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Abstract

Breast cancer is one of the leading cancers worldwide. Precision medicine is a new trend that 

systematically examines molecular and functional genomic information within each patient's 

cancer to identify the patterns that may affect treatment decisions and potential outcomes. As a 

part of precision medicine, computer-aided diagnosis enables joint analysis of functional genomic 

information and image from pathological images. In this paper we propose an integrated 

framework for breast cancer staging using image-omics and functional genomic information. The 

entire biomedical imaging informatics framework consists of image-omics extraction, feature 

combination, and classification. First, a robust automatic nuclei detection and segmentation is 

presented to identify tumor regions, delineate nuclei boundaries and calculate a set of image-based 

morphological features; next, the low dimensional image-omics is obtained through principal 

component analysis and is concatenated with the functional genomic features identified by a linear 

model. A support vector machine for differentiating stage I breast cancer from other stages are 

learned. We experimentally demonstrate that compared with a single type of representation 

(image-omics), the combination of image-omics and functional genomic feature can improve the 

classification accuracy by 3%.

 I. Introduction

Breast cancer is one of the leading cancers worldwide. Meanwhile, it is the principle cause 

of death among women who are diagnosed cancers [1]. The American Cancer Society 

estimated that 207,090 women were diagnosed with breast cancer in 2010 and that 39,840 

women died of this disease in the United States alone during that year. Breast cancers 

mainly consist of three stages I,II and III. Accurate staging can provide support for 

personalized medicine, which aims to provide an individualized therapy design and outcome 

prediction for a particular patient based on systematically examining the molecular and 

genomic information of the patients in the database, and therefore increase the survival rates. 

Nowadays, many state of the arts [2], [3] using image features have been applied to breast 
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cancer classification. In [4], Beck et al. have correlated image features from stromal with 

survival in breast cancer study and discovered new biological aspects of cancer tissues. 

Meanwhile, many machine learning-based methods using image features are also reported 

for other specimen classification, such as prostate grading [5] and colon cancer subtype 

classification [6]. Besides the image signatures, genomic information is also used for breast 

cancer grading [7].

However, using a single type of features (image-omics) might be not sufficient for accurate 

breast cancer staging. It is well-known that genomic information provide significant support 

in clinical practice. In this paper, we propose to differentiate the stage I breast cancer from 

other stages by using a combination of image-omics and functional genomic information. In 

this paper, we focus on nuclear morphological patterns. In order to calculate image features 

of nuclei, we adopt a hierarchical voting based nucleus detection and a repulsive balloon 

snake model based nucleus segmentation. The non-tumor regions are delineated by a pixel-

wise classification based on convolutional neural network. Based on nucleus segmentation, 

we extract a set of image features including geometry information, intensity statistics, and 

texture. Principal component analysis (PCA) is used to reduced the original features to 47-

dimension image-omics. The obtained image-omics is then concatenated with functional 

genomic information for breast cancer classification. The experiments demonstrate that the 

classification accuracy can be improved by using a combination of these two types of 

signatures.

 II. Methods

 A. Automatic Nucleus Detection and Segmentation

 Nucleus Detection via Hierarchical Voting—Narrowing down our information 

aggregation to individual nucleus is critical to the analysis of histopathological images, 

which includes nucleus detection and segmentation. We apply an improved variant of the 

single-pass voting (SPV) in [8] to nucleus detection, which is more robust to the variations 

in nucleus size. For an image I(x, y), a Gaussian pyramid with L layers is created for 

hierarchical voting. At layer l, a Gaussian kernel weighted SPV is applied to the distance 

transform map, and this weighted voting strategy generates higher voting scores in the 

central region of the cells, even the nuclei have moderately elongated shapes. The final 

voting map V (x, y) is calculated by summing up all the layers [9]: 

(1)

where S denotes the set of all voting pixels, Al
(m, n) denotes the voting area of pixel (m, n) 

at layer l. I[·] is an indicator function, and Cl
(x, y) represents the distance transformation 

map at layer l. g(m, n, μ
x
, μ

y, σ) is a Gaussian kernel with centering on a vote accumulating 

pixel (x, y) with isotropic covariance σ [8]. In the voting map V (x, y), the pixels in the 

central regions of nucleus achieve higher voting scores than the others, so a local clustering 

method, mean shift [10], is applied to geometric center localization, which is considered as 
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the final nucleus detection and will be used to initialize the following seed-based deformable 

model for nucleus segmentation.

