid would be degraded.

Should VPg be unfolded, the genome would not be

able to replicate. Thus, the three considered proteins

are essential for the virus. Realistic values of burst

size for RNA viruses are in the range of 50 to �1700

(Ref. 44); however, to save computational time a

value of M 5 100 was used unless otherwise noted.

Results

Evolution under antibodies stressor

We first show the dynamics of the viral population

aimed at mimicking the serial passaging experiments

(Supporting Information Fig. S2). Starting with 105

viral particles and no external pressure ([Ab]50), the

viral count first increases and quickly equilibrates.

Since we start the simulations with very stable pro-

teins (DGfolding525 kcal/mol), Pinf is close to 1 and all

cells are infected; thus, the viral stock quickly

increases. However, the dynamics of this initial equili-

bration is irrelevant because the following results are

a consequence of the evolutionary dynamics already

under equilibrium. After some time, the population

starts migrating towards mutation-selection balance

by acquiring deleterious mutations and stays stable

for the 100 first passages (Supporting Information

Fig. S2). Upon addition of antibodies (at passage 101),

the viral count dramatically drops, but then some par-

ticles find beneficial mutations that eventually lead to

viral escape from antibodies. After around 10 pas-

sages, the viral count reaches again a new steady

state (Supporting Information Fig. S2). When the

external antibodies pressure is too high, the popula-

tion goes extinct (see Fig. 2). We consider the popula-

tion extinct when the titer is below the “bottleneck”

count, which is the number of particles passaged to

the next generation (104 particles). For a burst size of

M 5 100, a population goes extinct when less than 100

cells are infected since it will give rise to less than 104

released virus particles. Expectedly, as the concentra-

tion of antibodies is increased, the viral titer keeps

dropping and equilibrating. However, the cycle of

administration of the antibodies affects the population

dynamics of the viruses. Progressive increase of the

antibodies concentration allows the population to

adapt before being stressed by another increase of the

amount of antibodies. Thus the population can toler-

ate higher antibodies concentration.

The novelty of our model lies in the nonfixed dis-

tribution of fitness effects. Thus, the distribution of

the selection coefficient (defined as the probability of

infection before and after mutation, s5Pafter
inf 2Pbefore

inf )

at different passages is different. We present in Figure

2(B) the distribution of selection coefficient for the last

passage with [Ab]5103, the first passage with

[Ab]5106, and the last passage with [Ab]5106 from

Figure 2(A). When the concentration of antibodies

increases (from purple pentagons to blue triangles),

the system is no more equilibrated. Thus, the fraction

of lethal mutations with s< 0 decreases (see insert on

the left) and the fraction of beneficial mutations with

s>0 increases (see insert on the right). After 20

passages without changing the environment (from

blue triangles to red circles), the system had enough

opportunity to adapt and the distribution of selection

coefficient recovers its shape prior to the subsequent

change of antibodies concentration. The two equili-

brated distributions (purple pentagons and red

circles) are very similar, but they are not exactly the

same. This explains why the virus titer is not com-

pletely recovered after each antibodies addition, and

keeps decreasing progressively.

To generalize this result, we explored the onset

of extinction for various combinations of mutation

rate and antibodies concentration. For a given value
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of the mutation rate l, we determined the highest

concentration of antibodies that still leads to viral

escape. First, we performed evolutionary simulations

to allow the population to reach mutation-selection

balance at the chosen mutation rate but at zero

antibody concentration. This equilibration phase

was performed for 20 passages since we observed

that this value is enough to equilibrate the virus

stock (see for example Supporting Information Fig.

S2 where it can be seen that the steady-state has

been reached at passage 20). Then, we stressed the

population at the chosen antibodies concentration.

Extinction or survival is evaluated after 5 passages;

we found that 5 passages are enough to observe the

Figure 2. Viral evolution under an increasing pressure. In panel (a), the viral count first increases because we start the simula-

tions with very stable proteins and Pinf is close to 1. The viral count then quickly equilibrates. When antibodies are “added”, the

viral count dramatically drops under the pressure before reaching again a steady-state. As the concentration of antibodies is

increased, the viral titer keeps dropping and equilibrating. When [Ab] is too high, the viral count drops to the extinction. In panel

(b), we can observe that the distribution of selection coefficient is not fixed depending on the conditions. When the concentra-

tion of antibodies increases (last passage with [Ab]5103 in purple pentagons to first passage with [Ab]5106 in blue triangles),

the system is no more equilibrated. Thus, the fraction of lethal mutations decreases (insert on the left) and the fraction of bene-

ficial mutations increases (insert on the right). After 20 passages without changing the environment (last passage with [Ab]5106

in red circles), the system had enough opportunity to adapt and the distribution of selection coefficient recovers its shape prior

to the subsequent change of antibodies concentration. (a) Trajectory of viral evolution with an increasing pressure of [Ab]5103.

