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Abstract

 Purpose—Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its 

quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be 

eliminated with simple means of external immobilization. We investigate a two-step iterative 

motion compensation based on a multi-component metric of image sharpness.

 Methods—Motion is considered with respect to locally rigid motion within a particular region 

of interest, and the method supports application to multiple locally rigid regions. Motion is 

estimated by maximizing a cost function with three components: a gradient metric encouraging 

image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty 

term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross 

motion followed by estimation of fine-scale displacements using high resolution reconstructions. 

The method was evaluated in simulations with synthetic motion (1–4 mm) applied to a wrist 

volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) 

quantified the agreement between motion-compensated and static data. The algorithm was also 

tested on a motion contaminated patient scan from dedicated extremities CBCT.

 Results—Excellent correction was achieved for the investigated range of displacements, 

indicated by good visual agreement with the static data. 10–15% improvement in SSIM was 

attained for 2–4 mm motions. The compensation was robust against increasing motion (4% 

decrease in SSIM across the investigated range, compared to 14% with no compensation). 

Consistent performance was achieved across a range of noise levels. Significant mitigation of 

artifacts was shown in patient data.

 Conclusion—The results indicate feasibility of image-based motion correction in extremities 

CBCT without the need for a priori motion models, external trackers, or fiducials.
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 1. INTRODUCTION

Recently developed dedicated flat-panel detector (FPD) cone-beam CT (CBCT) systems for 

extremities imaging (Fig. 1 A) offer capability for weight-bearing imaging, simplified 

workflow, modest patient dose, and high spatial resolution (typically surpassing 

conventional CT1). Further improvements in spatial resolution of extremities CBCT could 

enable in-vivo quantitative assessment of bone morphology using metrics of trabecular and 

cortical microarchitecture typically accessible only to ex-vivo micro-CT. Such ability to 

evaluate bone microstructure directly in patients would be valuable in early detection of 

osteoporosis and osteoarthritis, prediction of insufficiency fractures (e.g. due to diabetes or 

radiation therapy) and in monitoring of treatment response. Development of the next 

generation ultra-high-resolution extremities CBCT based on a large-area CMOS x-ray 

detector that offers smaller pixel size and reduced electronic noise compared to current 

FPDs is currently pursued at our institution.

The new detector technology, along with other technical upgrades (including a compact 

small focal spot x-ray source), is likely to improve the baseline system resolution from the 

current ~300 µm to ~150 µm, consistent with the size of the trabeculae and thus enabling 

accurate characterization of bone microstructure. One of the challenges in maintaining this 

very high spatial resolution in clinical practice may be the motion of the extremity during 

the scan. Despite the relatively long acquisition time (~20–30 s) of current extremities 

CBCT, effective patient immobilization via cushions or air bladders largely mitigates any 

impact on the diagnostic performance from blur and artifacts caused by motion (see Fig. 1 B 

for a representative reconstruction of a knee from an ongoing clinical study). In imaging of 

bone microstructure, however, quantitative accuracy will be diminished even for slight, sub-

mm motion that cannot be easily controlled with immobilization. This creates the need for 

robust motion compensation algorithms.

Estimation and compensation of motion in CBCT has been previously achieved using 

fiducial-based techniques2,3 and although such approaches have shown promising 

performance, they may introduce undesired complexity in the imaging workflow. Fiducial-

free motion correction based on 2D–3D registration has been proposed; however, such 

methods sometimes do not outperform the approaches relying on fiducials5, and they may 

require prior information that might not always be available6. In cardiac and lung imaging, 

image-based, fiducial- and tracker-free motion correction has been performed using 

parametric models of breathing and the beating heart7. In the extremities, however, a 

predictable, periodic displacement pattern is rarely present, necessitating correction 

algorithms that do not rely on a priori motion models.

One promising, purely image-based solution involves estimating the motion by optimizing a 

metric of image sharpness. In CBCT, such approaches (often referred to as “auto-focus” 

methods) have been primarily investigated in the context of geometrical misalignment 

estimation in CBCT8. Compared to using 2D–3D registration, motion estimation in the 

image-based framework can be easily restricted to a region-of-interest (ROI), since no 

forward projection of the volume is needed. The correction can then be limited to a local 

neighborhood within which rigid motion can be assumed, even if the extremity as a whole 
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follows a complex motion pattern (e.g. distal femur and proximal tibia moving 

independently).

