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Abstract: Characterizing the probabilities of observing amino acid substitutions at specific sites in

a protein over evolutionary time is a major goal in the field of molecular evolution. While purely sta-
tistical approaches at different levels of complexity exist, approaches rooted in underlying biologi-

cal processes are necessary to characterize both the context-dependence of sequence changes

(epistasis) and to extrapolate to sequences not observed in biological databases. To develop such
approaches, an understanding of the different selective forces that act on amino acid substitution

is necessary. Here, an overview of selection on and corresponding modeling of folding stability,

folding specificity, binding affinity and specificity for ligands, the evolution of new binding sites on
protein surfaces, protein dynamics, intrinsic disorder, and protein aggregation as well as the inter-

play with protein expression level (concentration) and biased mutational processes are presented.

Keywords: protein evolution; sequence-structure-function map; mutation-selection models; neutral

evolution

Introduction

The biochemistry and biophysics that underlie selec-

tion on amino acid sequences in proteins is complex.

A growing field aims to model substitution in pro-

teins, building on a now classic framework that

independently models the probability of a mutation

occurring and the probability of that mutation going

to fixation based on its selective effects.1 However,

specifying this framework with an aim toward

uncovering lineage-specific functional change

requires characterizing what the selective pressures

are (overviewed in Fig. 1), including those that do

not affect protein function, and describing them in

mathematical terms. This review will aim to begin

this synthesis conceptually, to enable future theoret-

ical work in describing the processes.

The Role of Protein Structure

One of the key aspects of a protein is its structure.

A functioning protein relies on being folded into a

stable conformation. This simple objective, however,

has many elements to it, on which selection can act

without directly affecting the protein’s function (e.g.,

binding to a ligand or catalyzing a reaction by stabi-

lizing a transition state). Structure itself is impor-

tant in maintaining the orientation of functional

residues in high local effective concentration about

each other. This contribution to the structure of vast

fractions of the sequence is hard to quantify. It is
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clear that a global DG is not a great metric to quan-

tify this important aspect of function. However, it is

not clear what the right measure would be. Many

studies in molecular evolution that treat structure

and function (where function is binding) treat them

independently.6,7 Different metrics that quantify the

contribution of residues that contribute to stability

in a positive sense are needed and conceptual think-

ing on computationally fast methods to do this is

needed. Models to describe protein sequences that

are commonly used in the molecular evolution com-

munity rely on site independent likelihood calcula-

tions. Simulating under such models over long

branches will result in a sampling of the equilibrium

frequencies of the model at every site, sequences

that are all but guaranteed not to fold into the spe-

cific structure. So, in the end, both a global DGfolding

and a site independent likelihood appear to be poor

metrics to evaluate selection on amino acid muta-

tions within a protein sequence/structure because

they do not adequately describe selection on the

interactions between residues.

What Properties Do Folded Structures Have?

Marginal stability is a property of proteins that

arises simply due to the large and complex state

space of amino acid sequences and conformations, of

which the vast majority of folded proteins will result

in marginally stable proteins (proteins not far from

the unfolding transition); via simulation studies, it

has been shown that marginally stable proteins will

dominate even if marginal stability is not a property

under positive selection, due to mutation-selection

balance.6,8 The Boltzmann Distribution is often used

to model the probability that an amino acid

sequence is in any given conformation; accordingly,

the fraction of a protein in the folded state can be

under selection. Selection is of course weak near the

top of an asymptotic function, where increases in

stability do not have a large effect on the fraction

folded.9–11 In this regime, where the distribution of

fitness effects is linked to the stability of the protein,

mutation-selection balance will dominate and amino

acid substitution will be more permissible as the

asymptote is reduced.12 Goldstein11 has suggested

that changes in the value of this asymptote lead to

temporally relaxed selection when the value is

reduced and temporal positive selection when the

value is increased. While we have indicated that

global DG may not properly capture the role of selec-

tion in maintaining the orientation of functional res-

idues, it is still expected that these general

properties will still apply to the effective local con-

centration of functional residues about each other

and changes in selection to this.

In addition to the large number of possible con-

formations, it is also important to consider the envi-

ronment of the protein, including solvent effects.

