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Introduction

Congenital anomalies of thekidneyand urinary tract (CAKUT)
are present in 3 to 7 out of 1,000 births, accounting for 20 to
30% of all anomalies detected in the prenatal period.1 There is
a spectrum of severity of CAKUT, spanning from mild hydro-
nephrosis to unilateral renal agenesis to dysplasia (►Table 1).
Themost severe cases of CAKUT (bilateral aplasia, hypoplasia,
dysplasia, obstructive uropathy, and reflux nephropathy) are
the leading cause of pediatric end-stage renal disease (ESRD)
in children, accounting for almost one-third of all cases of
pediatric ESRD (North American Pediatric Renal Trial and
Collaborative studies [NAPRTCS] 2011). There are few long-
term studies examining the life course effects of CAKUTon the
adult, but a recent study demonstrated the concerning find-

ing that there is a higher risk of ESRD in adulthood than
previously recognized.2

The etiology of the majority of CAKUT cases remains
unknown. While environmental exposures may contribute
to some cases of CAKUT,3 the preponderance of evidence
suggests a strong genetic component to the pathogenesis of
these congenital abnormalities. Familial aggregation studies
indicate that 10 to 50% of children with CAKUT will report a
family history of kidney abnormalities or urinary tract dis-
ease.4,5 Screening can demonstrate renal abnormalities in
one out of four asymptomatic first-degree relatives of chil-
dren with CAKUT.5 This strong familial heritability has led
some to recommend screening young (age <3 years old)
siblings of patients with vesicoureteral reflux (VUR).6 In
addition to familial CAKUT,more than 500 genetic syndromes
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Abstract Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects
and the leading cause of end-stage renal disease in children. There is a wide spectrum of
renal abnormalities, from mild hydronephrosis to more severe cases, such as bilateral
renal dysplasia. The etiology of the majority of cases of CAKUT remains unknown, but
there is increasing evidence that genomic imbalance contributes to the pathogenesis of
CAKUT. Advances in human and mouse genetics have contributed to increased
understanding of the pathophysiology of CAKUT. Mutations in genes involved in
both transcription factors and signal transduction pathways involved in renal develop-
ment are associated with CAKUT. Large cohort studies suggest that copy number
variants, genomic, or de novo mutations may explain up to one-third of all cases of
CAKUT. One of the major challenges to the use of genetic information in the clinical
setting remains the lack of strict genotype–phenotype correlation. However, identifying
genetic causes of CAKUT may lead to improved diagnosis of extrarenal complications.
With the advent of decreasing costs for whole genome and exome sequencing, future
studies focused on genotype–phenotype correlations, gene modifiers, and animal
models of gene mutations will be needed to translate genetic advances into improved
clinical care.
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are associated with renal or urologic anomalies.4 Genetic
testing of cohorts of children with nonfamilial, isolated
CAKUT reveals genetic mutations in up to 10 to 17%.7,8

Many of these mutations occur de novo, and occur in genes
that are also associated with syndromic CAKUT.8,9 In sum,
genetic factors contribute strongly to the pathophysiology of
CAKUT and these genetic mutations can be present in CAKUT
patients without other evident abnormalities. Thus, even
isolated kidney malformations should alert the clinician of
a possible genomic imbalance.

In the era of prenatal ultrasounds, the majority of patients
with CAKUT are now diagnosed prior to birth. This affords
the opportunity to intervene when possible in cases of
posterior urethral valves (PUVs), VUR, or obstruction. CAKUT
is defined by the radiologic appearance of the kidneys, and
includes a diverse set of phenotypes as indicated in►Table 1.
There are few clinical criteria available to predict risk of
progression to ESKD in CAKUT. Before birth, amniotic fluid
concentrations of sodium, β2 microglobulin, or other pep-
tides may be helpful to determine the severity of disease in
patients with PUV.10,11 After birth, small kidney size by
ultrasound or serum creatinine > 1 mg/dL at 12 months of
age in patients with PUV does predict a poor prognosis.2,12,13

Little is known about genetic factors’ influence on either
likelihood of renal failure or rate of progression in childhood.
In adults, several genome-wide association studies (GWAS)
have identified single nucleotide polymorphisms (SNPs)
associated with progression of chronic kidney disease.14–18

