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Abstract

Mixture models capture heterogeneity in data by decomposing the population into latent 

subgroups, each of which is governed by its own subgroup-specific set of parameters. Despite the 

flexibility and widespread use of these models, most applications have focused solely on making 

inferences for whole or sub-populations, rather than individual cases. The current article presents a 

general framework for computing marginal and conditional predicted values for individuals using 

mixture model results. These predicted values can be used to characterize covariate effects, 

examine the fit of the model for specific individuals, or forecast future observations from previous 

ones. Two empirical examples are provided to demonstrate the usefulness of individual predicted 

values in applications of mixture models. The first example examines the relative timing of 

initiation of substance use using a multiple event process survival mixture model whereas the 

second example evaluates changes in depressive symptoms over adolescence using a growth 

mixture model.
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Recent years have seen a rapid increase in the use of mixture models within the behavioral, 

health, and social sciences. Examples include latent class analysis (LCA; Lazarsfeld and 

Henry, 1968), latent profile analysis (LPA; Gibson, 1959), growth mixture models (GMM; 

Muthén and Shedden, 1999; Nagin, 1999), and the recently introduced multiple event 

process survival mixture model (MEPSUM; Dean, Bauer, and Shanahan, 2014). An 

attractive feature of all of these models is that they decompose the population into a small 

number of groups, referred to as latent classes, that capture heterogeneity in the processes 

under study (McLachlan and Peel, 2000).

Applications of mixture models can be distinguished by whether the latent classes are 

thought to represent natural groups or are simply used as a convenient device with which to 

model individual differences (Titterington, Smith, and Makov, 1985). In direct applications 
the goal is to identify the number of truly distinct groups in the population and to 

characterize these groups relative to one another and in relation to potentially relevant 

antecedents and consequences (e.g., Wiesner and Windle, 2004; deRoon-Cassini, Mancini, 

Rusch, and Bonanno, 2010). By contrast, the goal of indirect applications is to estimate as 
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many latent classes as necessary to adequately represent the range of individual differences, 

without concern for the existence or recovery of natural groups. The latent classes are then 

interpreted to reflect local conditions (Nagin, 2005; Bauer and Shanahan, 2007) or 

reaggregated to glean insights about the population as a whole (e.g., Kelava, Nagengast, and 

Brandt, 2014; Pek, Chalmers, Kok, and Losardo, 2015; Gottfredson, Bauer, Baldwin, and 

Okiishi, 2014). Thus, depending on the nature of the application, inferences may be drawn 

with respect to the characteristics of the latent classes, the total population, or both.

It is far less common in a mixture analysis for predictions to be made at the level of the 

individual. This circumstance is at odds with the frequent description of mixture models as 

being “person oriented” or “person centered” (Bergman and Magnusson, 1997; Muthén and 

Muthén, 2000; Laursen and Hoff, 2006). Ironically, it is more routine to compute, plot, and 

potentially make inferences about the predicted values of individuals when fitting 

continuous latent variable models (e.g., random effects growth models, factor analysis 

models, item response theory models) despite the fact that these models are generally not 

regarded as being person centered. Drawing on this parallel literature, we seek to show that 

similar individual predictions may be made when using mixture models, enhancing both the 

interpretation and usefulness of the results.

Overall, our goal is thus to demonstrate how the information provided by a mixture model, 

whether in a direct or indirect application, can be used to make predictions about 

individuals. Importantly, although there have been a few examples of the use of predicted 

values in the growth mixture modeling context (Sterba and Bauer, 2014; Nagin and 

Tremblay, 2005), we believe that this paper provides the first general treatment of individual 

prediction in mixture models up to this point. Importantly, because mixture models may 

accommodate virtually any parametric distribution of variables within class, we have sought 

to present individual prediction in a way that is generalizable to any distributional 

specification. Drawing on a distinction often made for continuous latent variable models 

(e.g., Skondal and Rabe-Hesketh, 2009), we explore the computation and use of marginal 
predicted values, which average over the latent variables, and conditional predicted values, 

which take into account an individuals’ predicted latent variable scores. We note and 

demonstrate that different predicted values are suited for different purposes. Additionally, 

we discuss several different ways of approximating uncertainty around predicted values 

using parametric bootstrapping (Efron and Tibshirani, 1993). Overall, this emphasis on 

individual prediction brings the application of mixture models into greater concordance with 

the goals of a person-centered analytic approach (Bergman and Magnusson, 1997; Bauer 

and Shanahan, 2007; Sterba and Bauer, 2010).

 Mixture Model Formulation

Here we provide a general formulation of the finite mixture model. Defining some initial 

notation, let i index the individual (where i = 1, 2, …, N) and let k index latent class (where 

k = 1, 2, …, K). Let us also define a set of K indicator variables, designated cik, that have a 

value of one when case i is a member of class k and a value of zero otherwise. The values of 

these indicator variables are unobserved, and the vector ci of the indicator variables has a 

multinomial distribution. For a given individual, the values of the endogenous variables 
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(e.g., items, indicators, repeated measures) are contained in the p × 1 vector yi, the values of 

the exogenous variables (e.g., predictors, covariates) are contained in the q × 1 vector xi, and 

the values of any continuous latent factors that may be present within the model are 

contained in the r × 1 vector ηi.

The joint distribution of the (observed and latent) random variables given the fixed and 

known covariates can be factored as follows

(1)

where, following Muthén and Shedden (1999), [z] indicates a probability density or mass 

function for the random variable vector z. Parameter vectors defining the distributions have 

been suppressed to keep the notation compact (e.g., [ηi|xi, ci] is often specified as a normal 

distribution for which the parameter vector would consist of conditional factor means, 

variances, and covariances). Averaging over the latent variables we obtain the marginal 

distribution for the observed variables:1

(2)

Equation (2) expresses [yi|xi] as a finite mixture of k component densities [yi|xi,cik = 1], 

integrated over ηi and weighted by the mixing probabilities P(cik = 1|xi). For some 

specifications the integration can completed in closed form (e.g., when the endogenous 

variables are continuous and both [yi|xi, ηi, ci] and [ηi|xi, ci] are normal), whereas for other 

specifications numerical approximation methods are required (e.g., when [yi|xi, ηi, ci] is a 

multivariate Bernoulli distribution for binary endogenous variables and [ηi|xi, ci] is normal).