That is, molecules in the surrounding solvent will

interact with atoms of the protein in many ways,

such as by forming hydrogen-bonds and van der

Waals interactions, but also through strong hydro-

phobic interactions. This is because most proteins

contain a high proportion of amino acids with nonpo-

lar side chains, which will thus tend to fold inside

the protein structure if possible.13 Thus, hydrophobic

interactions are highly influential on what the native

state of a protein will be. For example, proteins have

been evolved to function in organic solvents, with dif-

ferent amino acid composition patterns.14

Accordingly, it is important to model these

effects together with other interactions when study-

ing the effect of selection on protein structure. One

approach is to incorporate solvent effects by incorpo-

rating them into inter-residue contact energies.7,15,16

Essentially, proteins can be represented as a contact

matrix C, where Cij is equal to one if residues i and

j are in contact with each other, and zero otherwise.

The amino acid residues are of course linked linearly

(as they are in an actual protein), so although adja-

cent residues are in fact in contact with each other,

these do not contribute to any energy difference

between a folded protein and an unfolded protein.

This is likewise true for residues that are two spaces

apart, so in this representation, Cij is set to zero if

ji-jj � 2. Otherwise, only residues/effective solvent

molecules that are close enough to each other in the

folded state are assumed to have any interaction.

Through this representation of the protein and its

Figure 1. Aspects of protein biochemistry/biophysics on

which selective pressures may act are depicted. (1) Stability

of the folded state; (2) protein aggregation; (3) misfolding and

kinetic traps; (4) nonspecific binding or change in the binding

partner at the native site; (5) binding at a new site; (6) con-

centration levels of the protein; (7) kinetic motions of the pro-

tein. Images obtained from the RSCB PDB (www.rscb.org)2

of PDB ID 2MRK,3 PDB ID 1KA5,4 and Foldit.5
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environment, contact energies are estimated by con-

sidering residues that come into contact with each

other, and regarding them as statistical averages

over distance and relative orientation. While this

representation is a simplification of reality, it has

been a useful step toward modeling the effects of

selection on structural stability. In addition to the

large state space of conformations, interactions, and

solvent effects, an additional consideration in model-

ing structure is that proteins have an enormous

number of atoms, each of which has a specific loca-

tion in the folded structure of the protein. To model

each atom would be extremely computationally

expensive, so models have been formulated to sim-

plify this. At a first level, hydrogens can be ignored.

At deeper levels of coarse graining, amino acid side

chains can be averaged. Specifically, we focus on the

two-bead model, first described by Levitt,17 and used

by Grahnen et al.,7 among others. In the two-bead

model, each residue is represented by two beads,

one of which resides on the backbone of the protein,

and the other at the center of the atoms of the resi-

due. This simplification reduces the number of

degrees of freedom from the order of magnitude of

the number of atoms down to two angles and a

radius, per residue. Using this model, it may be pos-

sible to study the effects of selection on structure in

a realistic manner. The original model did not

explain extant sequences particularly well, but more

parameter-rich variants that model constraints on

individual sites show promise.18 In general, a theory

of how to coarse grain peptides and amino acids has

been developed, with some powerful applications19

and it may also be that the Grahnen et al.7 model is

too simple. Aromatic residues are particularly poorly

modeled in the Grahnen et al.7 approach. Addition-

ally, approaches to move the backbone during muta-

tion to fit residues of different types need further

exploration.

Grahnen et al.7 is one of several attempts to

incorporate structural information in evolutionary

models. As an earlier approach, Robinson et al.20

propose a model with the primary aim of capturing

dependencies that arise due to protein structure.

Their statistical framework is quite general, by sim-

ply modifying the usual instantaneous substitution

rate matrix. In their case, being interested in site-

dependencies due to protein structure, they propose

a new substitution rate matrix that accounts for

whether the substitution is beneficial for the stabil-

ity of the protein. This model did provide substantial

improvements in terms of model fit. Furthermore,

using this model, Choi et al.21 showed that tertiary

structure is indeed an important component in mod-

els of protein evolution and that ignoring it is detri-

mental. However, the model of Robinson et al.20 falls

short of models that account for structure more

explicitly. Kleinman et al.22,23 build on the model of

Robinson et al.,20 adding parameters for energy

potentials of the protein, to account for structure in

a similar way to Grahnen et al.7 The Kleinman

et al. model23 has different strengths and weak-

nesses compared to the Grahnen et al. model,7 but

neither offers a sufficiently accurate characterization

of protein biophysics to account for the amino acid

substitution process.

