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Abstract

Breast cancer is one of the leading cancers worldwide. Precision medicine is a new trend that
systematically examines molecular and functional genomic information within each patient's
cancer to identify the patterns that may affect treatment decisions and potential outcomes. As a
part of precision medicine, computer-aided diagnosis enables joint analysis of functional genomic
information and image from pathological images. In this paper we propose an integrated
framework for breast cancer staging using image-omics and functional genomic information. The
entire biomedical imaging informatics framework consists of image-omics extraction, feature
combination, and classification. First, a robust automatic nuclei detection and segmentation is
presented to identify tumor regions, delineate nuclei boundaries and calculate a set of image-based
morphological features; next, the low dimensional image-omics is obtained through principal
component analysis and is concatenated with the functional genomic features identified by a linear
model. A support vector machine for differentiating stage | breast cancer from other stages are
learned. We experimentally demonstrate that compared with a single type of representation
(image-omics), the combination of image-omics and functional genomic feature can improve the
classification accuracy by 3%.

I. Introduction

Breast cancer is one of the leading cancers worldwide. Meanwhile, it is the principle cause
of death among women who are diagnosed cancers [1]. The American Cancer Society
estimated that 207,090 women were diagnosed with breast cancer in 2010 and that 39,840
women died of this disease in the United States alone during that year. Breast cancers
mainly consist of three stages 1,11 and I11. Accurate staging can provide support for
personalized medicine, which aims to provide an individualized therapy design and outcome
prediction for a particular patient based on systematically examining the molecular and
genomic information of the patients in the database, and therefore increase the survival rates.
Nowadays, many state of the arts [2]’ [3] using image features have been applied to breast
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cancer classification. In [4], Beck et al. have correlated image features from stromal with
survival in breast cancer study and discovered new biological aspects of cancer tissues.
Meanwhile, many machine learning-based methods using image features are also reported
for other specimen classification, such as prostate grading [5] and colon cancer subtype
classification [6]. Besides the image signatures, genomic information is also used for breast
cancer grading [7].

However, using a single type of features (image-omics) might be not sufficient for accurate
breast cancer staging. It is well-known that genomic information provide significant support
in clinical practice. In this paper, we propose to differentiate the stage | breast cancer from
other stages by using a combination of image-omics and functional genomic information. In
this paper, we focus on nuclear morphological patterns. In order to calculate image features
of nuclei, we adopt a hierarchical voting based nucleus detection and a repulsive balloon
snake model based nucleus segmentation. The non-tumor regions are delineated by a pixel-
wise classification based on convolutional neural network. Based on nucleus segmentation,
we extract a set of image features including geometry information, intensity statistics, and
texture. Principal component analysis (PCA) is used to reduced the original features to 47-
dimension image-omics. The obtained image-omics is then concatenated with functional
genomic information for breast cancer classification. The experiments demonstrate that the
classification accuracy can be improved by using a combination of these two types of
signatures.

[l. Methods

A. Automatic Nucleus Detection and Segmentation

Nucleus Detection via Hierarchical Voting—Narrowing down our information
aggregation to individual nucleus is critical to the analysis of histopathological images,
which includes nucleus detection and segmentation. We apply an improved variant of the
single-pass voting (SPV) in [8] to nucleus detection, which is more robust to the variations
in nucleus size. For an image L ), a Gaussian pyramid with L layers is created for
hierarchical voting. At layer / a Gaussian kernel weighted SPV is applied to the distance
transform map, and this weighted voting strategy generates higher voting scores in the
central region of the cells, even the nuclei have moderately elongated shapes. The final
voting map v ) is calculated by summing up all the layers [9]:

L
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where S denotes the set of all voting pixels, A,(m' n) denotes the voting area of pixel (7> n)
at layer /. ] is an indicator function, and C,()@ ) represents the distance transformation
map at layer /. g(m mHy “y, o) is a Gaussian kernel with centering on a vote accumulating
pixel (x )) with isotropic covariance o [8]. In the voting map v ), the pixels in the
central regions of nucleus achieve higher voting scores than the others, so a local clustering
method, mean shift [10], is applied to geometric center localization, which is considered as
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the final nucleus detection and will be used to initialize the following seed-based deformable
model for nucleus segmentation.