(b) Evolution of the distribution of selection coefficient (inserts are small regions of the main graph).
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survival of a viral population at a given antibodies

concentration. If the virus has escaped, the viral

stock increases at each step and there is no need to

go beyond 5 passages.

The value of antibodies concentration at which

the virus escapes is an indication of how much pres-

sure it can endure and still survive. By varying the

mutation rate l, we determined the phase diagram

outlining the conditions at which we observed

extinction and escape of the virus under antibodies

stress (see Fig. 3). Under antibodies pressure,

increasing the mutation rate increases the likelihood

of acquiring mutations that lower the binding free

energy of the protein-antibodies interaction, and

then lead to escape. However, at sufficiently high

mutation rates, further increase in mutation rate

leads to lethal mutagenesis, because arising muta-

tions decrease folding stability, and subsequently fit-

ness by lowering the fraction of folded proteins Pf as

given by (1) (Ref. 5,6,17,21,24). Under very low

mutation rate, proteins are more stable, but the

chance of acquiring escape mutation is decreased.

Thus, there is a balance between lethal mutagenesis

and maintenance of supply of escape mutations

which is quantified by the phase diagram in Figure

3. We find that under our model (which provides bio-

physically realistic estimates of the molecular effects

of mutations) there exists a mutation rate at which

virus can sustain highest stress. This mutation rate

for an RNA virus in our model is found to be around

log10(lg)50.92 or 8.3 mutations per genome per rep-

lication (for a burst size of M 5 100). This value is

somewhat above the range of experimentally

observed mutation rates for RNA virus (see Table S1

in Supporting Information and Discussion below). It

must be pointed out that the existence of a mutation

rate allowing a maximal amount of stress does not

prove that the population can reach this mutation

rate, neither that this mutation rate is always opti-

mal in a broad range of conditions; such a study will

be the subject of a following paper. The lethal muta-

genesis threshold is calculated to be log10(lg)51.69

or 48.8 mutations per genome per replication, which

is higher than previously reported maximum value

of lethal mutagenesis:5,6,21 one must note that in

these previous models, the burst size corresponding

to conservative or semi-conservative replication was

fixed at M 5 2. Thus, the lethal mutagenesis occurs

here at a higher value of the mutation rate due to

much greater burst size compared to previous

models.

Influence of the genome size

We next determined the effect of the genome size on

the optimal mutation rate. In addition to the norovi-

rus model with three genes detailed previously, we

also performed simulations with either only one of the

genes or with a model where some of the norovirus

genes are duplicated to increase the genome length.

The phase diagrams for four representative models are

presented in Supporting Information (Supporting Infor-

mation Fig. S3). The peak in the phase diagram with

respect to the mutation rate per genome is almost con-

stant; however, for the mutation rate per nucleotide, an

influence of the size of the genome is observed. For exam-

ple, for 124 amino acids, it is found to be log10(ln)522.0;

for 208 amino acids, it is log10(ln)521.75; for 541 amino

acids, it is log10(ln)522.4; for 873 amino acids, it is

log10(ln)522.5. Thus, it appears that the longer the

genome is, the lower the optimal mutation rate

(R 5 20.90, p-value 5 0.006). This result reproduces

experimental trend, as shown in Figure 4 where we

report experimentally observed (Ref. 44 and Supporting

Information Table S1) and computed mutation rates

allowing maximal stress for RNA virus. Two viruses

Figure 3. Phase diagram of virus survival under antibodies

stressor. At each mutation rate, the highest amount of anti-

bodies that still leads to viral escape after five passages is

determined, indicating how much pressure the virus can

endure and still survive. The optimal mutation rate for an

RNA virus is found to be around log10(lg)50.92 or 8.3 muta-

tions per genome per replication.

Figure 4. Influence of the genome length on the viral muta-

tion rate. Computed mutation rates with maximal stress (our

model) are in blue open-circle whereas experimentally

observed mutation rates are in purple filled-circle. For the

computational data, R 5 20.90 and p-value 5 0.06.
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reported in reference42 are excluded in Supporting Infor-

mation Table S1 and Figure 4 because these are bacterio-

phages and not interact with antibodies. Nonetheless,

there is an equivalent pressure for bacteriophages that

manifests as an evolutionary “arms race model”.43,44

Thus, we envision that there is also an optimal mutation

rate for these systems, but the underlying biophysics

(such as protein-DNA interaction) could be different.

Note that the longest genome we simulated is 1206

amino-acids long, and we did not extend our study to lon-

ger genomes because of computational cost to perform

simulations with longer genomes.