Selection against Alternate States Being More

Stable
While proteins need only marginal stability in their

native state, it is generally the case for a typical pro-

tein that the native state is indeed the most stable

form for that protein’s amino acid sequence. If alter-

nate states were to become more stable, if kinetically

accessible, this would then become the native state,

thus having likely implications for proper function.

Therefore, it should be the case that negative selec-

tion is acting to reduce the stability of alternate

states for a typical protein. One study has suggested

this using directed evolution of a de novo protein

binding pair, which resulted in an increase in the

energy gap of alternative conformations.24 This evo-

lutionary trajectory will depend of course on the

nature of the selective pressure applied.

Under simplified representations of proteins

(like a lattice model), it was shown that proteins in

which stabilizing interactions between residues are

also present in non-native states will tend to utilize

selection against the stability of alternate states, or

“negative design.”25 This work relied on an assump-

tion that stabilization of long-range interactions is

an indication of negative design, which is true in lat-

tice models because calculation of energies accounts

only for residues that are in contact with each other;

therefore, stabilization due to long-range interac-

tions must result from a destabilization of non-

native states. Although this assumption is not neces-

sarily correct in real proteins, Noivirt-Brik et al.25

also examined real proteins, and found evidence

that negative design is acting on proteins in similar

patterns to their computer-generated proteins. With

the use of an explicit statistical mechanical model

with intrinsic decoys (described below), Minning

et al.26 also detect selective pressures associated

with negative design on protein structure.

Use of Decoys to Characterize Alternative

States
Scoring functions are commonly used to evaluate the

effect of substitutions on the conformation of the

protein. As substitutions accumulate within a fold,

the scoring function simply indicates if the sequence

fits better in the native state than in an unfolded

state. However, sequence change can lead to fold

transitions, where alternatively folded structures do

not necessarily carry out the same function.
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Therefore, it is necessary to make sure that muta-

tions do not cause a sequence to prefer an alterna-

tive conformation. This is usually done with sets of

decoy structures that are either explicit or implicit.

Decoy structures are alternate conformations of

a particular amino acid sequence, which can then be

used to test any scoring function of protein confor-

mations. Generally, any scoring function is based on

the free energy of the conformation, since the native

state should have the lowest energy among all possi-

ble conformations for a given sequence. However,

formulation of a scoring function is a non-trivial

task, with many possible considerations, such as

whether to use a statistics-based or a physics-based

model,27 or whether to use an all-atom model or a

coarse-grained model such as in the aforementioned

Grahnen et al.7 model.

Thus, scoring functions need to be evaluated to

determine whether their predictions are accurate.

By testing any potential scoring function on decoys

against known correct conformations, one can then

determine how frequently the scoring function cor-

rectly assigns the best score to the correct conforma-

tion. For example, consider a decoy set with one

correct and many incorrect conformations. The scor-

ing function can then be calculated on each decoy,

and then this can be compared to some measure of

how far each decoy is from the native state, such as

root-mean-square deviation (RMSD) of the Ca atoms

from their placement in the native state.28 The cor-

relation with RMSD has been used to evaluate scor-

ing functions; however, it is important to note that

good scoring functions should also be able to recog-

nize situations that may lower their correspondence

with RMSD, such as structures whose Ca atoms are

close to the native state but have large clashes

between other atoms, or structures that are quite

different from the native state but also are of low

energy.

To study selective pressures as they pertain to

the structure of a protein, the development of accu-

rate scoring functions is crucial. Thus, decoys are an

important contribution to this body of knowledge.

Additionally, decoys may be used to study selection

directly, which will be mentioned briefly below.

Explicit decoys can be used that are similar in

length to the protein (without a model for indels) to

evaluate the fit of sequences into explicit alternative

structures. Databases of such decoys exist.29 Alter-

natively, native structures that are similar in size

from PDB can be utilized, where the most informa-

tion will come from those that are close to fold tran-

sitions in sequence space. Using a limited number of

explicit decoys may poorly reflect the actual distri-

bution of the fold space that exerts a selective pres-

sure on the sequence.

Implicit decoys can be made by resampling con-

tacts from the native structure.30 Doing this blindly

will consider structures that are physically impossi-

ble. It is unclear if that is a problem, as these struc-

tures are used to sample the background

distribution and it is the nature of the distribution

rather than the specific contacts that are critical. If

it is a problem, implicit decoys that are consistent

with a self-avoiding walk can be used. One impor-

tant aspect of proteins is the greater importance of

short range contacts to long range contacts due to

conformational entropy. Consideration of primary

sequence distance in sampling contacts can account

for this.

