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Abstract
Previous research has shown that the brain is an important target of diabetic complications.

Since brain regions are interconnected to form a large-scale neural network, we investi-

gated whether severe hyperglycemia affects the topology of the brain network in people

with type 2 diabetes. Twenty middle-aged (average age: 54 years) individuals with poorly

controlled diabetes (HbA1c: 8.9−14.6%, 74−136 mmol/mol) and 20 age-, sex-, and educa-

tion-matched healthy volunteers were recruited. Graph theoretic network analysis was per-

formed with axonal fiber tractography and tract-based spatial statistics (TBSS) using

diffusion tensor imaging. Associations between the blood glucose level and white matter

network characteristics were investigated. Individuals with diabetes had lower white matter

network efficiency (P<0.001) and longer white matter path length (P<0.05) compared to

healthy individuals. Higher HbA1c was associated with lower network efficiency (r = −0.53,

P = 0.001) and longer network path length (r = 0.40, P<0.05). A disruption in local micro-

structural integrity was found in the multiple white matter regions and associated with higher

HbA1c and fasting plasma glucose levels (corrected P<0.05). Poorer glycemic control is

associated with lower efficiency and longer connection paths of the global brain network in

individuals with diabetes. Chronic hyperglycemia in people with diabetes may disrupt the

brain’s topological integration, and lead to mental slowing and cognitive impairment.

Introduction
Diabetes is a chronic, metabolic disease characterized by hyperglycemia which leads over time
to serious damage to the blood vessels in eyes, kidneys, nerves, and heart. Diabetes is classified
into type 1 (IDDM, insulin dependent diabetes mellitus), type 2 (NIDDM, non-insulin depen-
dent diabetes mellitus), and gestational (temporal insulin resistance during pregnancy). Type 2
diabetes mellitus (T2DM) is the most common form of diabetes in adults and its prevalence
has been sharply increasing during the past three decades. T2DM are at greater risk of cognitive
dysfunction, vascular dementia, and Alzheimer’s disease [1]. They also display concurrent
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structural changes in the brain such as cortical atrophy, deep white matter hyperintensities,
and lacunar infarctions. Diabetes-related cognitive impairment might be attributable to these
structural changes, because white matter (WM), which consists of axonal fibers, has a pivotal
role in transferring information between distributed cortical regions, and the functional effi-
ciency of the brain highly depends on the microstructural integrity of WM connecting brain
regions. Recent magnetic resonance imaging (MRI) technology has revealed such microstruc-
tural changes in the WM of people with diabetes. Specifically, using diffusion tensor MRI
(DT-MRI), significant alterations of WM integrity were demonstrated, in particular, in the cor-
pus callosum, the internal and external capsules, and posterior cerebral regions in people with
T2DM and metabolic syndrome [2–6]. Disrupted WM integrity, furthermore, was shown to be
related to the reduced cognitive ability (e.g., executive function) in these subjects [6, 7].

The cortical regions are functionally distributed across the brain and highly interconnected
by axonal fibers, generating a complex brain network. Connections among those regions could
be defined by the anatomical links (= structural connectivity), statistical dependencies using
temporal correlations (= functional connectivity), or causal interactions (= effective connectiv-
ity), giving different modes of brain network. The structural brain network has been primarily
formulated using graph theory, a mathematical description in which the brain is represented as
a set of nodes (i.e., anatomically distinct brain regions) and edges (i.e., axonal WM tracts con-
necting nodes), the so-called structural connectome [8, 9]. A node may represent a single neu-
ron, a set of neurons, or an anatomical region of the brain. An edge refers to the connection
between two nodes, which can be either binary or weighted, and either directed or undirected.
The idea of the connectome implies that the human brain is highly-segregated (i.e., brain
regions responsible for similar functions are anatomically clustered.) and highly-integrated (i.
e., remote brain regions interact efficiently.) [10]. The topological properties of a network can
be quantitatively described by a number of mathematical measures that can focus on network
segregation (e.g., clustering coefficient and modularity), network integration (e.g., characteristic
path length and efficiency), and the balance between the two (e.g., small-worldness).