However, GWAS typically require large numbers and there
are limited data on the effect of SNPs on progression of
childhood CKD.19,20 There is an ongoing, multicenter collab-
orative study, the Chronic Kidney Disease in Children Study
(CKiD), a prospective cohort study of 586 children aged 1 to
16 years with chronic kidney disease, which may provide
new data on this in the coming years.21,22

CAKUT Results from Disruption of Distinct
Phases of Kidney and Urinary Tract
Development

Disruption of kidney and urinary tract development at differ-
ent stages leads to the spectrum of abnormalities observed in
CAKUT. The kidney develops from the intermediate meso-
derm, and renal development starts at the third week of
gestation.23 There are three primitive kidneys, the proneph-
ros, mesonephros, and metanephros. The pronephros are
rudimentary tubules which form in the third week, and
involute by the fourth week. The mesonephros develops in
the fourth week, and is composed of well-developed neph-
rons with vascularized glomeruli, which drain into the me-
sonephric duct. Themetanephros forms during the fifthweek
of gestation and develops into the permanent kidney. The
deepest nephrons mature between the 6th and 10th week of
gestation, with urine production beginning at 9weeks. Neph-
rogenesis continues until the 36th week of gestation.

Thefirst step needed to form the adult kidney is outgrowth
of the ureteric bud (caudal portion of the mesonephric duct)
(►Fig. 1). Renal agenesis results if the ureteric bud fails to
form.24 If two ureteric buds arise, a duplicated collecting
system or duplicated kidney may form.24 Both are often
associated with urinary tract obstruction or VUR.25,26

Next, the ureteric bud invades the surroundingmetaneph-
ric mesenchyme, and undergoes branching.27 This branching
is required to establish the radial organization of the neph-
rons and also determines nephron number. Defects in branch-
ing also contribute to hypoplasia. The tips of the ureteric bud
induce the surrounding mesenchyme to undergo a transition
to epithelial cells (mesenchymal–epithelial transition). Re-
ciprocal interactions between the metanephric mesenchyme
and ureteric bud are required tomaintain cell survival and for
further nephrogenesis, and disruption of these pathways
results in renal dysplasia, renal hypoplasia, and renal agene-
sis.28 Later defects in nephron development and differentia-
tion can result in a multicystic dysplastic kidney.3

The ureters form from the mesonephric duct at 5 weeks of
gestation and become occluded and recanalized between 5
and 9 weeks.29 Abnormalities of ureteral development may
result in ureteropelvic junction (UPJ) or ureterovesical junc-
tion (UVJ) obstruction. The bladder develops at the same time
as the kidney from the urogenital sinus and fuse with the
developing ureters. A perpendicular, rather than angled,
insertion of the ureter into the bladder musculature predis-
poses children to VUR.30,31

The developing kidney is initially located in the pelvic area
and migrates to its permanent location in the lumbar area at
the eighth week of gestation. An ectopic (e.g., pelvic) kidney
may result from ectopic ureteric budding, failure of vascular-
ization, or abnormal migration of the kidneys during devel-
opment.32 Mispatterning of the ureteric tree or defects in the
kidney capsule formation may lead to fusion anomalies (e.g.,
horseshoe kidney).33

The bladder musculature continues to mature until
12 weeks of gestation. The male urethra develops between
9 and 14 weeks and derives from the urogenital sinus

Table 1 Spectrum of CAKUT: Multiple manifestations of
defective renal/urinary tract development

Defects in ureteric bud outgrowth/branching

• Vesicoureteral reflux (VUR)

• Ureterovesical junction (UVJ) obstruction

• Ureteropelvic junction (UPJ) obstruction

• Duplicated collecting system

• Renal agenesis

• Hydronephrosis

• Ectopic kidney

Defects in nephron induction/differentiation

• Agenesis/dysplasia/hypoplasia

• Multicystic dysplastic kidney (MCDK)

Defects in fusion

• Horseshoe kidney

Defects in bladder/urethral development

• Posterior urethral valves (PUVs)
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(prostatic and membrane urethra) and the urethral plate
(bulbar and pendulous urethra).34 Several theories have
been proposed to explain the origins of PUVs, including
abnormal integration of the developing ejaculatory ducts
(derived from the mesonephric/Wolffian ducts) into the
developing urethra, leading to a membrane formation.34