In this work, we assume that the system geometry is accurately calibrated and employ the 

“auto-focus” methodology to develop an automatic, multi-scale image-based motion 

compensation approach optimized for high-resolution CBCT of the extremities. We propose 

a novel, two-step iterative estimation of the motion field with a penalized multi-component 

image sharpness cost function and evaluate its performance in simulation studies and real 

patient data.

 2. METHODS

 2.1. Motion compensation framework

The motion compensation framework relies on maximizing a metric of image sharpness to 

estimate the motion trajectory of the volume. To simplify the problem, we limit the 

correction to an ROI within which all voxels are assumed to be undergoing the same rigid 

motion (recognizing that the extremity as a whole may exhibit a more complex 

deformation). The motion is assumed to consist of a sequence of rigid transformations (one 

per projection), characterized by 6 degree-of-freedom (DoF) transformation matrices. The 

full set of motion parameters (three translations and three rotations per projection) is denoted 

T and estimated through maximization of the following, penalized multi-component cost 

function:

(1)

(2)

(3)

where μ is the reconstructed volume, ∇x, ∇y and ∇z are the components of its gradient, and 

hi(μ) is the value of the i-th bin of a histogram of voxel values (i = 0, … N). The term G is 

the Tenengrad gradient that favors sharp images9. To reduce the impact of noise, the 

summation in G involves only gradient magnitudes above a user defined threshold. The 

second term in the cost function, E, is the entropy of image voxel values. Minimizing the 

entropy encourages high contrast structures8 and mitigates streak artifacts that may be 

reinforced by the gradient metric G. A penalty R (L2 norm of the first order difference) is 

included to discourage large changes of motion parameters between consecutive projections. 

Parameters α and β control the tradeoff between the gradient, entropy, and penalty.

The optimization problem in Eq. 1 is non-convex and thus challenging to solve with 

conventional gradient-based methods. In this work, the Covariance Matrix Adaptation 
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Evolution Strategy (CMA-ES)10 was used as to solve for a global optimum in a non-convex 

space. At each iteration of CMA-ES, a population of reconstructed volumes for a set of 

candidate motions T is obtained with the Feldkamp (FDK) algorithm. The reconstructions 

for all members of the population are executed in parallel using a GPU-accelerated 

implementation.

The framework involves a multi-scale optimization divided in two stages. In the first stage, a 

coarse estimation of the motion trajectory is obtained by maximizing Eq. 1 in a sub-volume 

containing air-soft tissue and soft tissue-bone interfaces. This stage corrects for gross motion 

(e.g. due to insufficient immobilization), where air-soft tissue boundaries were found to be 

particularly important in driving the optimization process. Coarse object discretization and 

smooth reconstruction kernel (to reduce the impact of streaks) are used. Motion is estimated 

for a subset of the projections and extended to the complete orbit by spline interpolation. 

This initial motion estimate is used in the second stage that accounts for fine motions in a 

local neighborhood of interest. This second stage is performed in a ROI including only soft 

tissue-bone interfaces and uses a sharp reconstruction kernel and small voxels to maximize 

image sharpness. The multi-scale approach yields significant performance gains by using 

high-resolution reconstructions only for fine tuning the motion estimate around an initial 

guess obtained with coarse reconstruction.

 2.2. Experimental Studies

A numerical study was performed using a digital phantom obtained from a CBCT volume of 

a cadaveric hand (Fig. 1 C and D) acquired on a high-resolution CMOS-based x-ray imaging 

testbench. The system geometry was the same as in the extremities CBCT prototype. The 

CMOS detector was a Dalsa Xineos 3030 (Eindhoven, NL) with a pixel size of 100 µm and 

600 µm-thick CsI columnar scintillator. A rotating anode x-ray source was operated at 90 kV 

(+2 mm Al, +0.2 mm Cu), 0.4 focal spot and 0.25 mAs per projection; 720 projections were 

acquired over 360°. A high-resolution, motion free volume was obtained with FDK (Hann 

apodization, cutoff at the Nyquist frequency) on an 800×1300×400 grid (0.075 mm voxels).