So far, one study has used graph theoretical analysis to examine alterations in the structural
brain network of diabetic patients, in which the cerebral WM network was disrupted in terms
of whole-brain network segregation and integration in T2DM [11]. However, the subjects in
the study were elderly (mean age, 71 ± 4 years) and their HbA1c values were low enough
(6.7 ± 0.7%) to establish an impact of hyperglycemia on the brain’s structural network. In the
present study, we investigated structural brain network in middle-aged people with poorly con-
trolled T2DM. We also investigated correlations of blood glucose level with measures of net-
work topology and local microstructural property of WM.

Materials and Methods

Participants
Twenty Korean adults between 30 and 70 years of age with poorly controlled T2DM (HbA1c
>8%), and age-, sex-, and education-matched 20 healthy volunteers (all right-handed) were
recruited for the study (Table 1). Participants with T2DM were recruited through physician
referrals from the ASAN Diabetes Center, Seoul, Korea. Control participants were recruited
using flyers and advertisements. One week before brain imaging, a screening interview was
conducted with each participant to obtain information from his/her medical records. For all
participants, measurements of blood pressure, height, and body weight were recorded during
the screening sessions. Exclusion criteria included history of serious head injury (with loss of
consciousness >5 min), transient ischemic attack or stroke, other neurological illness, psychi-
atric disorder, heart disease, learning disability, severe hypoglycemia, alcohol or substance
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dependence in the previous three months, and intoxication via urine screen at the time of test-
ing. After providing a complete description of the study, written informed consent was
obtained from all participants. The research protocol was approved by the Institutional Review
Board of ASANMedical Center.

Demographic characteristics of the participants are summarized in Table 1. Participants in
both groups were moderately well-educated, without symptoms of depression, of average intel-
ligence, and middle-aged. No group differences were found in age, sex, body mass index, blood
pressure, or plasma cholesterol levels. The percentage of former or current smokers was higher
in the group with diabetes than in the control group. Mean HbA1c in the group with diabetes
was 10.7% (range 8.9−14.6%, 74−136 mmol/mol) and mean duration of diabetes was 12 years
(range 5−28 years). Nine of the 20 patients (45%) had diabetic retinopathy, 4 (20%) had dia-
betic nephropathy, and 7 (35%) had diabetic peripheral nephropathy. Diagnosis of diabetic ret-
inopathy was done based on retinal examination by trained ophthalmologists. Diabetic
nephropathy was defined by the presence of albuminuria [12] and diabetic neuropathy by
symptoms and signs of distal symmetrical peripheral neuropathy based on the examination of
a neurologist and abnormal nerve conduction findings in� 2 anatomically distinct nerves
among the sural, peroneal and median nerves [13].

MRI acquisition
Whole brain MRI scans were collected with a Siemens Magnetom TrioTim 3T scanner between
9 and 12 AM following overnight fasting. Prior to image acquisition, fasting plasma glucose

Table 1. Demographic characteristics of the subjects.

Controls T2DM

n 20 20

Age (years) 54.3 ± 2.4 54.6 ± 2.3

Number of male (%) 9 (45) 9 (45)

Height (cm) 165.2 ± 6.9 163.8 ± 8.5

Weight (kg) 64.5 ± 6.8 66.3 ± 10.1

BMI (kg/m2) 23.6 ± 0.4 24.7 ± 0.6

Education (years) 10.0 ± 3.6 11.9 ± 2.3

Systolic blood pressure (mmHg) 118 ± 15 126 ± 14

Diastolic blood pressure (mmHg) 72 ± 14 72 ± 9

Former or current smoker (n, %) 6 (30) 11 (55)*

Total cholesterol (mg/dl) 185 ± 40 167 ± 52

FPG (mmol/L) [normal range:
4–5.5 mmol/L]

5.19 ± 0.13 10.0± 1.04**

HbA1c (%) [normal range: <6%] 5.9 ± 0.1 10.7 ± 0.3**

HbA1c (mmol/mol) 40.9 ± 0.7 93 ± 2.6**

Duration of diabetes (years) 12.1 ± 6.5

Diabetic retinopathy (n, %) 9 (45)

Diabetic nephropathy (n, %) 4 (20)

Diabetic peripheral neuropathy
(n, %)

7 (35)

Data are represented as mean ± SD or n (%).