 Tumor Region Segmentation—During the previous detection, all the round shaped 

objects are detected without differentiation of the tumor nuclei and the non-tumor objects. A 

deep convolutional neural network (CNN) is trained to identify the tumor regions and 

therefore to remove the non-tumor objects from feature extraction. The trained CNN consists 

of 7 layers, including two convolutional layers with kernel size 5 × 5, two max-pooling 

layers with kernel size 2×2, and one fully connected layer of dimension 64 and one output 

layer of dimension 2. The CNN is used to perform pixel-wise classification via sliding 

window mechanism [11].

 Nucleus Segmentation via Repulsive Balloon Snake—Different than the 

traditional balloon snake deformable model [12], the repulsive balloon snake introduces an 

extra term that models the repulsive force from the neighboring contours to prevent evolving 

contours from crossing each other. Let vi(s) denote the i-th contour and s index points on the 

contour, the model deforms vi(s) till a balance between the internal force Fint(vi) and 

external force Fext(vi) is achieved:

(2)

(3)

(4)

where the first/second term in (3) represents the seconde/fourth derivative of vi(s), which are 

used to model the internal force. Their contributions to contour deformation are controlled 

by weights α and β. In (4), the γni(s) represents the pressure force, and ∇Eext(vi(s)) denotes 

the image force, where Eext(vi(s)) is the magnitude of the gradient of the image. The third 

term in (4) denotes the repulsive force, with N representing the number of neighboring 

contours and dij(s, t) corresponding to the Euclidean distance between contours vi(s) and 

vj(t). Based on the aforementioned nucleus detection, the contours are initialized by 

generating small circles, one per detected nucleus. The automatic nucleus segmentation is 

achieved when (2) is satisfied.

 B. Feature Extraction

Based on the nucleus segmentation, we extract three groups of cellular features including 

geometry features, statistics of pixel intensity and texture features, which are combined with 

functional genomic information to separate stage I breast cancer from other stages.
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 Geometry features—We compute nuclear area, perimeter, circularity, major-minor axis 

ratio, and solidity (It is defined as the ratio of cell area region over the convex hull defined 

by the segmented nuclei boundary).

 Statistics of pixel intensity—This group of features are calculated based on the pixels 

within the segmented nuclei, including intensity mean, standard deviation, skewness, 

kurtosis, entropy, and energy.

 Texture features—They contain texture feature coding method (TFCM), center 

symmetric autocorelation (CSAC), local binary pattern (LBP). In TFCM, Each pixel is 

assigned a texture feature number (TFN), which is generated by comparing this pixel with 

its neighbors in four directions. A histogram can be generated based on the TFNs of one 

image patch for feature description. CSAC is a measure of the local patterns with 

symmetrical forms. LBP is one type of local features, which assigns each pixel binary code 

by comparing the intensity of this pixel to those of its neighbors and then a histogram of the 

binary codes is created to characterize texture information. In total we have extracted 163 

image features. The image-omics is computed by applying PCA to the original high 

dimensional image features. A 47-dimension image-omics is obtained.

 Functional genomic information—The transcriptomic data are generated from 86 

breast cancer patients, which contains 20,503 gene entries. In order to reduce the feature 

dimensionality and avoid overfitting, we apply linear modeling and empirical Bayes 

statistics to filter out genes without significant expression. The top-10 genes with P < 0.001 

are listed in Table I. The two genes with top expression levels, C19orf33 and SLC4A8, with 

respect to the stages, are summarized in Figure 1. One-way ANOVA analysis for C19orf33 

and SLC4A8 indicates significant difference for their expression based on tumor stages. 

Further, their association is necessary to be validated in other replicative cohorts. The 

C19orf33 and SLC4A8 are highly suggested into a predictive model for breast tumor 

staging, which can provide a useful molecular signatures for the diagnosis of breast cancers. 

In the step of breast cancer staging, we only combine these two functional genomic features 

with the image features for classification.

 C. Breast Cancer Staging

Based on the image features and the functional genomic information, we exploit a binary 

classifier, support vector machine (SVM), to differentiate the stage I breast cancer from 

other stages. Given training data , the binary SVM aims to maximize the margin 

with allowing a certain degree ξ of misclassification of the data:

where C is the penalty parameter controlling the trade off between the margins and training 

errors.
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 III. Experiments

 Data—We compiled a data set containing the diagnostic images, genome information and 

clinic information of 86 patients. The data is downloaded from the publicly available 

database TCGA (The Cancer Genome Atlas). Patient of three stages, including 13 stage I, 55 

stage II and 18 stage III, are present in the data set.