Filling and emptying of the bladder up until the third trimes-
ter lead to remodeling of the bladder wall.35 Obstruction by
PUVs impairs this process, contributing to long-term bladder
dysfunction.35

Gene Mutations in Renal Developmental
Signaling Pathways Result in CAKUT

Our understanding of the precise role of genes in regulating
the various stages renal development has been advanced
significantly over the past few decades by two factors. First,
sequencing of the human genome and genetic mapping
technologies facilitated the identification of multiple gene
mutations associated with CAKUT. Second is the newfound
ability to manipulate gene expression in animal models. The
use of knockout and conditional mutants has enabled inves-
tigators to dissect out the role of signaling pathways in kidney
development, often in cell- and time-specific fashion.

Clearly, the first step in kidney development is the specifi-
cation of the renal progenitor populations. Genetic studies
using animal models have identified key transcription factors
including Six2, Pax2, Sall1, and Wt1 that are expressed in
nephron progenitors, and many of these are also common
mutations identified in human CAKUT.24,36 Animal models

have also identified major signaling pathways that regulate
later stages of kidney development, including ureteric bud
branching and nephron induction.23,27 These include signal-
ing by glial-derived neurotrophic factor GDNF/Ret, Wnt,
fibroblast growth factor (FGFs), members of the transforming
growth factor β superfamily (e.g., bone morphogenetic pro-
teins), and Notch and Sonic hedgehog pathways.23 While
detailed discussion of the cellular and molecular biology of
kidney development is beyond the scope of this review, we
will highlight a few gene mutations in both transcription
factors and signaling pathways identified in human CAKUT
(►Table 2, ►Figs. 1 and 2).

Distinct sets of transcription factors are expressed in the
nephron, vascular, and stromal progenitors (►Fig. 2). Some of
these transcription factors within the nephron progenitors,
such as Pax2, Hox11, and Eya1, physically associate and form
DNA regulatory complexes.37 The Hox-Eya-Pax complex ac-
tivates Six2 expression, which in turn activates Osr1, leading
to a positive feedback loops that maintain the nephron
progenitor population.23,37–42 Six1 also interacts with Eya1
and is required tomaintain nephron progenitors.43Activation
of Wnt4 signaling leads to differentiation of the mesenchyme
into epithelial cells.44 Interactions between transcription
factors in nephron progenitors, including Six2, Osr1, and
Sall1, tightly regulate the balance between renewal and
proliferation versus differentiation.38–42,45 Either premature
differentiation due to loss of these factors or failure to
differentiate leads to renal hypoplasia in mice.39,45–47 Inter-
estingly, epigenetic regulation by bothmicroRNA and histone
methylation contributes to maintenance of the renal progen-
itor population,48–50 although the exact role defects in epi-
genetic regulation may play in human CAKUT is unclear.
Many of the transcription factors critical in nephron progen-
itors also contribute to development of other organs. For
example, Six1, Six2, Eya1, and Osr1 play roles in eye and ear
development, and patients with mutations in these genes
present with renal, oto, and ophthalmologic manifesta-
tions.51 In particular, EYA1 and, less commonly, SIX1 muta-
tions are associated with branchio-oto-renal (BOR)
syndrome, an autosomal dominant disorder, characterized
by branchial arch anomalies, hearing loss, and renal malfor-
mations. Similarly, Sall1 functions in anal, limb, and ear
development, as well as kidney development. Sall1mutations
leads to Townes–Brock syndrome.52

CAKUT may also result from defects in transcription
factors in other renal progenitor populations. For example,
the stromal transcription factor FoxD1 regulates renal pat-
terning, and loss of FoxD1 in mice leads to duplex kidneys.33

Many cases of CAKUT are linked to defective ureteric bud
branching (►Fig. 1). One of the major pathways regulating
ureteric bud branching is GDNF. GDNF is a growth factor
ligand that is secreted by the metanephric mesenchyme and
binds the retinoic acid receptor (Ret) expressed on the tips of
the ureteric buds. Binding of GDNF to Ret stimulates cell
proliferation and ureteric bud branching. Defects in Ret are
associated with bilateral renal aplasia.53 A recent study
demonstrated rare variants or novel mutations of GDNF,
Ret, or GFRα (a Ret co-receptor) in 5% of a cohort of unrelated