Another potential mechanism for generating

implicit decoys is to sample substructures from lon-

ger structures in PDB. These would not be expected

to fold into these conformations independently from

the rest of the structure, but might also generate a

realistic set of contacts that are reflective of the

background distribution. Further research on the

performance of different approaches for generating

implicit decoys is needed.

Selection against Kinetic Traps in Folding
Reactions in chemistry are typically thermodynami-

cally or kinetically controlled and protein folding is

no different. It is commonly assumed that proteins

fold into their most thermodynamically stable struc-

ture. However, to the extent that they do so, this is

likely the product of selection against amino acid

transitions that would enable non-native contacts in

the folding process that might lead to kinetic traps

(kinetically rather than thermodynamically con-

trolled folding processes). However, with respect to

the possibility that kinetic traps may be selected

against, only indirect evidence for this exists. The

question of how to detect this directly from sequence

data still remain. One idea is to use intrinsic decoys

that come from resampling the sequence contacts. If

this procedure is carried out to identify background

contacts a priori, it only has to be done once in an

analysis and need not be computationally prohibi-

tive, even if based on self-avoiding walks. However,

a second point to consider is that proteins seem to

only make contacts that remain present in the active

conformation during the folding process.31 These

would then not be largely reflected in the back-

ground intrinsic decoy distribution, but would be

partially unfolded versions of the native state with

small numbers of non-native contacts. They would

not be reflected at all if the sampled set were con-

trolled to have the same number of contacts as the

native state and would need explicit addition. A fur-

ther complication is the potential role of chaperones

in refolding proteins that are not natively folded,

perhaps toward thermodynamic minima.

Another aspect of the folding process is the

speed of folding. It may be essential for proteins to

fold quickly. Kinetic traps would slow down the

Chi and Liberles PROTEIN SCIENCE VOL 25:1168—1178 1171



folding process, or even cause the polypeptide chain

to fold into an alternate state. The possible detri-

mental effects of a kinetic trap have been explored

in the Multidrug Resistance 1 (MDR1) gene, in

which a synonymous single-nucleotide polymorphism

(SNP) was seen to be associated with the presence of

altered conformations of the protein product P-

glycoprotein (P-gp).32 This is remarkable because

synonymous substitutions do not change the result-

ing amino acid, so they are generally not expected to

change the function or structure of the final protein

product. In this case, however, the substitution pro-

duces a rare codon. This may slow down the transla-

tion from mRNA to amino acid. Specifically, Kimchi-

Sarfaty et al.32 hypothesize that this affects the

speed of co-translational folding, thereby causing the

presence of alternate conformations.

To begin to address the question of whether the

folding rate is selected against, a couple of

approaches have been explored. These approaches

have attempted to compare the folding speed

between proteins resulting from laboratory-

generated polypeptides and actual proteins.33–36

Each of these studies found that these laboratory-

generated proteins have as fast or faster rates of

folding than naturally occurring proteins, suggesting

that evolution has not optimized proteins for fast

folding.

Conformational Ensembles and IDPs

Despite the fact that selection should be acting

against the stability of alternate states to the extent

that they affect function (see above), proteins with

multiple stable states do exist and are quite preva-

lent in some organisms. At the extreme end, these

are known as intrinsically disordered proteins

(IDPs); these polypeptides lack a single native state,

and instead exist as a collection of conformations.

For any given IDP, its collection of conformations

may cover a range from fully unfolded to partially

structured to fully structured on binding. Selective

pressures for function on this class of proteins seem

to depend on the functional requirements of the pro-

tein. In the case of a limited number of specific con-

formations, this can be modeled as selection on

pleiotropic structural constraint.37,38 The selective

pressures are more complex with regard to true

IDPs.