* P <0.05

**P <0.005 vs. control.

Abbreviations: BMI, body mass index; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin A1c.

doi:10.1371/journal.pone.0157268.t001
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(FPG), HbA1c, and cholesterol levels were measured by enzymatic methods using an auto-ana-
lyzer (Hitachi E170, Hitachi, Ltd., Tokyo, Japan). FPG was also measured using a glucometer
to ensure it was over 80 mg/dl during the scan. Diffusion tensor images (DTI) with a spin-echo
echo-planar imaging (SE-EPI) sequence were acquired twice with 30-directional diffusion
weighted images including one non-diffusion weighted image and averaged to increase the sig-
nal-to-noise ratio with: b = 1,000 s/mm2, repetition time (TR) = 4,700 ms, echo time (TE) = 87
ms, field of view = 240×240 mm, image matrix = 128×128, 1.88×1.88×4 mm3 voxels with 37
transverse slices during about 4 min 52 sec. The anisotropic voxel was resampled to have a size
of 1.88×1.88×2 mm3. In addition, anatomical T1-weighted MRI scans were acquired using a
T1 turbo flash echo sequence with: 256×256 image matrix with 192 sagittal slices, 1 mm isocu-
bic voxels, TE 2.52 ms, TR 1,900 ms and flip angle 9°. The duration of this imaging sequence
was 6 min 15 sec. None of the participants showed visible abnormal findings in their structural
MRI scans including T1-hyperintense legion.

MRI preprocessing
Preprocessing of MR images was performed using FSL toolbox (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki) [14–16] and Freesurfer (http://freesurfer.net) [17, 18] as in Fig 1. The steps included:
(1) visual inspection for MRI artifacts, (2) removal of non-brain regions, (3) correction for
eddy-current and head motion, (4) estimation of diffusion tensor, and (5) coregistration to the
T1-weighted anatomical image. Voxel-wise diffusion parameters such as fractional anisotropy
(FA, a measure of the directional coherence for the fiber tracts), mean diffusivity (MD, the
average magnitude of molecular displacement by diffusion), axial diffusivity (AD, a length of
the longest axis of diffusion tensor), and radial diffusivity (RD, the averaged length of two
remaining axis of diffusion tensor) were computed. T1-weighted MRI was segmented into
gray/whiter matter and cerebrospinal fluid. The segmented gray matter was partitioned into
144 anatomic regions of interest (ROIs) to represent nodes of the individual brain networks
using Destrieux atlas of Freesurfer [19].

Fig 1. Diagram of the brain network analysis. T1-weighted anatomical MRI scans of each individual were used to parcellate
the cortex into 144 brain regions, forming the nodes of a brain network. Whole brain fiber tractography was applied to the DTI
scans to reconstruct white matter pathways connecting pairs of brain regions, and the network edge was defined by the fiber
density between the regions. The structural network was constructed in the form of a 144 × 144 weighted symmetric
connectivity matrix. The topological organization of the resulting brain networks, including the correlations with blood glucose
level (HbA1c and FPG), was investigated for 20 persons with type 2 diabetes and their age- and sex-matched controls.

doi:10.1371/journal.pone.0157268.g001
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Structural connectivity and the brain network
Whole brain deterministic fiber tractography was performed in the native DTI space with Dif-
fusion Toolkit (http://trackvis.org) [20]. To start fiber tracking, twenty seeds randomly distrib-
uted within each voxel were used to generate a sufficient number of fiber tracts. All fiber tracts
were computed for voxels with FA>0.2 and a smooth turn of<30°. The brain was modeled as
a set of nodes and edges using graph theory [8], where nodes represent the parcels of gray mat-
ter, and the edge represents WM tracts interconnecting two nodes. Unbiased methods to find
fiber tracks between brain regions have long been debated [21]. Here the presence of an edge
connecting two brain regions was defined if there were at least three fiber tracts between them
to reduce false-positive connections [22, 23]. Structural connectivity as a network edge was
defined as a weight representing the number of tractography streamlines connecting two node
regions, normalized by the number of whole fiber tracts in the brain–i.e., fiber density. This
resulted in a 144×144 weighted symmetric connectivity matrix.