Fig. 1 Reciprocal interactions between the metanephric mesenchyme
and the ureteric bud are required for kidney development. (A) GDNF
and Ret signaling are required for outgrowth of the ureteric bud into
the metanephric mesenchyme. (B) Ret-GDNF, Sprouty, Slit-Robo,
fibroblast growth factors (FGFs), bone morphogenetic proteins
(BMPs), sonic hedgehog (Shh), and angiotensin receptor 2 signaling
pathways regulate ureteric bud branching. Mutations in Ret-GDNF,
Robo2, and Shh, and variants in the renin–angiotensin system con-
tribute to human CAKUT.
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Table 2 Selected gene mutations associated with CAKUT syndromes

Syndrome Gene Inheritance Renal Phenotypes

Alagille JAG1
(Notch signaling pathway)

AD Agenesis, hypoplasia, cystic dys-
plasia, UPJ obstruction, VUR

Aniridia-Wilms
tumor (WAGR)

WT1 AD Tumor, nephromegaly

ATR-X ATRX X-linked Hypoplasia, agenesis, VUR,
hydronephrosis

Branchio-oto-renal EYA1, SIX1 AD Hypoplasia, VUR

Caudal regression VANGL1 AD, AR Agenesis, ectopic kidney, hypo-
plasia, hydronephrosis, VUR

CHARGE CHD7 AD Agenesis, hypodysplasia, hydro-
nephrosis, hydroureter

Cornelia de Lange NIPBL AD Hypoplasia, VUR, pelvic dilata-
tion, ectopia

Fraser FRAS1, FREM2 AR Renal agenesis, cystic dysplasia,
hypoplasia, hydronephrosis,
bladder agenesis

Hypoparathyroid-
ism–deafness–renal

GATA3 AD Agenesis, hypodysplasia, VUR

Kallmann KAL1, KAL2 X-linked or AD Unilateral renal agenesis, VUR,
cystic dysplasia

Maturity-onset dia-
betes of the young
type V

HNF1β AD Cystic dysplasia, hypoplasia,
glomerulocystic, agenesis,
oligomeganephronia

Meckel–Gruber MKS1–4 AR Cystic dysplasia, hypoplasia

Noonan NS1 AD Cystic dysplasia, duplication,
hydronephrosis

Okihiro (acro-renal-
ocular)

SALL4 AD Pelvic or horseshoe kidney,
hypoplasia, VUR

Pallister–Hall GLI3
(member of sonic
hedgehog signaling pathway)

AD Agenesis, hydronephrosis, hydro-
ureter, renal ectopia, horseshoe
kidney

Renal coloboma PAX2 AD Hypoplasia, VUR, UPJ obstruction

Renal-hepatic-pan-
creatic dysplasia

EVC, EVC2 AR Cystic dysplasia

Rubinstein–Taybi CBP
EP300

AD Unilateral agenesis, cystic hypo-
dysplasia, urethral defects

Roberts ESCO2 AR Agenesis, hypodysplasia,
hydronephrosis

Silverman (dysseg-
mental dwarfism)

HSPG2 Uncertain Hydronephrosis

Simpson–Golabi–
Behmel

GPC-3 X-linked Medullary cystic dysplasia

Smith–Lemli–Opitz DHCR7 AR UPJ obstruction, hydronephrosis,
VUR, cystic dysplasia

Townes–Brocks SALL1 AD Agenesis, hypoplasia, PUV, VUR,
meatal stenosis

Zellweger PEX AR Cystic dysplasia, hydronephrosis

Abbreviations: AD, autosomal dominant; AR, autosomal recessive.
Note: Not included are nephronophthisis and polycystic kidney diseases, which are addressed in a separate review.
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patients affected with CAKUT.54 Ret mutations are also
associated with Hirschsprung’s disease, and up to 20% of
Hirschsprung’s patients have renal anomalies.55

Ureteric bud branching is modified by multiple factors,
including FGF, BMP, Shh, Slit-Robo, and angiotensin-2 recep-
tor signaling (►Fig. 1).56–59 Mutations in Shh signaling mem-
bers are causes of syndromic renal malformations (Pallister–
Hall syndrome).57 Slit and Robo are neural guidance proteins
that regulate ureteric bud outgrowth, branching, and the UVJ
formation.60 Robo2 mutations are associated with familial
VUR.60 Genetic variants in the renin angiotensin system may
be linked to VUR, but this relationship has not been consistent
in all populations.61,62