The mixing probabilities (which sum to one within person) depend on the covariates through 

a multinomial regression specification, given as

(3)

where α0k is an intercept for class k and γk is a q × 1 vector of coefficients conveying the 

influence of the covariates on the class probabilities. Constraints must be imposed on the 

values of the parameters in Equation (3) to identify the model; the most common options are 

to constrain α0k and γk to zero within a reference class, or to estimate an intercept-free 

1Note that here and throughout the text the term marginal is applied when marginalizing with respect to the latent variables, though 
the expression remains conditional on the observed exogenous covariates.
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model in which all values of α0k are set to zero (see Huang and Bandeen-Roche, 2004 for a 

review).

In fitting a mixture model, the primary goal is to estimate and make inferences regarding the 

model parameters or functions of these parameters. These parameters consist of two types, 

those that define the within-class distributions of the endogenous observed variables and 

latent factors and those that capture between-class prediction within the multinomial 

regression. For instance, in a GMM application, one might estimate parameters that define 

the class-specific growth trajectories of the repeated measures as well as parameters that 

capture the effects of predictors on class membership. Typically, these parameters are 

estimated via maximum likelihood; however, Bayesian methods of estimation are sometimes 

also implemented (Depaoli, 2013; Tueller and Lubke, 2010).

 Individual Inference in Mixture Models

Pursuant to the goals of person-centered analysis, it can be particularly interesting to plot the 

model-predicted values of the endogenous variables for different individuals (either real or 

hypothetical). Here, we shall define and distinguish between marginal and conditional 

predicted values. Both have a number of different but complementary uses; each will be 

explored in turn.

 Marginal Prediction

Marginal predicted values summarize what one can predict for the observed endogenous 

variables based solely upon knowledge of the values of the observed exogenous variables. 

Since both latent class membership and the values of the latent factors are unknown, 

marginal predicted values average over these latent variables to arrive at an overall 

prediction for the endogenous variables. That is, the individual values of the latent variables 

do not inform the prediction.

Given the marginal mixture distribution in Equation (2), the expected value of yi given xi 

may be computed as

(4)

where E(yi|xi, cik = 1) is the expected value of the within-class marginal distribution [yi|xi, 

cik = 1]. Designating the sample estimate for P(cik = 1|xi) as  and the sample esitmate for 

E(yi|xi, cik = 1) as , the marginal predicted value may then be defined as

(5)
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Equation (5) shows the marginal predicted values to be a simple summation of the within-

class marginal predicted values, , weighted by the mixing probabilities given the 

covariates, .

One can compute marginal predicted values for each individual in a sample, for a subset of 

individuals, or for specific configurations of values for the exogenous variables that might be 

of interest (irrespective of whether they are observed within the sample, i.e., hypothetical 

individuals). Although they may be put to a variety of purposes, perhaps the most likely 

potential use of marginal predicted values is to summarize the predictive relationships 

implied by the model. For instance, when reporting multilevel and latent growth curve 

models, it is common to generate and plot predicted trajectories to show how change over 

time in the repeated measures depends on the values of the predictors (Curran, Bauer & 

Willoughby, 2004; Preacher, Curran & Bauer, 2006). In this context, usually the values of 

one or two exogenous predictors are varied while other exogenous predictors are held 

constant at their means, permitting the isolation of specific effects.

For instance, in one application of GMM, deRoon-Cassini and colleagues (2010) examine 

the development of PTSD symptoms following traumatic injury over four time points in the 

six months after initial hospitalization, finding four groups: low-symptom (59%), recovering 

(13%), delayed (6%), and chronic (22%). Class membership was regressed on self-efficacy 

at time 1, anger at time 1, educational level, and whether the traumatic injury was caused by 

human intention (e.g., an attack). Among other effects, membership to the chronic PTSD 

symptom class was strongly predicted by human intention, OR = 7.67, 95% CI = (2.87–

20.49). The authors, in post-hoc analyses, might be interested in probing this difference by 

calculating and plotting marginal predicted trajectories for subjects whose injuries were 

caused by human intention, versus those whose injuries were not, holding all other 

covariates at their sample averages. Additionally, one could plot marginal predicted 

trajectories according to multiple covariates (e.g., plotting trajectories according to human 

intention and self-efficacy); even in the presence of only main effects, it can be very 

informative to visualize the joint nonlinear effects of multiple predictors. We will 

demonstrate this strategy shortly.

 Conditional Prediction

Marginal predicted values incorporate information about only the exogenous variables when 

generating predictions, averaging over the unknown latent variables. As we will show, 

however, there are some instances in which we may wish to augment our predictions by 

considering the most likely values of the latent variables for each individual, which requires 

incorporating not only covariates xi but also latent class indicators yi. Such inferences can be 

made through the computation of conditional predicted values, which are based on the 

expectation of [yi|xi, ηi, ci] from Equation (1). If the latent variables were observed, this 

expectation could be computed as

(6)
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This expression differs in two important ways from Equation (4). First, we no longer average 

over latent classes according to the mixing probabilities. Instead, the expected value depends 

only on the class to which the individual actually belongs (as cik will equal one only when 

an individual is a member of class k and will be zero otherwise). Second, we no longer 

average over latent factors. Within each component the conditional expected value, E(yi|xi, 

ηi, cik = 1), is computed as the expectation of [yi|xi, ηi, cik = 1], utilizing knowledge of the 

specific values of the latent factors. That is, the conditional expected value in Equation (6) 

incorporates information about the latent factors whereas the marginal expected value within 

Equation (4) does not.