Tumor Region Segmentation—During the previous detection, all the round shaped
objects are detected without differentiation of the tumor nuclei and the non-tumor objects. A
deep convolutional neural network (CNN) is trained to identify the tumor regions and
therefore to remove the non-tumor objects from feature extraction. The trained CNN consists
of 7 layers, including two convolutional layers with kernel size 5 x 5, two max-pooling
layers with kernel size 2x2, and one fully connected layer of dimension 64 and one output
layer of dimension 2. The CNN is used to perform pixel-wise classification via sliding
window mechanism [11].

Nucleus Segmentation via Repulsive Balloon Snake—Different than the
traditional balloon snake deformable model [12], the repulsive balloon snake introduces an
extra term that models the repulsive force from the neighboring contours to prevent evolving
contours from crossing each other. Let v{s) denote the /th contour and sindex points on the
contour, the model deforms v(s) till a balance between the internal force #7{(v;) and
external force A v) is achieved:

Fint (Uz) +Fezt (Uz) :07 (2)
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where the first/second term in (3) represents the seconde/fourth derivative of v{s), which are
used to model the internal force. Their contributions to contour deformation are controlled
by weights a and . In (4), the yn4s) represents the pressure force, and V Egf V{S)) denotes
the image force, where Eg{V{9)) is the magnitude of the gradient of the image. The third
term in (4) denotes the repulsive force, with Arepresenting the number of neighboring
contours and dj{s, 9 corresponding to the Euclidean distance between contours v(s) and
V(2. Based on the aforementioned nucleus detection, the contours are initialized by
generating small circles, one per detected nucleus. The automatic nucleus segmentation is
achieved when (2) is satisfied.

B. Feature Extraction

Based on the nucleus segmentation, we extract three groups of cellular features including
geometry features, statistics of pixel intensity and texture features, which are combined with
functional genomic information to separate stage | breast cancer from other stages.
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Geometry features—We compute nuclear area, perimeter, circularity, major-minor axis
ratio, and solidity (It is defined as the ratio of cell area region over the convex hull defined
by the segmented nuclei boundary).

Statistics of pixel intensity—This group of features are calculated based on the pixels
within the segmented nuclei, including intensity mean, standard deviation, skewness,
kurtosis, entropy, and energy.

Texture features—They contain texture feature coding method (TFCM), center
symmetric autocorelation (CSAC), local binary pattern (LBP). In TFCM, Each pixel is
assigned a texture feature number (TFN), which is generated by comparing this pixel with
its neighbors in four directions. A histogram can be generated based on the TFNs of one
image patch for feature description. CSAC is a measure of the local patterns with
symmetrical forms. LBP is one type of local features, which assigns each pixel binary code
by comparing the intensity of this pixel to those of its neighbors and then a histogram of the
binary codes is created to characterize texture information. In total we have extracted 163
image features. The image-omics is computed by applying PCA to the original high
dimensional image features. A 47-dimension image-omics is obtained.

Functional genomic information—The transcriptomic data are generated from 86
breast cancer patients, which contains 20,503 gene entries. In order to reduce the feature
dimensionality and avoid overfitting, we apply linear modeling and empirical Bayes
statistics to filter out genes without significant expression. The top-10 genes with £< 0.001
are listed in Table I. The two genes with top expression levels, C190rf33 and SLC4A8, with
respect to the stages, are summarized in Figure 1. One-way ANOVA analysis for C190rf33
and SLC4AS8 indicates significant difference for their expression based on tumor stages.
Further, their association is necessary to be validated in other replicative cohorts. The
C190rf33 and SLC4AS are highly suggested into a predictive model for breast tumor
staging, which can provide a useful molecular signatures for the diagnosis of breast cancers.
In the step of breast cancer staging, we only combine these two functional genomic features
with the image features for classification.

C. Breast Cancer Staging
Based on the image features and the functional genomic information, we exploit a binary

classifier, support vector machine (SVM), to differentiate the stage | breast cancer from

other stages. Given training data (z;, yi)f\il, the binary SVM aims to maximize the margin

with allowing a certain degree & of misclassification of the data:

! -
arg mé?})EHwHQ—I—C;&, s.t.y; (wTwl- — b) >1-6,6>0,

where C is the penalty parameter controlling the trade off between the margins and training
errors.
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lll. Experiments

Data—We compiled a data set containing the diagnostic images, genome information and
clinic information of 86 patients. The data is downloaded from the publicly available
database TCGA (The Cancer Genome Atlas). Patient of three stages, including 13 stage I, 55
stage Il and 18 stage 111, are present in the data set.