CAKUT can also result frommutations in genes involved in
later stages of nephron differentiation. Induction by the
ureteric bud results in aggregation of the mesenchyme that
becomes a sphere of epithelial cells known as the renal
vesicle. Wnt signaling regulates this process and genetic
defects in Wnt4 lead to renal hypodysplasia (RHD).63 The
vesicle then undergoes a series of morphologic changes to
become a comma and then an S-shaped body. The epithelial
cells in the S-shaped nephron closest to the ureteric bud form
the distal tubules, themid-portion forms the proximal tubule
and loop of Henle, and those furthest from the ureteric bud
form the parietal epithelium and the podocytes. The Notch
signaling pathway is required for development of podocytes
and proximal tubules.64,65 Notch is a cell–cell signaling
pathway.66 Signal-sending cells express Notch ligands (i.e.,
Jag1) on their cell membrane.66 Ligand binding of Notch

receptors on signal-receiving cells leads to a series of proteo-
lytic cleavages, releasing the intracellular domain of Notch
(NICD).66 This NICD translocates to the nucleus, stimulating
expression of the Notch effectors, Hes and Hey, which lead to
cell proliferation and differentiation.66 Gene mutations in
Jag1 or the notch receptor Notch2 lead to Alagille syndrome,
which is associated with a paucity of bile ducts and also renal
abnormalities (►Table 2).

Mouse genetic studies have also provided some insight
into the wide spectrum of phenotypes observed in CAKUT.
The cell- and time-specific effects may contribute to the
different observed phenotypes. For example, FGFs have
been implicated in both ureteric bud branching and meta-
nephric mesenchyme differentiation.56,67–71 Another likely
possibility is the presence of modifier genes and incomplete
penetrance.67 Even genetically identical mutant mice do not
all have the same phenotype. Finally, as microRNAs and
histone methylation regulate renal development,24,48,49 epi-
genetic modification induced by the environment may also
affect the phenotype.

There is a diversity of the CAKUT phenotype observedwith
mutations in the same gene. A good example of this is
mutations in hepatocyte nuclear factor 1β (HNF1B). Gene
deletions or mutations in HNF1B are one of the most com-
monly identified mutations associated with human CA-
KUT.72,73 HNF1B is a transcription factor, and mouse
studies of HNF1B function demonstrate a role in proximal
tubular differentiation.74–76 Kidney-specific inactivation of
Hnf1b in the mouse leads to cystic disease, and HNF1B has

Fig. 2 CAKUT is associated with mutations in transcriptions factors and signaling pathways that are required for nephron differentiation. Multiple
transcription factors (including Hox11, Eya1, Pax2, Six1, Six2, Osr1, Sall1) regulate the balance between differentiation and maintenance of
nephron progenitors. Wnt signaling is required for differentiation into the renal vesicle. HNF1B and Notch signaling contribute to specification of
the proximal tubules and terminal nephron differentiation.
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been shown to regulate expression of geneswhosemutations
are involved in cystic kidney disease (i.e., PKHD1, NPHP1,
PKD2).75,77HNF1Bmutations in humans are associatedwith a
broad spectrum of disease, including renal cysts and diabetes
syndrome, maturity onset diabetes of the young type 5, and
hepatic, genital, and pancreatic abnormalities with variable
expression of renal and extrarenal manifestations.7,72,78–86

Another example of a gene mutation involved in diverse
CAKUT phenotypes is PAX2. PAX2 is a critical transcription
factor expressed in the nephron progenitors.37,87 However, it
is also expressed in the ureteric bud, where it regulates
ureteric bud branching.88 It is also expressed in the eye,
ear, and central nervous system.89–91 Mouse studies have
shown that homozygous PAX2mutantmice develop renal and
ureteral agenesis,92whereas PAX2 hypomorphic mice exhibit
mild-to-severe RHD.93 There are mutational hotspots in a
seven base pair polyguanidine region of exon2 (the DNA
binding region).94 PAX2 mutations are most commonly asso-
ciated with renal coloboma syndrome, also known as papil-
lorenal syndrome, an autosomal dominant disorder
characterized by optic nerve malformations (optic nerve
coloboma, optic nerve dysplasia) and renal defects (oligome-
ganephronia, hypodysplasia with or without VUR, and renal
cysts).30,84,88,91,94,95 Other extrarenal manifestations which
are less common include sensorineural hearing loss and brain
malformations.96 Just as described with HNF1B, the same
gene mutation has different manifestations, even within the
same family.88,96 Mouse models indicate that the Pax2 phe-
notype is modified by gene–gene interactions, including with
WT-1 and HNF1B.76,97 PAX2 is a target of epigenetic regula-
tion, and PAX2 expression is modified by the prenatal envi-
ronment in mice.98,99 Such environmental and gene–gene
interactions likely contribute to the variable PAX2 phenotype.