To compute conditional predicted values for a given individual requires that we obtain 

predictions of the latent variable values for the person. There are many potential ways to 

compute latent variable scores, both for latent factors (Tucker, 1971; Grice, 2001; Skrondal 

and Laake, 2001) and latent classes (Bolck, Croon, and Hagenaars, 2004; Lanza, Tan, and 

Bray, 2013; Vermunt, 2010). We do not delve into this extensive literature here. As is 

common, for the present purposes, we shall use empirical Bayes’ predictors for the latent 

variables, which take into account both the observed values of yi as well as xi. While it may 

be somewhat counterintuitive to use yi to predict ci and ηi and then use the estimated values 

of ci and ηi to predict yi, these sorts of predictions (referred to sometimes as “post-dictions,” 

e.g., Skrondal and Rabe-Hesketh, 2009, p. 674) are quite commonly used in multilevel 

models and IRT to assess model-based predicted values of yi against observed values; these 

uses will be explored shortly.

For latent class membership, we shall calculate posterior probabilities of class membership. 

The posterior probabilities are given by Bayes’ Rule as

(7)

When computed using the model estimates in place of the population parameter values, the 

posterior probabilities constitute emprical Bayes’ predictors and will be denoted .

Prediction of the factor scores is similarly based upon their posterior distribution. The 

posterior distribution of ηi given yi, xi, and class membership is given by Bayes’ Rule as

(8)

Taking the expectation of [ηi | yi, xi, cik = 1] yields the expected values of the factors for 

person i assuming he or she is a member of class k. Since class membership is unknown, 

there are K possible expected values for each individual, one for each latent class to which 

the individual may be a member. As before, in computing the class-specific expected values, 

the model estimates are substituted for the population parameters, making these emprical 

Bayes’ predictors of the factor scores. Factor scores computed in this manner are commonly 
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referred to as expected a posteriori scores (EAPs; Bock and Aitkin, 1981). We shall denote 

the EAPs as .

Using these empirical Bayes’ predictors for the latent variables, the sample analog to 

Equation (6) for computing conditional predicted values  is then

(9)

where  is the vector of within-class conditional predicted values obtained based on the 

predicted factor scores, .

Similar to marginal predicted values, one may compute conditional predicted values based 

upon any configuration of values for xi and yi, whether these are observed within the sample 

or simply represent a subset of possible configurations of interest. There are also many 

potential uses of conditional predicted values. First, they may be used to judge the 

correspondence between the predicted and observed values for a specific individual, taking 

into account the latent class structure of the model (rather than averaging over classes). In 

this way the conditional predicted values may be used to judge the “person fit” of the model, 

a strategy which has been used extensively in IRT studies (Reise, 2000). In this context, the 

strength of the assocation between the individual’s estimated ability and their observed score 

is then used as a measure of person-fit, with weak associations indicating potentially 

aberrant responding (Woods, Oltmanns, and Turkheimer, 2008; Conijn, Emons, de Jong, and 

Sijtsma, 2015). Similarly, in mixture models, it may be of interest to gauge concordance 

between predicted and observed values for a random subset of individuals or for selected 

individuals based on their most likely class. For instance, in the PTSD example discussed 

earlier (deRoon-Cassini et al., 2010), one could examine whether individuals in some classes 

more closely follow their predicted trajectories than in other classes, or identify specific 

individuals, regardless of class, whose trajectories are poorly predicted by the model.

Second, conditional predicted values may be used to visualize the range of individual 

differences implied by a model. For instance, in growth modeling applications, plotting 

conditional predicted values for the repreated measures provides a visual depiction of the 

full range of individual differences in change over time (rather than just those differences 

that may be ascribed to the exogenous predictors; Raudenbush, 2001). Finally, one may use 

incomplete information on the endogenous variables when computing the posterior predicted 

values to generate predictions about the remaining endogenous variables. Dean, Cole, and 

Bauer (2015) used this strategy in a survival mixture model of substance abuse initiation in 

adolescence; given substance use data at age 13, they predicted the pattern of substance use 

initiation throughout adolescence and young adulthood.

In sum, when fitting a mixture model, we can make individual predictions using either 

marginal or conditional predicted values. Marginal predicted values take into account only 

the values of the exogenous variables, whereas conditional predicted values also take into 
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account the predicted values of the latent variables for the individual. Marginal predicted 

values are well suited to visualizing relationships between exogneous and endogneous 

variables, averaging over the latent variables. Conditional predicted values are well suited 

for making individual predictions that are informed by the latent variables, and can be used 

to evaluate person fit, to visualize individual differences, or for forecasting purposes (among 

other possibilities). Regardless of the type or use of predicted values, however, an important 

consideration is that they are computed using sample estimates for the model parameters. 

Thus, prior to illustrating the use of these predicted values we shall consider how best to 

represent their uncertainty due to sampling error.

 Quantifying Uncertainty around Individual Predictions

There are a number of ways to consider uncertainty around the model-implied predicted 

values given by Equations (5) and (9). One possibility is to alter the prediction intervals 

developed by Skrondal and Rabe-Hesketh (2009) for random effects models for use with 

mixture models. Another option is to use parametric bootstrap methods (Efron and 

Tibshirani, 1993) to generate a number of hypothetical sets of predicted values from the 

model. This latter approach, which we pursue here, quantifies uncertainty in the individual 

predicted values by empirically approximating the sampling distribution of the model 

parameters upon which the predicted values are based. We first discuss the computation of 

confidence intervals (CIs) for the point estimates of the predicted values  and  and 

then consider the computation of prediction intervals (PIs) for the obsevations yi based upon 

these predicted values.

 Confidence Intervals

Let us designate the full vector of model parameters as θ. Under certain assumptions, the 

maximum likelihood estimates of the model parameters, , are asymptotically normally 

distributed around the true parameter values θ, as follows:

(10)

Here,  represents the variance-covarince matrix of the estimates .

