Table A.3.
Some cocycle invariants for the quandle Q(6, 2) of the form a + bu + cu2 + du3 for some a, b, c, d ∈ ℤ with d ≠ 0.
Cocycle invariant | Knot |
---|---|
6 + 24u3 | 61, 74, 77, 91, 96, 911, 923, 929, 938 1014, 1019, 1021, 1032 10108, 10112, 10113, 10114 10122, 10145, 10147, 10160 11a179, 11a203, 11a236, 11a274 11a286, 11a300, 11a318, 11a335 11a355, 11a365, 11n65, 11n66, 11n92 11n94, 11n95, 11n99, 11n122, 11n136 11n143, 11n148, 11n149, 11n153, 11n176 11n182, 12a0236, 12a0321, 12a0496 12a0580, 12a0762, 12a0805 12a0806, 12a0807, 12a0809 12a0876, 12a0909, 12a0952 12a0972, 12a1036, 12a1091 12a1101, 12a1129, 12a1157 12a1196, 12a1200, 12a1210 12a1216, 12a1224, 12a1237 12a1239, 12a1255, 12n0330 12n0368, 12n0375, 12n0412 12n0438, 12n0441, 12n0443 12n0464, 12n0500, 12n0603 12n0640, 12n0641, 12n0717 12n0738, 12n0740, 12n0750 12n0751, 12n0754, 12n0769 12n0770, 12n0781, 12n0791 12n0823, 12n0832, 12n0836 12n0865, 12n0874, 12n0875 12n0882 |
6 +48u2+ 72u3 | 948, 11a293, 12a0895 |
6 + 144u2+ 24u3 | 1098 |
6 + 24u + 72u3 | 12n0666 |
6 +24u + 48u2+ 48u3 | 11n164, 12n0402 |
6 +24u + 96u2+ 24u3 | 11n167 |
6 + 48u + 48u3 | 818, 12a1260, 12n0403 |
6 +48u + 48u2+ 24u3 | 12n0565 |
6 + 72u + 24u3 | 947, 12n0549 |
30 + 120u2+ 24u3 | 12n0737 |
30 + 24u + 72u2+ 24u3 | 12a0576, 12n0570 |
54 + 72u3 | 11a314 |
54 + 48u2+ 48u3 | 11a332, 12n0386 |
54 + 24u + 48u2+ 24u3 | 12a0297, 12n0379 |
54 + 48u + 24u3 | 946, 11a291, 12n0567 |
78 + 24u2+ 48u3 | 12a1283 |
78 + 24u + 24u2+ 24u3 | 12n0883 |
78 + 48u + 72u2+ 48u3 | 11a44, 11a47, 11a57 11a231, 11a263, 11n71 11n72, 11n73, 11n74 11n75, 11n76, 11n77 11n78, 11n81 12a0167, 12a0692, 12a0801 |
102 + 48u3 | 12n0806 |
102 + 24u + 24u3 | 11a277, 12a1225 |