Global characteristics of the structural brain network
Topological characteristics of the structural brain network were analyzed using Brain Connec-
tivity Toolbox (http://sites.google.com/site/bctnet). In this study, the network characteristics of
each participant were investigated with respect to network segregation–clustering coefficient
(γ) and modularity (Q), integration–path length (λ) and efficiency (E), and their optimal bal-
ance (small-worldness, σ) [8]. Mathematical details of the network implications can be found
in previous studies [22, 24]. The network segregation and integration could also be determined
by other descriptive measures such as motif and information capability [25].

Network segregation. In biological networks including the human brain, functional inter-
actions within the network are assumed to increase as nodes get topologically closer [8]. Net-
work segregation represents the extent to which closely and densely coupled neighbors form
local clusters or modules in the network. In this study, the clustering coefficient [26] and mod-
ularity [27] were chosen as measures of network segregation [24]. First, the clustering coeffi-
cient of each node was computed as the likelihood that the neighbors of a node are
interconnected to each other, then the clustering coefficients were averaged to yield a scalar
measure for global network clustering. Following that, the computed clustering coefficient was
normalized by the average of the clustering coefficients in a population of 1,000 randomized
null networks preserving the local node structure but with randomized global topology [24].
The normalized clustering coefficient (γ) quantifies the extent to which the network is orga-
nized into densely segregated nodes with respect to the random networks. Second, a module in
the network can be defined as a subdivision that has more connections within the module than
outside it. Modularity (Q) quantifies the degree to which the network can be optimally parti-
tioned into distinct subcommunities [24].

Network integration. Additional global interactions among clusters and modules can be
captured by means of the paths and distances between nodes [8]. Shorter paths between brain
regions represent stronger potentials for structural integration [24]. The characteristic path
length (λ) of the brain network was defined by the average of the shortest path length between
individual nodes and other nodes [26]. Like the clustering coefficient, the computed character-
istic path length was normalized by the average of the characteristic path lengths of a popula-
tion of 1,000 randomized networks. Meanwhile, the global network efficiency (E) was
computed as the harmonic mean of the inverse values of the shortest path lengths in order to
represent the capacity of the network to exchange information [28–30]. While these two inte-
gration measures provide complementary information for the network-wide coordination
mediating information flow among the direct routes, the global efficiency measure is known to
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more robustly detect communication distances within networks because it can be computed
even when the paths between nodes are disconnected [24].

The optimal balance of network segregation and integration. A small-world network
represents a network of highly clustered nodes with short node-to-node distances [26]. Net-
work small-worldness (σ) is defined by the ratio of the normalized clustering coefficient and
the normalized characteristic path length–i.e., σ = γ/λ [31]. While a random network is likely
to be less clustered with globally short paths (σ<1), a non-random network like the human
brain tends to be highly clustered with shorter paths (σ>1). Although we adopted small-world-
ness as a measure of optimal balance between network segregation and integration, it should
be noted that there are on-going debates about whether the current neuroimaging techniques
could capture the small-worldness in the brain networks [25, 32].

Tract-based spatial statistics (TBSS)
Voxel-based statistical analysis of the previous DTI-derived parameters (FA, MD, RD, and
AD) was performed using the tract-based spatial statistics (TBSS) of FSL. First, fractional
anisotropy (FA) images from each subject were aligned into Montreal Neurological Institute
(MNI) standard space with the FMRIB58_FA template using nonlinear transformation, and
averaged to produce a mean FA image. The mean FA image was thinned to create a mean FA
skeleton, which corresponds to centers of fiber tracts common to the whole group, thresholded
at FA>0.2. FA values for each subject were projected onto the mean FA skeleton and analyzed
for voxel-wise between-group comparisons. Statistical tests to detect differences in FA between
T2DM and control subjects were performed using a nonparametric permutation test with 10,000
Monte Carlo simulations, because the null distribution for the computed diffusion parameter is
unknown. Threshold-free cluster enhancement (TFCE) was applied to find significant clusters of
voxels (P<0.05) and correct multiple comparisons for family-wise error (FWE). MD, AD and
RD images were also subjected to the transformations computed from the alignment of FA
images, and the same analysis was performed to identify significant clusters for each measure.
Anatomical locations of the significant clusters were defined by the maximum statistics at cluster
peaks using ICBM-DTI-81WM atlas and JHUWM tractography atlas.