It has been observed in genome comparisons

that there is a positive correlation between IDP

prevalence and decreasing effective population size

(with organismal complexity as a proxy).39 As

smaller population size organisms tend to have

decreased selective power acting on them in general

(as fixation probabilities depend on the selective

coefficient scaled by the effective population size), a

possible null hypothesis for the evolution of IDPs is

simply that IDPs have not been selected against as

strongly in the organisms in which they tend to be

prevalent.40 In other words, this null hypothesis

would imply that there is no reason why organisms

should have IDPs other than by chance. However,

IDPs have particular functions that are crucial to

the cell.41,42 If these functions cannot be performed

by ordered proteins and are under negative selec-

tion, then this would be evidence against the null

hypothesis above. Such an analysis would of course

need to account for the reduced selective pressures

in organisms where IDPs are more prevalent.43 One

possible selective pressure against IDPs would be

against nonspecific interaction. However, IDPs are

enriched for polar residues, which might be less

likely to generally associate with protein surfaces

nonspecifically and might be evolutionarily tunable

in small population size regimes. Further sequence-

structure-function work is needed to understand the

selective pressures acting on IDPs. The explicit Mar-

kov model generated by Szalkowski and Anisimova44

is a start to understanding the selective pressures

associated with order to disorder transitions and

when sequences are evolutionarily stable as ordered

or disordered. Clearly there is variance in evolution-

ary rates for both ordered and disordered regions.

From Static Structures to Protein Dynamics

All proteins have some degree of disorder, including

flexible motions about a mostly stable state. Protein

dynamics describe the flexibility of a protein in

terms of the motions that individual atoms under-

take about the structure. Proteins naturally have

some movement between different conformations. It

is unclear when this flexibility is vital for a protein

and when it evolves neutrally. Flexibility can be

essential for proper folding, catalysis and interac-

tions with ligands. As such, it may be a trait that is

under selection.

Modeling protein flexibility, however, is not a

straight forward problem. One strategy is to quan-

tify flexibility by its energetic response to a force.

Specifically, a flexible protein will respond to an

applied force with large-amplitude low frequency

motions, whereas a rigid protein will respond to an

applied force with small-amplitude high-frequency

motions. Jimenez et al.45 developed a method utiliz-

ing photon echo spectroscopy to measure both the

amplitude and time scale of these motions of a pro-

tein after being subject to an applied force.

This approach was used to investigate evolution-

ary dynamics of flexibility in an anti-fluorescein

antibody.46 Antibodies tend to be promiscuous dur-

ing initial stages of an immune response and then

highly specific during later stages. Furthermore,

antibodies that are isolated at later stages of an

immune response are usually highly mutated in

comparison to their germ-line gene sequences.47

Jimenez et al.46 demonstrate that antibody
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dynamics are under strong selection as the muta-

tions during the immune response appear to be

responsible for increased rigidity of the protein, thus

leading to the requisite increased specificity.

Normal mode analysis (NMA) is another

approach to studying flexibility. It is an approach for

studying protein dynamics, which dates back to the

1980s,48,49 but it has gained renewed interest more

recently as it may be successful in predicting protein

dynamics that are relevant to function.50 Typical

usage of NMA in the study of protein dynamics

assumes that the potential energy function of each

atom is at most quadratic, and thus can be esti-

mated by a Taylor series expansion. The entire sys-

tem of movements of atoms can then be represented

by a 3N by 3N Hessian matrix, where N is the num-

ber of atoms. Alternatively, one can consider only

the Ca backbone atoms, which reduces the computa-

tional burden tremendously. On the other side, a

fuller treatment of the motions of a protein can be

gained by molecular dynamics, but this is not tracta-

ble for evaluating the evolutionary trajectories of

proteins probabilistically. Some balance between

accounting for physical reality and computational

speed is necessary in this area, as in others.

Additionally, NMA has been used within a phy-

logenetic approach to study protein dynamics.31 In

this manner, a comparison of changes in dynamics

to the expected rates of change under selection is

able to be made, throughout the evolutionary history

of a protein family. Two strategies were proposed to

account for phylogenetic structure. One strategy

reconstructed the vectors of motions of extant pro-

teins over the tree with an end point constrained dif-

fusion model. The other strategy built ancestral

sequences at internal nodes of the tree computation-

ally, built homology models for these sequences, and

then measured the normal modes directly on the

homology models. These strategies of reconstructing

genotypes and molecular phenotypes both are

approximate, with statistical disadvantages com-

pared with an integrated model for normal mode

evolution, but gave similar conclusions. In the end,

neither was powerful enough to predict a priori

which enzymes in a family will have changed func-

tions. Conversely, not accounting for the background

rate of change of normal modes with amino acid sub-

stitution is a problem, so better methods that work

in a phylogenetic context are in fact needed.