The parametric bootstrap strategy, described in detail by Pek, Losardo, and Bauer (2011), 

consists of making some number B of bootstrap draws (e.g., 5000) from the estimated 

sampling distribution of the parameter estimates. More specifically, the bootstrap 

distribution substitutes the maximum likelihood estimates  and the estimated covariance 

matrix of the estimates  for their population counterparts, as follows:

(11)

Draws are then taken from this distribution to construct confidence intervals for  or .
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With each draw from the bootstrap distribution, a new set of marginal or conditional 

predicted values is calculated based upon  (where b = 1, 2,…, B). These values, which we 

shall designate  and , respectively, are computed as shown in Equations (5) and (9), 

with the exception that the bootstrapped parameter estimates  are used in the 

computations (rather than original model estimates, ), including when obtaining latent 

variable scores for conditional predicted values. Using this procedure we can obtain an 

empirical distribution of marginal and/or conditional predicted values that reflects the 

uncertainty of the parameter estimates upon which they are based. It may be particularly 

informative to construct plots of the bootstrapped values. Specifically, to visualize 

uncertainty due to sampling error, we may plot either the boostrapped marginal or 

conditional predicted values  or , respectively, around the original (mean) values 

 or .

The set of B bootstrapped values obtained for any given individual may thus be used to 

quantify and/or visualize sampling error about the individual predicted values. For instance, 

for any given endogenous variable, the 2.5th and 97.5th percentiles of the empirical 

distribution of predicted values demarcate a 95% bootstrapped confidence interval. For 

marginal predicted values, the procedure for generating bootstrapped confidence intervals 

may be summarized as follows:

1. Simulate B draws from . Denote each vector of parameters as .

2.
For each set of parameter values, obtain the class-specific expected value 

for each class. Calculate prior probabilities of class membership 

for case i using Equation (3), and aggregate across classes using Equation (5) 

in order to obtain .

3.
Choose the 97.5th and 2.5th values of  from the B draws; these demarcate 

the bounds of a 95% CI.

For conditional predicted values, the procedure is varied to incorporate the latent variable 

scores:

1. Simulate B draws from . Denote each vector of parameters as .

2. For each set of parameter values, calculate subject i’s conditional expected 

value  (or EAP) for each class by taking the expectation of the distribution 

given by Equation (8); use this value to obtain class-specific conditional 

expected values . Calculate posterior probabilities of class membership 

 for case i using Equation (7), and aggregate across classes using 

Equation (9) in order to obtain .
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3.
Choose the 97.5th and 2.5th values of  from the B draws; these demarcate 

the bounds of a 95% CI.

 Prediction Intervals

The above procedure describes confidence intervals for the predicted values  and . 

These intervals indicate sampling error in the estimated expected value of yi over repeated 

sampling, either marginalizing over the latent variables (with ) or conditioning on their 

values (with ). In some instances, however, we may be interested in conveying 

uncertainty in the potential observed values of yi (or any of its individual elements ) that 

correspond to these predicted values; that is, given the predictors  and perhaps also 

including knowledge of  and . Prediction intervals indicate the range of values of yi that 

might be observed for a real or hypothetical individual within a specified probability (e.g., 

95% of the time; Skrondal and Rabe-Hesketh, 2009; Kutner, Nachtsheim, and Neter, 2004, 

pp. 56–60).

Whereas a CI for  or  takes into account variability in the parameter estimates , a PI 

also must take into account the variance of the random variables in the model, for which the 

realized values will vary across observations. When computing a marginal prediction 

interval, the random variables include , , and yi ; whereas when computing a conditional 

prediction interval the latent variable values are treated as known and the only random 

variables are contained within yi. The two types of prediction intervals have different uses. 

For instance, marginal prediction intervals are useful for predicting new observations for 

new individuals whereas conditional prediction intervals are useful for predicting new 

observations for individuals for whom some data has already been collected (i.e., individuals 

in the sample).

In order to make prediction intervals for a new observation of yi, we augment the resampling 

procedure outlined above by taking draws from the conditional distributions of the random 

variables. This strategy, borrowed from the multilevel modeling literature (Kovacevic, 

Huang, and You, 2006; van der Leeden, Meijer, and Busing, 2008, pp. 401–419), involves 

successively drawing from each distribution as follows. For marginal prediction intervals:

1. Simulate B draws from . Denote each vector of parameters as .

2. For each set of parameter values:

a. Draw class membership: Using the bootstrapped parameter values, 

compute the prior probabilities of class membership using Equation 

(3); take one random draw of class membership  from the 

multinomial distribution with probabilities .

b. Draw  : Given membership to class k obtained from step (a), 

take one random draw from the class-specific marginal distribution 

of continuous latent variables for subject i’s assigned class, 

.
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c. Draw from the predicted distribution of y : Given the class 

membership assigned in step (a) and the value of  obtained 

from step (b), take one random draw, denoted , from the 

implied distribution of yi values for the individual, 

.

3.
Choose the 97.5th and 2.5th values of  from the B draws; these demarcate 

the bounds of a 95% PI around .

For conditional prediction intervals:

1. Simulate B draws from . Denote each vector of parameters as .

2. For each set of parameter values:

a. Draw class membership: For each class, compute the posterior 

probability of class membership  using Equation (7); take one 

random draw of class membership  from the multinomial 

distribution with probabilities .

b. Draw  : Given membership to class k obtained from step (a), 

take one random draw from the class-specific posterior distribution 

of continuous latent variables for subject i’s assigned class, 

.

c. Draw from the predicted distribution of y: Given the class 

membership assigned in step (a) and the value of  obtained 

from step (b), take one random draw, denoted , from the 

implied distribution of yi values for the individual, 

.

3.
Choose the 97.5th and 2.5th values of  from the B draws; these demarcate 

the bounds of a 95% PI around .

Importantly, prediction intervals and confidence intervals are both centered around the same 

expected values, i.e.,  or , but will differ in width to afford different inferences, with 

PIs being wider than CIs to encompass the additional range of variability in potential 

realized values associated with any given expected value.

In summary, by making use of resampling procedures, we may compute confidence intervals 

around predicted values of yi to convey the uncertainty of the estimates; further, we may 

compute prediction intervals by adding another resampling step which accounts for variation 

in the realized values associated with any given predicted value.
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 Assumptions of the resampling approach

The parametric bootstrap offers a relatively computationally inexpensive way of obtaining 

intervals when analytical derivations require approximations or are otherwise intractable, as 

would often be the case for the models considered here. A fully non-parametric solution, 

which would involve re-estimation of the model on B re-drawn samples from the raw data, 

would be considerably more expensive computationally and potentially infeasible (Yung and 

Bentler, 1996; Davison and Hinkley, 1997, pp. 15–22).