Motion-contaminated projections were simulated by applying a 6 DoF rigid transformation 

to the static volume at each view angle and forward projecting the transformed volume using 

an in-house implementation of a separable footprint projector11. The performance of the 

compensation algorithm was evaluated for two types of motion patterns. The first 

experiment involved low frequency periodic motions (“drifts”), where each of the six 

degrees of freedom followed a sinusoidal function of the view angle with a period of 360°. A 

range of motions with different magnitudes was simulated by changing the amplitude of the 

sinusoid for one of the horizontal translation components between 0.2 mm and 2.0 mm. The 

amplitude of the two remaining translations was fixed at 0.2 mm. The rotational components 

of the transformation had amplitudes of 0.1° and 0.05° for the in-plane and the two out-of-

plane rotations, respectively.

The second numerical experiment emulated a “jitter” motion with much shorter period than 

in the previous experiment (set at 20°) and small amplitude (1 mm). The high frequency of 

this motion posed an additional challenge for compensation. The fast sinusoidal pattern was 
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applied to one of the horizontal translation components; other components followed the 

same pattern as in the previous motion design.

Motion compensation involved 100 iterations of each of the stages of the image-based 

framework. The first stage used a 150×200×70 voxels centered ROI with 0.5 mm voxels and 

FDK reconstruction with Hann apodizer and filter cutoff at 20% of the Nyquist frequency. 

Motion parameters were estimated in 10° steps. The cost function weights were α = 5×105 

and β = 10−3. The second stage used a 150×200×70 voxels ROI with 0.075 mm voxels, 

centered at the center of the volume, and FDK reconstruction with a sharp filter (Hann 

apodizer, cutoff at 80% of the Nyquist frequency). The regularization weights were α = 

5×105 and β = 2×10−4. The threshold for gradient estimation in G was 5×10−4 mm−1 for 

both stages, selected to preserve strong gradients from bones, but ignore gradients from 

noise and soft tissue interfaces.

Structural similarity index (SSIM)12 was used to quantitatively compare the motion-

compensated reconstructions with the original static reconstruction:

(4)

where  is the average attenuation and σi is the variance of the attenuation values in image 

i. The index sta denotes the static image, while MC denotes the motion compensated image, 

and σsta-MC is the covariance between the two images. The regularization terms c1 (= 10−4) 

and c2 (= 3×10−4) stabilize the measurement in regions of very low attenuation. Higher 

values of SSIM indicate improved fidelity of the motion-corrected reconstruction.

In addition to the numerical studies, experimental validation was performed using a motion-

contaminated CBCT patient scan of a knee obtained on the extremities FPD-CBCT. A total 

of 200 projections over a short scan trajectory (240°) were acquired. Motion compensation 

used 100 iterations of each stage of the algorithm with a 230×230×100 voxels ROI (0.75 

mm voxel) employed in the first stage, and a 230×230×100 voxels ROI (0.3 mm voxel) 

employed in the second stage. Reconstruction parameters were as in the first experiment. 

The projection data suggested relatively smooth motion, so the regularization strength was 

increased to β = 0.1 in the second stage. The values of α and gradient threshold were as in 

the first experiment.

 3. RESULTS AND BREAKTHROUGH WORK

Figure 2 illustrates the performance of the motion compensation framework as a function of 

motion amplitude for the low frequency periodic motion pattern (“drift”). Motion amplitude 

was calculated as the average maximum displacement of a set of voxels evenly distributed in 

the volume. SSIM as a function of motion magnitude (Fig. 2 B) indicates robust 

performance of the correction method for up to 4 mm motion. For small motion amplitudes, 

the gain in SSIM is modest due to the relatively low level of motion artifacts in the 

contaminated image. Approximately 15% increase in SSIM was achieved at larger motions 
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(2–4 mm), where artifacts in the uncompensated reconstruction were more pronounced. 