The Null Model of Normal Modes Evolution

under Negative Selection

Much work up to this point has focused on identify-

ing and characterizing negative selection on protein

dynamics. Because fluctuations in a protein are gen-

erally necessary for it to function, one biological

hypothesis is that there will be negative selection

against changes in these fluctuations. A comparison

of backbone flexibilities across 2087 proteins found

that flexibility profiles are indeed conserved at the

family and superfamily levels.51 However, backbone

flexibility is only a proxy for internal protein dynam-

ics; that is, investigating the normal modes via

NMA or Elastic Network Models provides a more

direct understanding of protein dynamics. Specifi-

cally, it is typically observed that the lowest energy

modes are the ones that are functionally rele-

vant.50,52,53 Several studies have demonstrated evo-

lutionary conservation of these low-energy large-

amplitude normal modes;54–59 however, these were

case studies that only investigated small sets of pro-

teins, and are thus not immediately generalizable to

all proteins.

A comprehensive study of the normal modes of

a large set of proteins utilized a Gaussian Network

Model, finding that the lowest modes are the most

conserved.60 This implies that the previous finding

regarding the conservation of backbone flexibility is

due to the conservation of the lowest modes. Fur-

ther, as the proteins in this study were representa-

tive of all structural classes and folds, this result is

generalizable to all proteins.

While these findings are consistent with the bio-

logical hypothesis that dynamics are conserved

because fluctuations are functionally important,

they do not specifically address whether that is

actually the case. Indeed, Maguid et al.60 point out

that this is an unlikely explanation given their find-

ing that functionally important normal modes are

conserved at the superfamily level; that is, conserva-

tion at the family level is consistent with the

hypothesis that fluctuations are functionally impor-

tant, but at the superfamily level, one would expect

higher functional diversification, which suggests

that we should also expect higher normal mode

diversification if this hypothesis is true.

An alternate hypothesis is that the low energy

modes are simply more robust to mutations. The

rationale for this is that lower modes are averages

across more sites than higher modes; thus, mutating

one site will have little effect on a lower mode.

Thus, if one wants to investigate the potential effect

of selection, the null model must account for the

effect of random mutations on lower modes. Such a

null model was formulated using a variation of an

Elastic Network Model,61 under which proteins were

simulated with random mutations, and compared to

a dataset of evolved proteins. The variability in nor-

mal modes were found to be similar between the

simulated proteins and the evolved proteins, sug-

gesting that random mutations were adequate to

explain the apparent evolutionary conservation of

low energy normal modes. Against a background of

neutral evolution, a priori knowledge of specific

modes critical for conserved or altered function could

potentially be utilized in evolutionary models.
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Allostery

Allostery involves regulation over a distance in a

protein governed by nonphysically interacting resi-

dues (see Nussinov and Tsai62 for a recent review).

A question arises of when allosteric regulation

changes in evolution, can this be detected computa-

tionally. Allosteric regulation can involve explicit

conformational change on binding to an external

partner and/or changes in dynamics that affect func-

tion (both including changes in the conformational

ensemble). Predicting such changes requires both an

accurate model for sequence-based kinetic motions

(described above) and for changes to a structure that

are induced by binding. Models for protein-protein

interaction are described below, although the molec-

ular evolution field does not have appropriate mod-

els to predict conformational changes on binding

when there are not solved homologous structures in

bound and unbound states.

Selection against Nonspecific Binding in

Functional Pockets

The binding interface of a protein is under selective

pressure to maintain the contacts necessary for

interacting with native ligands. It is also under

selective pressure to not bind to ligands that might

bind at high affinity that would be deleterious to

bind to. Examples of this are known in SH3 domains

and in alcohol dehydrogenase.63 When such selective

pressures are known to exist, there is selection on

the amino acid content of the binding pocket/inter-

face to both maintain tight binding to the native

ligand and to prevent tight binding to deleterious

ligands.63,64 To model this, one would need explicit

knowledge of the subset of potential binding part-

ners that bind at high affinity and that cause delete-

rious fitness effects when bound. Such knowledge is

currently very limited.