It is important to recognize, however, that the parametric bootstrap approach invokes a 

number of assumptions that must be met to yield valid coverage rates. Above all, it assumes 

that the parametric specification of  in Equation (10) is correct – i.e., that  is a consistent 

estimator of θ, that  is asymptotically normally distributed, and that the sample size is 

sufficiently large to approach asymptotics. Whether these properties hold will depend on the 

estimator of θ, with each method of estimation invoking its own set of assumptions. For 

normal theory maximum likelihood, Satorra (1990) divides these into structural 

assumptions, such as the inclusion of all relevant variables and correct specification of the 

relationships between them; and distributional assumptions, including that errors are 

normally distributed and homogenous across all levels of predictors and outcomes (i.e., 

homoscedasticity), and observations are independent and indentically distributed. Also 

included in this latter category is that the distributions of the latent and observed variables 

are specified correctly (e.g., normal, binomial, Poisson). Within mixture models, both 

structural and distributional misspecification can compromise class enumeration procedures 

and lead to inconsistent within-class estimates even when the correct number of classes is 

selected (Bauer and Curran, 2003; 2004; Hoeksma and Kelderman, 2006; Morin, Maiano, 

Nagengast, Mars, Morizot, and Janosz, 2011; Van Horn et al., 2012).

The parametric bootstrap also requires that  is a consistent estimator of  in 

Equation (11). Under normal-theory ML,  is given by the inverse of the expected Fisher 

information matrix (Eliason, 1993);  may be estimated as the second derivative of the 

log-likelihood evaluated at the MLE (i.e., the observed Fisher information matrix; Efron and 

Hinkley, 1978). Because there is typically no closed-form analytic solution for  when 

the expectation-maximization (EM; Dempster, Laird, and Rubin, 1977) algorithm is used, 

 is evaluated numerically by most statistical packages using the method of Louis 

(1982); this is the method used here. The naïve estimate of will be consistent under the 

same structural and distributional assumptions described by Satorra (1990). Note, however, 

that there are alternative ways to compute  with varying degrees of robustness to model 

misspecification (Arminger and Schoenberg, 1989; Browne and Arminger, 1995), non-

normality (when distributions are specified as normal; Satorra and Bentler, 1994; Yuan and 

Bentler, 1997), and heteroscedasticity (Huber, 1967; White, 1982).

Thus, if the assumptions of the normal-theory ML estimator are met then parametric 

bootstrap estimates of variability should also show good asymptotic performance and 

nominal coverage rates. By implication, considerable attention should be paid to the 
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specification of the model when implementing parametric boostrapping (Efron and 

Tibshirani, 1993; Preacher and Selig, 2012). Without intending to discount the importance of 

avoiding specification errors, it is also worth recognizing that research on indirect 

applications of mixture models have documented good performance for estimates and 

inferences made by aggregating information over classes, despite the fact that the fitted 

model is not literally correct in the population (Bauer, Baldasaro and Gottfredson, 2012; 

Nagin, 2005, p. 48–54; Pek, Losardo, and Bauer, 2011; Sterba and Bauer, 2014). Thus, 

although additional research is needed on this point, the predicted values  and  and 

associated CIs and PIs may be relatively robust to the violation of structural and/or 

distributional assumptions, provided the model is specified in a way that the estimated 

parameters are still able to capture the primary features of the data generating process.

We now turn to two empirical demonstrations of the utility of individual predictions in 

mixture models.

 Empirical Example 1: Patterns of Substance Use Initiation

For our first example, we revisit an application of a multivariate survival mixture model to 

trajectories of substance use initiation in adolescence. The goal of this analysis was to 

characterize patterns of onset of substance use across multiple categories of licit and illicit 

drugs (e.g., alcohol, tobacco, marijuana, cocaine). Here we shall build upon this analysis by 

focusing specifically on predicting the onset of harder drug use based on the time of 

initiation of alcohol and marijuana use.

 Sample and Measures

Data come from the National Survey on Drug Use and Health (NSDUH), and consist of 

substance use initiation questionnaires taken from respondents on a yearly basis between 

ages 10 to 30. Subjects (N = 55,772 ; 52% female) were asked whether and at what age they 

initiated use of the following substances: alcohol, tobacco, marijuana, non-medical use of 

prescription drugs (NMUP), hallucinogens, cocaine, inhalants, stimulants, or heroin. The 

sample was ethnically diverse, with 62% of respondents categorized as Caucasian, 13% as 

African American, 16% Hispanic, and 9% as other. Sex and ethnicity were included in the 

model as covariates. A more detailed description of the data and sample are available in 

Dean, Cole, and Bauer (2015).

 Model Fitting

The model applied to the data is the multiple event process survival mixture (MEPSUM) 

model introduced by Dean, Bauer, and Shanahan (2014). Briefly, the MEPSUM model 

characterizes the relative timing of multiple events. For each of the nine drug classes, a 

binary indicator variable was created at each age which was scored zero if the event had not 

yet occurred, one if the event occurred at that specific age, and missing otherwise (i.e., if the 

event had already occurred or the individual was not observed at that age, indicating 

censoring). The vector of indicator variables constitutes the endogenous variables for the 

model, or yi.
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The MEPSUM model conforms to Equation (2) with [yi | xi, ηi,cik = 1] defined by assuming 

that the indicator variables within yi are conditionally independent and Bernoulli distributed. 