 Tumor nuclei detection and segmentation—A randomly selected image patch is 

shown in Figure 4(a). The nuclei detection algorithm described in Section II-A is used to 

detect the nuclei automatically (Figure 4(b)). As one can tell, it is possible that both the 

tumor nuclei and non-tumor objects are detected. The region segmentation method described 

in Section II-A is used to separate tumor regions and non-tumor regions (Figure 4(c)). The 

detected objects in the non-tumor regions are removed from the analysis. The final 

automatic tumor nuclei detection and segmentation result is shown in Figure 4(d).

 Feature extraction and classification—The image features described in Section II-

B are extracted and combined with the expression of the two functional genomic features 

identified in Section II-B to train a support vector machine (SVM) classifier. The features 

are normalized by subtracting the mean and being divided by the standard deviation. Since 

the morphological features have very high dimension. For the cellular geometric features, 

we compute a concise representation to capture the characteristics of all the detected nuclei 

in one image by computing their mean, variance, and median and a three-bin histogram. 

Similar to the geometric features, the statistics features of the pixel intensity is calculated for 

each nucleus and the mean, variance, and median and three-bin histogram are calculated to 

represent the image. For the texture features, including TFCM, CSAC, and LBP, principal 

component analysis (PCA) is used to compute the dimension reduced representations. 

Finally each image is represented by a 163 dimensional vector. Finally, a image-omics with 

dimension of 47 is computed by further applying PCA to the 163 dimensional image 

features. Combining the two functional genomic features, each patient is represented by a 49 

dimensional vector.

A SVM classifier is trained to separate the patients at stage I and the other stages. A fourfold 

cross validation is applied to evaluate the classifier with respect to the parameters on a 

Gaussian kernel. The cross validation misclassificaton rates are shown in Figure 2. The 

parameter γ denotes the variance of the Gaussian kernel and C denotes the penalty. The best 

error rate with image features only is 15% as shown in Figure 2(a). The classification 

performance with both the image features and the two functional genomic features is 12% as 

shown in Figure 2(b). The ROC curves of the performance of the classifier with image 

features only and with the joint features are shown in Figure 3. As one can tell that the 

classification performance obtained by the combined feature is superior to the performance 

based on the image features only.
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 IV. Conclusion

In this paper, we proposed a breast cancer staging system based on joint analysis of 

morphological features and functional genomic information. The proposed system is verified 

experimentally on a data set containing 86 patients. The cross validation shows that 

morphological features together functional genomic information produce a better 

classification performance in differentiating stage I patients and patients at other stages. The 

proposed system is generic. Therefore, more morphological features and more elaborated 

analysis of the functional genomic can be integrated. The experiment shows promising 

results. In our future study, more morphological features, e.g., structural features, and more 

genomic/clinic information will considered in the investigation.
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Fig. 1. 
Bargraph of gene expression values for gene C19orf33 and SLC4A8 discovered from linear 

modeling with breast tumor stages.
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Fig. 2. 
Misclassification rates with respect to different parameters using Gaussian kernel to 

differentiate the patients at stage I and the other stages. (a) The misclassification rates based 

on image-omics only; (b) The misclassification rate based on image-omics and the two 

identified functional genomic features.
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Fig. 3. 
The receiver operation curves of the classification with image-omics only and a combination 

of the morphological features and the two identified functional genomic features.
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Fig. 4. 
(a) A randomly picked original image; (b) The nuclei detection result; (c) The tumor region 

(marked in light green) segmentation result; (d) The nuclei identified for feature extraction.
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TABLE I

Top associated genes with breast tumor stages

Name Description Coefficients* Expression
†

P value
‡

C19orf33 Chromosome 19 open reading frame 33 141.7 191.1 3.0 × 10−6

SLC4A8 Solute carrier family 4, sodium bicarbonate cotransporter, member 8 32.0 54.6 7.2 × 10−5

POLD4 Polymerase delta 4 102.4 299.3 1.1 × 10−4

SMYD3 SET and MYND domain containing 3 42.2 108.7 1.2 × 10−4

LMCD1 LIM and cysteine-rich domains 1 53.4 136.6 1.3 × 10−4

CLCF1 Cardiotrophin-like cytokine factor 1 4.1 11.3 1.3 × 10−4

BCAS1 Breast carcinoma amplified sequence 1 74.5 103.3 1.5 × 10−4

VTI1B Vesicle transport through interaction with t-SNAREs 1B 59.0 199.1 1.7 × 10−4

ZNF238 Zinc finger and BTB domain containing 18 66.6 106.5 1.9 × 10−4

BMPR1B Bone morphogenetic protein receptor, type IB 172.6 194.9 2.2 × 10−4

*
Coefficients: Linear modeling coefficients of gene expression change with breast tumor stages.

†
Expression: Average gene expression levels.

‡
P value: P values from linear modeling for gene expression with tumor stages.
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