Influence of the burst size
Larger burst sizes increase the number of viral par-

ticles, which effectively lowers the chance of extinc-

tion. Thus, we also explored the effect of burst size on

the phase diagram (Fig. 5, Supporting Information

Fig. S4). At higher burst sizes, the onset of lethal

mutagenesis is delayed and the viral population is

able to tolerate higher concentration of antibodies:

when a single viral particle gives rise to more progeny,

the chances to find a stabilizing mutation increase,

and a higher maximal mutation rate for the lethal

mutagenesis is achieved. Interestingly, the effect of

burst size on the onset of lethal mutagenesis (from

12.0 to 48.8 mutations per genome replication) is

greater than its effect on the optimal mutation rate

(Fig. 5). Indeed, it appears that the burst size (M) has

a small influence on the value of this mutation rate

(lg) –ranging from 4.2 to 8.3 mutations per genome

replication.

Discussion and Conclusion

We presented here a simple biophysics-based model of

dynamic of viral evolution that quantitatively

explores the balance between lethal mutagenesis and

the requirement for beneficial mutations that allows

escape from antibodies. Contrary to previous models

of viral evolution that a priori assume a fixed distribu-

tion of fitness effects of mutations,4,45 we instead base

our assumptions on the biophysical genotype-

phenotype relationship and distribution of biophysical

effects of mutations. As a consequence, the distribu-

tion of selection coefficient depends on the status of

the system (is it equilibrated or not) and on the envi-

ronment, reflecting epistasis in the viral fitness land-

scape. The distributions that we have used to describe

folding and binding free energies were derived from a

lot of protein types, which can be seen as a limitation.

However, the distribution of biophysical effects can be

explored computationally23 and experimentally34 for

some specific proteins. Thus, if one restrains data to

one family of proteins, more accurate results can be

obtained. First, using this biophysics-based model of

evolution, we find that the survival and viability of

the viral population under antibodies stress is optimal

between 4.2 and 8.3 mutations per genome per repli-

cation (for a burst size between 5 and 100). This value

can indeed be explained as a balance between lower-

ing the binding affinity with the antibodies and keep-

ing the viral proteins stable enough. At low mutation

rate, there is only a small likelihood of finding a muta-

tion that could strongly perturb the binding of the cap-

sid protein to the antibodies (strongly beneficial

mutation). On the other hand, when the mutation

rate is too high, some mutations could perturb the

binding of the capsid to the antibodies while other

mutations could compromise the folding stability of

any viral protein.

The mutation rate of RNA virus is commonly esti-

mated to be approximately 1 mutation per genome per

replication.46,47 We report in Supporting Information

Table S1 the experimentally observed mutation rates

of some RNA viruses.42 The average mutation rate per

genome for these RNA viruses is lg 5 0.37, ranging

from 0.024 to 1.2 mutations per genome per replication.

Our model of viral evolution is simple and does not

account for other biological factors that could influence

mutation rates or their fitness effects (for example, cel-

lular quality control response of host cells, the cost of

protein production, selection for optimal codon or sec-

ondary RNA structures). Thus, while our model pre-

dicts a mutation rate that allows a maximal amount of

stress, the exact values of these mutation rates may

differ from the experimental values of actual viral

mutation rates given in Table S1. There is a broad

(approximately 2 orders of magnitude) variation in the

measured and estimated values of mutation rates (Sup-

porting Information Table S1),42 presumably due to

confounding factors such as effective population size

and genome length. Indeed, in agreement with earlier

works,14,42,48–50 we found that the mutation rate per

nucleotide that allows a maximal amount of stress

decreases when the genome length increases (Fig. 4).

Figure 5. Influence of the burst size on the optimal mutation

rate (blue open-triangle) and on the lethal mutagenesis

threshold (purple filled-square). The lethal mutagenesis

threshold is defined as the value for which the virus cannot

perform 20 passages of equilibration with [Ab]50.
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We also showed the dependence of the mutation rate

which allows maximal stress on burst size (Fig. 5; see

also Supporting Information Fig. S4). The dependence

of the optimal mutation rate on burst size is due to the

increased likelihood at higher burst sizes of finding a

variant that acquired a beneficial mutation. In a simi-

lar vein, the higher burst size results in an effective

increase in fitness because of higher number of

progenies.

Under mutation-selection balance, the evolution

against the antibodies should proceed towards the

near-neutral regime.35 In the review article of Wang

and Bull,51 they pointed out that fitness has three

components: burst size, adsorption rate at which

viruses could interact with cells, and lysis time

(time interval between infect and burst). In our

model, we account for adsorption rate (which is pro-

portional to the probability of infection) and burst

size, but not lysis time. Our main goal here is to

immediately connect to biophysics, thus we mapped

the fitness to the adsorption rate (Pinf). A possible

compensation between lysis time and burst size will

require additional assumptions,51 which will be the

subject of future works. It must also be pointed out

that the current report assumes monoclonal antibod-

ies. A very interesting extension of the study will be

to include other critical players: host cells, viruses,

and B-cells in the germinal centers.52 Indeed, a

biophysics-based evolutionary model of the immune

response could uncover its physical basis. In the

future, other stressors could also be considered in

the model presented here (such as inhibitors and

pH) because effects of mutations on these quantities

can be estimated.
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