Genetic Studies in Populations with CAKUT

While studies of genes in animal models have advanced our
understanding of the cellular and molecular mechanisms
required for kidney development, we are still far from rou-
tinely applying these to clinical management of patients.
However, recent studies of genetics in CAKUT cohorts added
to our understanding of the types and frequency of genetic
causes of CAKUT.

Copy number variation (CNV) has been implicated in the
pathogenesis ofmany developmental disorders, and CNVmay
be a frequent cause of CAKUT. Sanna-Cherchi et al examined
large, rare, CNVs (size > 100 kb and frequency < 1%) in a
large cohort of patients with RHD, and identified known
copy-number disorders in 10.5% of RHD cases.73 In 6.1% of
RHD cases, they identified novel or rare copy-number dis-
orders, which may help identify potential candidate genes or
loci involved in the disruption of kidney development leading
to CAKUT.73 Larger gene-disrupting events were associated
with RHD cases, and deletions at the HNF1B locus were most
frequent.HNF1B is highly susceptible to CNVas it isflanked by
areas of segmental duplications, which are sites for recurrent
rearrangements.73 Rearrangements in chromosomal region
17q12 were the most common genomic disorder. Interest-

ingly, neuropsychiatric disease is also an increasingly recog-
nized complication of rearrangements in this chromosomal
region.73Moreover, the majority of the known CNV disorders
detected in the RHD cohort have previous associations with
developmental disease or neuropsychiatric diseases.73 These
findings suggest shared pathways between renal and neural
development, and implicate genetic factors in cognitive de-
fects associated with kidney disease.

Genetic Mutations in CAKUT in US and
European Cohorts

Data from the Chronic Kidney Disease in Children Cohort
Study (CKiD) demonstrated that 10% of all patients and 14%
of North American Caucasian patients with RHD had patho-
genic mutations for either HNF1B or PAX2.7 The majority of
children (particularly non-Caucasian) in the cohort did not
haveHNF1B or PAX2mutations, which suggests that there are
other undiscovered genes that may cause CAKUT.7 Therewas
no significant difference in progression of renal disease
between patients with mutations in HNF1B or PAX2 and
those without. The ESCAPE (European multicenter Effect of
Strict Blood Pressure Control and ACE Inhibition on Progres-
sion in Pediatric Patients) study screened for genetic muta-
tions, including HNF1B (also known as TCF2), PAX2, SALL1,
EYA1, and SIX1, in a cohort of 100 patients with RHD and
mild-to-moderate kidney disease. Genetic mutations were
found in 17% of patients, of which 15% had mutations in TCF2
or PAX2.8

Together, these studies suggest that up to 30% of patients
with CAKUT may have either large copy number variant or
gene mutations. Roughly 50% of copy number variants73 and
gene mutations may occur de novo85 and are not inherited.
This raises the questions of the potential use of genomics in
the clinical setting with patients with isolated CAKUT.

