Skip to main content
. Author manuscript; available in PMC: 2017 Apr 1.
Published in final edited form as: J Knot Theory Ramif. 2016 Mar 1;25(5):1650024. doi: 10.1142/S0218216516500243

Table A.3.

Some cocycle invariants for the quandle Q(6, 2) of the form a + bu + cu2 + du3 for some a, b, c, d ∈ ℤ with d ≠ 0.

Cocycle invariant Knot
6 + 24u3 61, 74, 77, 91, 96, 911, 923, 929, 938
1014, 1019, 1021, 1032
10108, 10112, 10113, 10114
10122, 10145, 10147, 10160
11a179, 11a203, 11a236, 11a274
11a286, 11a300, 11a318, 11a335
11a355, 11a365, 11n65, 11n66, 11n92
11n94, 11n95, 11n99, 11n122, 11n136
11n143, 11n148, 11n149, 11n153, 11n176
11n182, 12a0236, 12a0321, 12a0496
12a0580, 12a0762, 12a0805
12a0806, 12a0807, 12a0809
12a0876, 12a0909, 12a0952
12a0972, 12a1036, 12a1091
12a1101, 12a1129, 12a1157
12a1196, 12a1200, 12a1210
12a1216, 12a1224, 12a1237
12a1239, 12a1255, 12n0330
12n0368, 12n0375, 12n0412
12n0438, 12n0441, 12n0443
12n0464, 12n0500, 12n0603
12n0640, 12n0641, 12n0717
12n0738, 12n0740, 12n0750
12n0751, 12n0754, 12n0769
12n0770, 12n0781, 12n0791
12n0823, 12n0832, 12n0836
12n0865, 12n0874, 12n0875
12n0882
6 +48u2+ 72u3 948, 11a293, 12a0895
6 + 144u2+ 24u3 1098
6 + 24u + 72u3 12n0666
6 +24u + 48u2+ 48u3 11n164, 12n0402
6 +24u + 96u2+ 24u3 11n167
6 + 48u + 48u3 818, 12a1260, 12n0403
6 +48u + 48u2+ 24u3 12n0565
6 + 72u + 24u3 947, 12n0549
30 + 120u2+ 24u3 12n0737
30 + 24u + 72u2+ 24u3 12a0576, 12n0570
54 + 72u3 11a314
54 + 48u2+ 48u3 11a332, 12n0386
54 + 24u + 48u2+ 24u3 12a0297, 12n0379
54 + 48u + 24u3 946, 11a291, 12n0567
78 + 24u2+ 48u3 12a1283
78 + 24u + 24u2+ 24u3 12n0883
78 + 48u + 72u2+ 48u3 11a44, 11a47, 11a57
11a231, 11a263, 11n71
11n72, 11n73, 11n74
11n75, 11n76, 11n77
11n78, 11n81
12a0167, 12a0692, 12a0801
102 + 48u3 12n0806
102 + 24u + 24u3 11a277, 12a1225