The probability parameters, which in this case correspond to hazard rates, vary across 

classes and will be designated hik. In the current application, we implemented the logistic 

link function for the hazards and modeled change in the logit for each substance as a 

quadratic function of age. Similar to a multivariate growth model, this entailed the definition 

of a latent intercept, linear change, and quadratic change factor for each substance. Thus, the 

model was defined as

(12)

where νik is the vector of logits corresponding to hik. The factor loading matrix Λ was 

defined to be equal across classes (hence the absence of a k subscript) and to consist of nine 

blocks reflecting quadratic change for each susbtance. Specifically, using decade as the 

metric of time, the block of factor loadings corresponding to any given substance s was 

specified as

(13)

Each block thus defined three factors, for a total of 27 factors across the nine substances. 

Contrasting with a standard multivariate growth analysis, in the MEPSUM model the 

variances and covariances of the factors are all set to zero, i.e., Ψk = 0 ; only the factor 

means αk are estimated (hence the within-class distribution for the continuous latent 

variables drops out of Equation (2) and the integral resolves). Class-membership was 

regressed on coding variables representing sex and ethnicity using the multinomial 

specification given in Equation (3). Finally, for conveying results, the model-implied hazards 

are cumulated to produce lifetime distribution functions (see Dean, Bauer & Shanahan, 

2014, for computational details).

Full details of model fitting and estimates are available in the original report (Dean, Cole, 

and Bauer, 2015). In brief, fit indices favored a six-class solution, shown in Figure 1. A 

plurality of subjects fell into the “abstainer” class (35.7%), characterized by a low risk of 

any substance use over time. Users of soft drugs (alcohol, tobacco, and marijuana) fell into 

three remaining classes, characterized by late onset of soft drug use (26.7%), early onset of 

soft drug use (12.1%), and a progressive, steady hazard of initiating soft drug use (8.2%). 

Users of hard drugs (predominantly cocaine, hallucinogens, and NMUP) fell into the 

remaining two classes: late hard drug onset (10.9%), and early hard drug onset (6.3%).
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 Individual Predictions

For this model, we focus on conditional predicted values; however, for completeness we also 

provide the formula for marginal predicted values. Specifically, for this model the marginal 

predicted values in Equation (5) correspond to

(14)

where may be interpreted as the predicted hazard rate given the covariate scores, 

averaging over latent classes. Here,  is the model-implied marginal hazard rate within 

class k, calculated by first computing the predicted logit as  and then inverting the 

logistic link function to obtain the predicted probability (expected value) corresponding to 

each element in .

Similarly, the conditional predicted values in Equation (9) are computed as

(15)

and may be interpreted as the predicted hazard for person i given her values for the 

covariates as well as her posterior predicted class membership. Here,  is the predicted 

hazard conditional on the individual’s latent factor scores and is calculated by computing the 

predicted logit within class k as  and applying the inverse link function. In this 

case, because the variances of the latent factors are null, the predicted factor scores collapse 

to the class means, and . Thus, since in this model there is no within-class 

variation in the factor scores,  and the only difference between the marginal 

predicted values in Equation (14) and the conditional predicted values in Equation (15) is 

whether the within-class hazards are weighted by the predicted or posterior class 

probabilities. Weighting by the predicted probabilities averages over classes, whereas 

weighting by the posterior probabilities conditions on the individual’s class membership.

In the current application we used conditional predicted values to evaluate the likelihood of 

engaging in hard drug use given early involvement in softer drug use. A number of studies 

have linked the early use of marijuana (Robins, Darvish, and Murphy, 1970; Kandel, 2002) 

to later hard drug use. Given growing concerns about the abuse of prescription medications 

(Boyd, McCabe, Cranford, and Young, 2006; Compton and Volkow, 2006), we centered our 
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examination on NMUP onset and how it may vary depending on the timing of onset of 

marijuana use, holding alcohol use constant. Conditional predicted values are best suited to 

evaluating this question because the observed timing of marijuana use can be used to provide 

information on class membership. We computed conditional predicted values for NMUP for 

two hypothetical individuals: (a) a Caucasian male subject with alcohol use onset at age 12 

and marijuana use onset at age 13; and (b) a Caucasian male subject with alcohol use onset 

at age 12 and marijuana use onset at age 16. In computing the posterior probabilities of class 

membership from Equation (7) we coded all of the remaining indicator variables in yi as 

missing (unobserved). For ease of interpretation, we used the predicted hazards for these 

individuals to compute lifetime distribution functions.

The predicted lifetime distribution functions are shown as the solid bold lines in Figure 2. To 

convey the sampling error in these predicted values, we also generated and plotted B = 2500 

bootstrapped estimates of the predicted values. The plotted intervals are point-wise 

confidence intervals as opposed to prediction intervals; thus, they convey uncertainty in the 

expected survival function. Examination of these functions indicates that for both subjects 

the lifetime probability of NMUP use increases rapidly over adolescence and then begins to 

asymptote in the early 20’s. Earlier initiation of marijuana use, however, results in an earlier, 

more rapid, and more pronounced increase in the likelihood of NMUP use. By age 20, an 

early-onset marijuana user has a roughly 70% probability of having engaged in NMUP, 

compared to approximately 40% for the late-onset marijuana user.

In sum, this application illustrated how conditional predicted values can be used for 

forecasting purposes. A subset of the endogenous variables (referencing marijuana and 

alcohol use) was used to infer posterior probabilities of class membership, which in turn 

were used to generate conditional predicted values for other endogenous variables at later 

points in time (and for other substances). In this manner we were able to enhance our 

understanding of the interdependence of substance use onset times implied by the MEPSUM 

model, in particular, the relation between early marijuana use and NMUP use.

 Empirical Example 2: The Development of Depressive Symptomatology

For our second example, we demonstrate how to plot predicted trajectories from a growth 

mixture model, with a specific focus on changes in depressive symptoms during the 

transition from adolescence to adulthood.