Tumor nuclei detection and segmentation—A randomly selected image patch is
shown in Figure 4(a). The nuclei detection algorithm described in Section I1-A is used to
detect the nuclei automatically (Figure 4(b)). As one can tell, it is possible that both the
tumor nuclei and non-tumor objects are detected. The region segmentation method described
in Section I1-A is used to separate tumor regions and non-tumor regions (Figure 4(c)). The
detected objects in the non-tumor regions are removed from the analysis. The final
automatic tumor nuclei detection and segmentation result is shown in Figure 4(d).

Feature extraction and classification—The image features described in Section I1-
B are extracted and combined with the expression of the two functional genomic features
identified in Section 11-B to train a support vector machine (SVM) classifier. The features
are normalized by subtracting the mean and being divided by the standard deviation. Since
the morphological features have very high dimension. For the cellular geometric features,
we compute a concise representation to capture the characteristics of all the detected nuclei
in one image by computing their mean, variance, and median and a three-bin histogram.
Similar to the geometric features, the statistics features of the pixel intensity is calculated for
each nucleus and the mean, variance, and median and three-bin histogram are calculated to
represent the image. For the texture features, including TFCM, CSAC, and LBP, principal
component analysis (PCA) is used to compute the dimension reduced representations.
Finally each image is represented by a 163 dimensional vector. Finally, a image-omics with
dimension of 47 is computed by further applying PCA to the 163 dimensional image
features. Combining the two functional genomic features, each patient is represented by a 49
dimensional vector.

A SVM classifier is trained to separate the patients at stage | and the other stages. A fourfold
cross validation is applied to evaluate the classifier with respect to the parameters on a
Gaussian kernel. The cross validation misclassificaton rates are shown in Figure 2. The
parameter y denotes the variance of the Gaussian kernel and C denotes the penalty. The best
error rate with image features only is 15% as shown in Figure 2(a). The classification
performance with both the image features and the two functional genomic features is 12% as
shown in Figure 2(b). The ROC curves of the performance of the classifier with image
features only and with the joint features are shown in Figure 3. As one can tell that the
classification performance obtained by the combined feature is superior to the performance
based on the image features only.
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V. Conclusion

In this paper, we proposed a breast cancer staging system based on joint analysis of
morphological features and functional genomic information. The proposed system is verified
experimentally on a data set containing 86 patients. The cross validation shows that
morphological features together functional genomic information produce a better
classification performance in differentiating stage | patients and patients at other stages. The
proposed system is generic. Therefore, more morphological features and more elaborated
analysis of the functional genomic can be integrated. The experiment shows promising
results. In our future study, more morphological features, e.g., structural features, and more
genomic/clinic information will considered in the investigation.
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Fig. 1.
Bargraph of gene expression values for gene C190rf33 and SLC4A8 discovered from linear
modeling with breast tumor stages.
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Fig. 2.

M?sclassification rates with respect to different parameters using Gaussian kernel to
differentiate the patients at stage | and the other stages. (a) The misclassification rates based
on image-omics only; (b) The misclassification rate based on image-omics and the two
identified functional genomic features.
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The receiver operation curves of the classification with image-omics only and a combination
of the morphological features and the two identified functional genomic features.
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Fig. 4.
(a) A randomly picked original image; (b) The nuclei detection result; (c) The tumor region
(marked in light green) segmentation result; (d) The nuclei identified for feature extraction.
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TABLE |

Top associated genes with breast tumor stages

Name Description Coefficients” ExpressionT P val ue;t

C190rf33  Chromosome 19 open reading frame 33 141.7 191.1 3.0x 1076
SLC4A8  Solute carrier family 4, sodium bicarbonate cotransporter, member 8  32.0 54.6 7.2x107°
POLD4 Polymerase delta 4 102.4 299.3 1.1x10™
SMYD3 SET and MYND domain containing 3 42.2 108.7 1.2x10™
LMCD1 LIM and cysteine-rich domains 1 53.4 136.6 1.3x10™
CLCF1 Cardiotrophin-like cytokine factor 1 4.1 11.3 1.3x10™
BCAS1 Breast carcinoma amplified sequence 1 74.5 103.3 1.5x 107
VTI1B Vesicle transport through interaction with t-SNAREs 1B 59.0 199.1 1.7x10™
ZNF238 Zinc finger and BTB domain containing 18 66.6 106.5 1.9x10™
BMPR1B Bone morphogenetic protein receptor, type IB 172.6 194.9 2.2x107

*
Coefficients: Linear modeling coefficients of gene expression change with breast tumor stages.

1. - .
Expression: Average gene expression levels.

7 . . . .
P value: P values from linear modeling for gene expression with tumor stages.
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