SSIM for motion corrected data does not show a significant decrease with increasing 

motion, indicating consistent performance of the compensation method.

The result of motion compensation for the fast periodic motion (“jitter”) is shown in Fig. 3. 

In this case, the SSIM of the motion contaminated dataset was 0.77, lower than for the low 

frequency motion with the same amplitude. The lower SSIM reflects the larger conspicuity 

of the artifacts (streaks and blurring of trabecular structures). Motion compensation was able 

to increase the SSIM to 0.85, obtaining a value comparable to the one achieved for the slow 

motion. The results of the simulation studies indicate robust performance of the 

compensation method across a wide range of motion frequencies.

The impact of noise was studied by generating Poisson noise in the original projection 

dataset. The motion amplitude was fixed at 1.7 mm and standard deviation in the 

reconstructed data varied between 0.003 and 0.0045 mm−1. The motion correction strategy 

was found to be robust against noise, yielding similar relative improvement in SSIM 

independently of the noise level.

Results of motion compensation in real patient data are shown in Fig. 4. The dataset shown 

here was obtained on the current extremities CBCT system and represents a case of 

relatively large motion, likely due to insufficient immobilization. Major image quality 

improvement and reduction of image artifacts is achieved using the proposed motion 

compensation method.

 4. CONCLUSIONS

We developed and evaluated an image-based motion compensation algorithm for high-

resolution extremities CBCT imaging. The algorithm employs a multi-component image 

sharpness criterion combining image gradient, image entropy, and a penalty that encourages 

smooth motion trajectories. The framework requires only ROI reconstructions, so the 

method is applicable to complex trajectories of the extremity as long as the motion is rigid 

within the ROI. Accordinlgy, the method is directly scalable / parallelizable to multiple ROIs 

for region-wise correction of complex motion of multiple rigid bodies - e.g., the femur, 

patella, and tibia. Artifact reduction and improved visualization of bone microarchitecture 

was demonstrated. In simulations, excellent correction was achieved for displacements of up 

to ~4 mm, consistent with residual motion occurring despite patient immobilization in 

extremities CBCT. The proposed compensation method was also successful in significantly 

reducing artifacts in a clinical case representing larger displacement due to insufficient 

immobilization. Current work involves optimization of the framework and evaluation in 

simulations and experiments using realistic motion patterns measured in human subjects 

using external trackers. The robust motion correction framework developed here will be 

essential to fully realize the potential gains in spatial resolution of extremities CBCT that are 

expected with new imaging hardware.
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Figure 1. 
(A) Dedicated extremities CBCT scanner with a clinical reconstruction (B) illustrating 

image quality of the current system. Image of a cadaveric wrist obtained on a testbench with 

a CMOS detector is shown in (C) and (D) illustrating the improved delineation of trabecular 

detail and demonstrating the potential for enhanced spatial resolution in the next generation 

extremities CBCT based on CMOS technology.
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Figure 2. 
Performance assessment of the motion compensation algorithm for low frequency periodic 

motion (“drift”). The baseline static reconstruction is shown in (A). Significant improvement 

in SSIM [measured against the static image in (A)] is achieved after motion compensation, 

as illustrated in (B) for a broad range of motion magnitudes. Visual comparison between the 

data before (C, D, and E) and after motion compensation (F, G, and H) demonstrate 

reduction of artifacts and improved visualization of trabecular detail (emphasized in the 

zoom insets) with motion compensation.
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Figure 3. 
Motion compensation results for the fast periodic motion (“jitter”). Comparison of static 

images (A) with reconstructed images before compensation (B) show conspicuous streak 

artifacts and blurring of the bone trabecular structures, resulting in low SSIM. Application of 

the motion compensation (C) yielded marked reduction of motion artifacts and resolution 

recovery, resulting in 10% increase in SSIM.
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Figure 4. 
Results of motion compensation in real patient data showing motion artifacts in CBCT 

images of the standing (weight-bearing) knee. Before compensation (A, C), motion artifacts 

are evident as discontinuities at the edge of bone structures and double contours (arrows). 

Those artifacts are clearly reduced after motion compensation (B, D).
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