 Sample and Measures

Data were drawn from the 1997 National Longitudinal Survey of Youth (NLSY97). For the 

purposes of this demonstration, we included data for individuals who were 14 years old in 

1997 from assessments made in 2000, 2002, 2004, 2006, 2008, and 2010 (i.e., during the 

transition to adulthood), and for whom no more than half of the selected repeated measures 

were missing (N = 1460). The sample was 51% male, and relatively ethnically diverse, with 

27%, 19%, 1%, and 53% of respondents identifying as Black, Hispanic/Latino, mixed race, 

and neither Black nor Hispanic/Latino, respectively.
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The main outcome of interest, depression, was measured as the sum of five 4-point items 

from the Center for Epidemiological Studies Depression scale (CES-D). Potential values 

range from 5 to 20, with higher values indicating higher levels of depression. Predictors 

include race (coded 0 for non-Black/non-Hispanic/Latino, 1 otherwise), gender (coded 1 for 

males, 0 for females), parent-rated physical health (coded from 1–5, with lower scores 

representing better overall health) and college attendance (coded as 1 if the subject attended 

college by age 23, 0 otherwise). The latter predictor was included based on research 

indicating that clinical patterns among college students may differ from their non-college-

attending counterparts (Gfroerer, Greenblatt, and Wright, 1997; Blanco et al., 2008).

 Model Fitting

The GMM fit to the data allowed for maximum flexibility in the shape of change over time 

observed within classes and was initially described in detail by Ram and Grimm (2009). In 

brief, whereas a typical GMM might constrain growth within each class to follow a linear or 

lower-order polynomial function, here we estimate the functional form of growth freely 

within each class via a freed-loading latent basis model (Meredith and Tisak, 1990).

With reference to Equation (2), in the current application we assumed that, conditional on 

the latent growth factors, the repeated measures are normally distributed within classes; that 

is [yi | xi, ηi,cik = 1] references a normal distribution with conditional mean vector μik and 

covariance matrix Σk. These conditional moments are structured according to a latent growth 

model such that

(16)

where J is the number of repeated measures, σjk
2 is the residual variance of each repeated 

measure at time j in class k, and DIAG() is an operator which places the enclosed elements 

in a diagonal matrix, implying that the repeated measures are conditionally independent.

Each class-specific matrix of factor loadings, Λk, was minimally constrained to define a 

latent intercept and shape factor, as follows:

(17)

Similarly, we assumed the latent growth factors to be normally distributed within classes 

such that [ηi | xi,cik = 1] references a normal distribution with mean vector αk and variance-

covaraince matrix Ψk. Each of the elements of the mean vector αk was freely estimated; 

however, to decrease model complexity and facilitate model convergence, only the variance 

of the intercept was estimated and it was constrained to equality across classes; thus
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(18)

Since both [yi | xi, ηi,cik = 1] and [ηi | xi,cik = 1] are normal, the within-class marginal 

distribution of the repeated measures [yi | xi,cik = 1] in Equation (2) resolves to a normal 

probability distribution with an implied mean vector of Λkαk and covariance matrix of 

. Last, covariate effects on class membership were modeled via the 

multinomial regression specification given in Equation (3).

As in any application, one could consider alternative model specifications to the one used 

here. For instance, if the within-class distributions of depression are thought to be skewed, 

then one might specify [yi|xi,ηi,cik = 1] as a skew-normal distribution (Asparouhov and 

Muthén, 2016). Likewise, one could consider alternative specifications of the within-class 

covariance matrix for the latent factors. Without a strong basis for advocating for one 

specification over another, we sought here to implement the simplest model specification 

that we believed would adequately capture individual differences in change over time.

Models with successively larger numbers of classes were tested, and a 3-class model was 

chosen on the basis of the Bayesian Information Criterion (BIC; Schwarz, 1978), which 

balances fit and parsimony, (BIC = 34343.96, 34334.82, and 34349.38 for models with 2, 3, 

and 4 classes, respectively). In order to determine whether free estimation of the functional 

form of growth was necessary, we also examined the fit of a 3-class linear GMM; we found 

the freed-loading GMM to fit significantly better than the corresponding linear model, 

χ2(12) = 97.30, p < .001. The residual variance of the indicators σjk
2 was also allowed to 

differ over classes k and time points j; this parameterization showed significantly better fit 

than a model in which residual variance was constrained to be equal across time, χ2(15) 

=85.55, p < .001, or across classes, χ2(12) = 786.33, p < .001.

Figure 3 shows the predicted trajectories for these three classes. A plurality of cases (40.2%) 

falls into Class 1, which is characterized by generally low levels of depressive symptoms 

which decrease very slightly over time. The other two classes are characterized by either a 

pattern of symptoms which start out relatively low but increase linearly (Class 2; 23.9%), or 

high overall levels of symptoms which remain relatively stable and decrease very slightly 

(Class 3; 35.9%). Of the covariate effects examined, gender and college attendance were the 

only significant predictors of class membership. Membership to Class 3, which was 

characterized by high overall levels of depressive symptoms, was positively associated with 

being female and negatively associated with college attendance. Specifically, women were 

significantly more likely to be in Class 3 than Class 1, γ = 0.362, z = 2.156, p = .031 or 

Class 2, γ = 0.869, z = 3.541, p < .001. College non-attendees were significantly more likely 

to be in Class 3 than Class 1, γ = 1.018, z = 5.661, p < .001, or Class 2, γ = 0. 805, z = 2.970, 

p = .003. To better understand the results of the model we will now compute predicted 

values. Marginal predicted values will be used to visualize the effects of the covariates, 

whereas conditional predicted values will be used to evaluate the person fit of the model.
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 Individual Predictions

The analysis at the whole-sample level suggested that both gender and college attendance 

are linked to depressive symptoms. To better understand this relationship, we computed 

marginal predicted values for four hypothetical individuals, varying the values of gender and 

college attendance, but holding all non-focal covariates at their sample averages. For this 

model, the marginal predicted values in Equation (5) may be expressed as

(19)

Thus, based on the covariate values, we first obtained the predicted probabilities of class 

membership .. Then, weighting the model-implied estimated class 

mean trajectories  by these probabilities, we obtained the marginal predicted 

trajectories shown in the top panel of Figure 4. These predicted trajectories help to clarify 

the nature of the predictor effects, showing how, over this span of development, depressive 

symptoms are more severe in women, and in those who did not attend college. The shape of 

change is consistent, generally declining with age with the exception of episodic increases at 

19 and 25 years of age. We generated marginal 95% confidence intervals using B=2500 for 

these trajectories. As shown in the top panel of Figure 4, the set of plausible values overlaps 

almost completely for male and female participants; however, as shown in the bottom panel, 

the trajectories diverge somewhat more between college attendees and non-attendees. This is 

an informative finding, as it contextualizes the results from the covariate logistic regression: 

though both college attendance and gender had significant effects on membership to a more 

highly symptomatic class, the overall predicted difference between college attendees and 

non-attendees in the development of depressive symptoms is more robust than that between 

male and female participants.