Within a particular organism, proteins may

interact with specificity for one or a few partners, or

with numerous partners.65 The evolutionary mecha-

nisms that have produced this specificity divergence

are not yet well understood. For proteins that have

high specificity, it is generally assumed that they

evolved from more promiscuous forms, and that

selection has driven their transformation into

monogamous or highly specific forms. However, we

are only beginning to uncover evidence that contrib-

utes to our actual understanding of the evolutionary

processes.

Another approach is the phylogenetic recon-

struction of ancestral protein sequences, to infer the

evolutionary history of ligand recognition.66,67 Using

this approach, an investigation of steroid hormone

receptors (SRs) has found that SRs evolve according

to a so-called principle of minimal specificity: at any

given evolutionary time point, proteins have enough

specificity to distinguish between the substances in

their current environment, but not more.68 The

studies do not explicitly consider the full range of

substrates that a particular substrate is likely to

encounter in a cell.

Selection against Nonspecific Binding in Other

Surface Regions (and for Specific Binding in
New Locations)

Detecting the emergence of new binding interfaces

is difficult. One example that has been detected

through the emergence of negative selection in

patches on the surface is leptin in humans.69

Another approach to do this is to use a docking

engine to systematically screen the surface of a pro-

tein.70 To integrate such an approach in a phyloge-

netic context would not be tractable at present.

Further, selection would only act against non-

specific interactions that might be deleterious. A

starting point, related to detecting aggregation,

might be examination of the emergence of hydropho-

bic patches on protein surfaces, where selection

emerged on specific amino acids or on non-specific

hydrophobic content.

Selection against Aggregation
In addition to nonspecific binding among properly

folded proteins, misfolding can also contribute to

another form of nonspecific binding known as aggre-

gation, in which misfolded proteins will clump

together. Protein aggregation is potentially lethal, as

it is the cause of several diseases such as Alzhei-

mer’s disease, Parkinson’s disease and Type 2 diabe-

tes. This suggests that selective pressures should be

acting against aggregation. While there is a general

consensus that this is true in most cases, the charac-

terization of selective pressures on aggregation is

still developing.

It has been believed that there are so-called

gatekeeper residues, which encourage the proper

folding of the protein and thus help the protein

avoid misfolded states that might lead to aggrega-

tion.71–73 Thus, these residues would be natural tar-

gets for selection to act on. However, most of the

early studies demonstrating this were case studies

on particular proteins, and thus not generalizable to

all proteins. One approach to study this more glob-

ally is to use a statistical mechanics algorithm called

TANGO, to predict how sequence and mutation

affects aggregation.74–76

The model employed by the TANGO algorithm

considers four possible structural states for each

peptide to be in: a-helix, b-turn, a-helical aggrega-

tion, and b-sheet aggregation. For each peptide, the

probability that it resides in each of these states is

modeled with the Boltzmann distribution. Using this

model, it was demonstrated across 28 full proteomes

from all kingdoms of life that selection is acting
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against substitutions that would cause aggrega-

tion.77 Additionally, in the proteomes of Saccharomy-

ces cerevisiae, Drosophila melanogaster, and

Caenorhabditis elegans, the TANGO algorithm was

used to demonstrate evidence that selection acts

more strongly against aggregation in “essential” pro-

teins as compared to “nonessential” proteins, where

the classification of essential versus nonessential

was made based on the protein’s contribution to the

organism’s fitness.78

However, although some simplifications are

employed in the calculation of the partition function,

the TANGO algorithm is likely too computationally

intensive to be used in evolutionary simulations for

further study. A possible alternative would be to

replace the actual energies with an approximation

that considers only solvent-accessible surface area

(SASA), and calculate the potential due to solvation

of the protein based on this.7

Under this modification, for example, it may be

possible to explore the relationship between aggrega-

tion and surface hydrophobicity of the protein. It is

well-established that a protein’s propensity to form

aggregates is positively correlated with its surface

hydrophobicity.79,80 However, a further exploration

of this relationship would lead to a better under-

standing of the mechanisms of aggregation, and con-

sequently the selective pressures that act on

aggregation. Simulation studies under this model

could be useful in characterizing the evolutionary

history of surface regions that would prefer to be

intermolecularly buried rather than exposed to the

solvent. That is, what were the selective pressures

that resulted in these residues being on the surface

of the protein? Are there selective pressures that act

against the presence of hydrophobic residues on the

surface of the protein? How large of a hydrophobic

patch is necessary for aggregation to occur and how

does it relate to other physical characterizations of a

protein (like the size and energy required to prevent

diffusion)? Answers to these questions will be impor-

tant in forming a model that detects regions on pro-

tein surfaces likely to generate selective regimes

that prevent aggregation.