Clinical Implications of Gene Mutations

Themajor challenge of use of genetic evaluation in the clinical
arena is the lack of strict genotype–phenotype correlation.
The severity of renal disease associatedwith geneticmutation
is extremely variable. Heidet et al examined a large cohort
(377) of unrelated cases with various renal phenotypes
(multicystic dysplastic kidney, renal agenesis, renal hypopla-
sia, cystic dysplasia) and screened forHNF1βmutation, which
was found in 20% of cases.72 The gene alterations included
whole gene deletion in 42 cases, small mutations (missense,
nonsense, frameshift, splice site mutations) in 32 cases, and
exon deletion in 1 case. Of 42 patients with heterozygous
HNF1B deletion, the radiologic appearance of the kidneys
varied from bilateral hypoplastic kidneys to enlarged hypo-
echoic kidneys.72 Furthermore, the prenatal ultrasound was
often normal. The consequences of radiologic findings on
renal function also varied, and some adult patients had
normal glomerular filtration rate, whereas some infants
had neonatal-onset renal failure.72 This illustrates the diffi-
culty of using genetics in predicting renal outcome, even in
the setting of complete gene deletion.
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Another study demonstrating the lack of genotype–phe-
notype correlation was reported by Madariaga et al.84 They
screened for HNF1β and PAX2 genes in a cohort of 103 fetuses
from 91 familieswith severe CAKUT that led to termination of
pregnancy. They detected amutation rate of 17% (HNF1β in 12
cases; PAX2 in 4 cases). However, in many cases, they
observed marked intrafamilial phenotype variability with
the same inherited mutation with respect to severity of
disease. The lack of genotype–phenotype correlation and
the wide variability observed even within a single family
make genetic counseling difficult.100

Themost obvious clinical application is to enhance screen-
ing for extrarenal manifestations. Many of the genes involved
in kidney development are also critical in organogenesis of
several tissues, resulting in other organ involvement. For
example, HNF1B plays a crucial role in the development of
pancreas, liver, gonads, gut, and thymus. Besides diabetes,
other extrarenal manifestations related to HNF1B mutations
include liver and pancreas abnormalities, hyperuricemiawith
or without gout, and genital malformations. BOR syndrome
(with EYA1 or SIX1 mutations) is most commonly associated
with hearing impairment, which can occur in various forms
(conductive, sensorineural, mixed type) with variable pro-
gression to hearing loss. As described earlier, PAX2 is also
expressed in the eye, ear, and central nervous system. Pa-
tients with PAX2 mutations and renal coloboma syndrome
have extrarenal manifestations of optic nerve malformations
and, less commonly, sensorineural hearing loss or brain
malformations. It is important to note that many extrarenal
manifestations may be subtle or subclinical and can be
missed. In the ESCAPE trial, ocular abnormalities were found
in five of seven patients with PAX2 mutations, and these
ocular findings had not been previously detected.8 Thus,
identification of PAX2 mutations would allow for thorough
ophthalmologic evaluation to detect optic malformations. For
patients with HNF1B mutation, diabetes screening is war-
ranted. Regular auditory testing would be indicated for
patients with EYA1 or SIX1 mutations. As described earlier,
renal malformations may also be associated with neuropsy-
chiatric disease, and CNV screen might identify the potential
for complications such as developmental delay, autism, or
other cognitive defects. In the follow-up phase of the CKiD
study, detailed information about extrarenal manifestations
is being collected and may provide more data to support
mutation screening of children with CAKUT.21

On the Frontier: Translation of Improved
Genomic Analysis to Improved Clinical Care

It is likely that the cost of whole genome and exome sequenc-
ing will continue to decrease over the next few decades.
Analysis of such large datasets will require use of comparative
genomics approaches and will enable us to identify new
genes associated with CAKUT.51 But interpretation of se-
quencing results will also require better understanding of
the mechanisms regulating phenotypic variation in CAKUT.
First, detailed clinical phenotyping will be necessary to better
define genotype–phenotype correlations101 . Second, we will

need to identify genetic and epigenetic modifiers of pheno-
types. Whole exome and genome sequencing will make it
possible to investigate the role of gene–gene interactions in
humans. But we will also need to understand the role of
noncoding DNA in modifying phenotype. For example, epi-
genetic changes or genetic variation in promotor or enhancer
regions can alter transcription factor binding, leading to
alterations in gene expression.102

Continued advances in genetic technologies may help in
these efforts. The majority of animal studies to date have
relied uponwhole gene deletion. With newer technologies in
gene targeting and editing, such as the CRISPR (clustered
regularly interspaced short palindromic repeats)/Cas sys-
tem,103 animal models may established to better understand
the mechanisms behind specific genetic mutations. Genetic
advances may lead to discovery of the effect of specific
mutations and genetic modifiers of outcome that will facili-
tate a personalized medicine approach to CAKUT, and poten-
tially even provide new targets for therapies for specific
genotypes.104
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