Marginal trajectories predict the course of depressive symptoms based solely on the 

covariates of interest, and do not incorporate information about the individual values for the 

latent variables. Since the latent variables are unobserved, marginal predicted values truly 

represent what one would expect based only on the known information. However, for some 

purposes it is useful to incorporate inferred information about the latent variables when 

computing the predicted values. For the fitted GMM, the conditional predicted values in 

Equation (9) are obtained as

(20)
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Here we display the “person fit” of the model for two cases from each class. For each class 

k, two cases two cases were selected at random among those with . Conditional 

predicted values were plotted against observed values, shown in Figure 5. Additionally, 

given the bootstrapping procedure described above, prediction intervals were generated 

using B = 2500 predicted values in order to approximate the uncertainty of the prediction. 

Across the six individuals, a few subjects (e.g., Subjects 321, 379, and 372) have at least one 

data point which lies far from the line of prediction; however, all individual data points are 

enclosed within the corresponding prediction intervals.

Visual examination of Figure 5 suggests varying levels of closeness between observed data 

points and the model-predicted values. The observed scores of some individuals appear to 

increase more or less rapidly than predicted, or change more erratically. Nevertheless, the 

observed values are within range that the model predicts should be observed, suggesting that 

the model provides reasonably good fit for these individuals. For other individuals, 

examination of plots such as these might suggest poor person fit, prompting the analyst to 

consider refinements to the model (e.g., the addition or subtraction of a trajectory class). The 

predicted and observed values for four such cases are shown in Figure 6; among cases with 

complete data, these cases are the four with the highest mean squared distance between the 

observed and predicted data points. Visual examination suggests that the depressive 

symptoms of some individuals (particularly Subjects 788 and 880) are characterized by a 

more systematic trend than the model is capturing.

In sum, marginal predicted values helped us to illustrate how we would expect individuals 

differing in their covariate values to differ in their trajectories of depression, averaging over 

the distributions of the unknown latent variables. In contrast, conditional predicted values 

allowed us to incorporate information about the latent variables to examine the predictions 

and fit of the model at the individual level.

 Discussion

The current report explored a method for using mixture model results to make inferences 

about individuals, whether hypothetical or observed. We described and illustrated the use of 

both marginal and conditional predicted values. Additionally, a method for quantifying 

uncertainty around these predicted values was introduced. In the first empirical example, we 

explored the link between early marijuana use and subsequent non-medical use of 

prescription medications. In the second example, we used predicted values to examine the 

roles of gender and college attendance as potential risk factors for the maintenance of 

depressive symptoms in early adulthood, and we examined how well the model fit the 

observed data at the individual level.

Making individual predictions based on mixture models represents a break from the more 

common practice of using these models for the sole purpose of making inferences about 

latent sub-populations or the population as a whole. Computing and using predicted values 

for individuals is, however, a natural extension of methods used in the multilevel modeling 

(Afshartous and De Leeuw, 2005; Skrondal and Rabe-Hesketh, 2009). latent curve modeling 

(Preacher, Curran, and Bauer, 2006), and item response theory (Reise, 2000) frameworks. 
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The current work builds upon these methods by showing how the results obtained from any 

mixture model – longitudinal or cross-sectional, with discrete indicators or continuous – can 

be used to obtain marginal and conditional individual-level predicted values. We have also 

discussed a method for quantifying the uncertainty around predicted values which is tailored 

to the unique challenges presented by mixture models. In particular, the algorithms we 

present for forming confidence intervals and prediction intervals explicitly model 

uncertainty in class membership, which is critical in making inferences from mixture model 

results (Wang, Brown, and Bandeen-Roche, 2005; Vermunt, 2010; Asparouhov and Muthén, 

2016). Our use of parametric bootstrapping also avoids the potential intractability of 

analytical solutions for some models, for instance as might arise when specifying different 

distribution functions across classes (Mallick and Gelfand, 1994; Fang, Li, and Sun, 2005). 

As we previously discussed, this parametric boostrapping approach makes a number of 

assumptions, but there are reasons to believe that the intervals which result may be relatively 

robust so long as the fitted model provides a sufficient approximation to the data generating 

process. More research is needed to clarify this possibility.

In sum, mixture models allow for the modeling of increasingly complex relationships 

between variables, and our understanding of the substantive implications of the results can 

often be aided by computing and plotting the individual-level predicted values (whether for 

hypothetical or sampled individuals). Moreover, focusing on the predictions these models 

afford for specific individuals brings their application into greater alignment with a person-

centered data analytic approach.
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Figure 1. 
Empirical example 1: Cumulative probability of substance use initiation over time.

Note. Figure originally appears as Figure 4 in Dean, Cole, and Bauer (2015).
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Figure 2. 
Empirical example 1: Predicted probability of nonmedical prescription drug use for two 

subjects differing in age of marijuana use initiation.
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Figure 3. 
Empirical example 2: Mean trajectories and class membership proportions for each class.
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Figure 4. 
Empirical example 2: Marginal predicted values of the Center for Epidemiological Studies-

Depression Scale for four subjects differing in gender and college attendance
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Figure 5. 
Empirical example 2: Conditional predicted values and observed values of the Center for 

Epidemiological Studies-Depression Scale for Six Subjects.
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Figure 6. 
Empirical example 2: Conditional predicted values and observed values of the Center for 

Epidemiological Studies-Depression Scale for four subjects with poor model fit. specifically, 

our s of approximating uncertainty around predicted values using parametric bootstrapping 

(Efron and Tibshiran
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