The Role of Protein Concentration (Expression

Level) in Determining Selective Pressures
Expression level (typically measured at the mRNA

level) is thought to be a critical determinant of evo-

lutionary rate and selective pressures placed on a

protein sequence.81,82 One straight forward interac-

tion is that the fractional occupancy of all binding

sites on a protein (specific and non-specific) will

depend on its concentration. Any deleterious binding

interactions at low affinity will occur more often

when a protein is at higher concentration. This is a

classic argument that follows naturally from chemi-

cal understanding, and has recently been further

characterized by Levy et al.,83 while also addressing

ideas related to selection against non-specific bind-

ing (above). In particular, Levy et al. find that non-

specific binding is inversely related to concentration,

and together these impose constraints on the evolu-

tionary trajectory of the protein.

Additionally, it is known that the error rate in

translation is relatively high. As a protein is

expressed at high levels, the number of mutant pro-

teins (through translational error) will increase. As

most mutations are destabilizing, this is mostly a

negative effect. The negative effect has been

hypothesized to generate selection on translational

robustness, especially in larger population size spe-

cies.84 However, a positive variant of this preceding

adaptation has been termed, “The Look Ahead

Effect.”85

Overall, increasing the concentration of a pro-

tein is therefore expected to increase both the frac-

tion of non-specific interactions as well as the

number of translational errors leading to mis-folded

proteins. For example, it has been suggested that

there is selective pressure for robustness against

translational errors in bacterial b-lactamase.86

Expression level might then be viewed as a modula-

tor of selective strength, in a different way than

effective population size is.

Selection and Mutational Bias at the DNA Level
Mutational bias is a process that changes the nucle-

otide and corresponding codon frequencies independ-

ently from any selection at the protein level.

Selection for codon usage or for GC content can also

affect amino acid usage. For example, intergenic GC

content in bacterial lineages has been shown to

affect coding sequence amino acid content.87

Together these processes can shape amino acid

sequences and should be considered. Repeat Induced

Polymorphism in filamentous fungi88 systematically

introduces G to A and C to T mutations to repeated

sequences. Those that survive this process without

the introduction of stop codons end up with an

increased hydrophobic content in their proteins sim-

ply due to the structure of the genetic code. A num-

ber of mutational processes are known to affect GC

content in bacterial lineages (see e.g., Lasselle

et al.89). GC content in some thermophilic bacterial

and archaeal lineages may also be under direct

selection.90 This also influences protein sequences

before selection at the protein level is accounted for.

Codon usage in general can also affect amino acid

sequences, as different codons have different single

mutation neighbors in the genetic code that are

more easily sampled.91 Further, viruses are known

to have overlapping reading frames.92,93 The over-

lapping reading frames place selective pleiotropic

constraints on codon usage and amino acid content

in any single lineage. This can explicitly be
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considered by accounting for the different reading

frames and their selective pressures individually.

Halpern and Bruno1 shaped an early variation

of the mutation-selection model that allows for treat-

ing mutational probabilities and fixation probabil-

ities independently. This mechanistic separation

allows for more explicit treatment of processes like

biased mutation than is easily available in standard

amino acid transition rate models.

Linkage

Sites that are linked on chromosomes can affect the

probabilities of fixation of individual amino acid

changes. In a positive sense, this is known as a

selective sweep. In a negative sense, this is known

as background selection. Linkage can lead to rapid

fixation of deleterious changes or elimination of

adaptive changes based on co-segregating variants.

The effect is expected to be stronger in more gene

dense regions of genomes. Population geneticists

typically model this effect through modulation of

effective population size as a parameter, although

more mechanistic approaches are envisionable

(Weber et al., manuscript in preparation).

Conclusions

Mechanistically modeling protein sequence evolution

is a hard problem. It is inherently linked to the pro-

tein folding and inverse folding problems, as well as

to population genetic and phylogenetic processes.94

A number of phenomena at the DNA and protein

levels affect protein sequence evolution. Determina-

tion of the relative importance of different effects

and mathematical/computational treatment of the

influence of important processes on selective coeffi-

cients will keep researchers in this field busy for

many years to come.
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