Statistics and correlation analysis
The independent two-sample t-test was performed to compare differences in global network
measures between people with T2DM and their age, sex, education-matched controls. Permu-
tation tests with 10,000 random permutes for each group were performed separately to assess
between-group differences on each network measure [22, 23]. Associations between global net-
work measures and plasma glucose (HbA1C and FPG), lipid levels (cholesterol and triglycer-
ide), duration of diabetes, and diabetic microvascular complications were computed using
partial correlation coefficients (r). A significance level of false discovery rate (FDR) corrected
P<0.05 was used for all statistics. Age, sex, and the number and strength of connections in the
networks were controlled as possible confounding variables to reduce potential effects of inter-
subject variability in the connectivity matrix.

Results

Changes in the brain network in patients with T2DM
In the individuals with diabetes, the measures of network integration showed an abnormality
in contrast to those in healthy individuals. However, there was no significant alternation in the
network segregation, suggesting no difference with healthy individuals. Fig 2A shows the
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group-averaged structural networks for the controls (left) and type 2 diabetics (right). Nodes
represent cortical regions from the brain parcellation, where the sizes and colors of the nodes
indicate the number of connections of each brain region. The connections between nodes

Fig 2. Comparison of brain networks. a. The group-averaged structural networks for the controls (left) and type 2 diabetes
(right). Nodes (spheres) represent cortical regions based on the brain parcellation, in which the sizes and colors indicate the
numbers of connections involving the brain regions. The connections between nodes reflect the reconstructed white matter
pathways. The networks vary from person to person, and the lines displayed represent the connections found in at least 75%
of the participants. b. Structural network properties of the two groups. Middle-aged people with chronic hyperglycemia had a
longer path length and lower efficiency than the controls (*FDR corrected P<0.05 with 10,000 permutation tests), suggesting
impaired network integration in the brains of type 2 diabetes.

doi:10.1371/journal.pone.0157268.g002
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reflect reconstructed white matter pathways. In Fig 2B, structural brain networks of the indi-
viduals with T2DM and healthy controls had a small-world architecture, i.e., a higher level of
network clustering (γ>1) with shorter paths (λ~1) than a random network, so resulting in
higher small-worldness (σ>1). There were no differences (FDR-corrected P>0.05) in cluster-
ing coefficient (γHC; 8.24±1.37 vs. γDM; 7.35±1.68), modularity (QHC; 0.68±0.03 vs. QDM; 0.67
±0.04), and small-worldness (σHC; 5.84±0.93 vs. σDM; 4.90±1.22) (Fig 2B). It shows a trend of
decreasing small-worldness of T2DM patients due to the decreased γ and increased λ, but not
indicating the severe disruption of small-world network architecture. Also the number of total
connections (P>0.05) and the average length of connections (P>0.05) within the networks did
not differ between the two groups (data not shown). These observations suggest that there is
no significant alteration in the network segregation in people with poorly controlled diabetes.
In contrast, the measures of network integration in the group with diabetes revealed a longer
characteristic path length between clusters (λHC; 1.41±0.08 vs. λDM; 1.52±0.16, FDR corrected
P<0.05) and a lower global network efficiency (EHC; 0.63±0.03 [×10

−3] vs. EDM; 0.59±0.03
[×10−3], FDR corrected P<0.0005) than in the healthy controls (Fig 2B), suggesting that global
network integration is impaired in individuals with diabetes.

Correlations between parameters of the brain network and glycemic
control
Higher HbA1c levels were associated with a longer network path length (λ; r = 0.40, FDR cor-
rected P<0.05) and lower network efficiency (E; r = −0.53, FDR corrected P = 0.001), pointing
to disruption of the optimal structural integration in the brains of individuals with T2DM (Fig
3A). Higher FPG levels tend to be correlated with lower network efficiency (r = −0.41, P<0.05,
uncorrected) and longer network path length (r = 0.28, P = 0.10, uncorrected) although the
effect did not reach statistical significance. The parameters of network segregation such as clus-
tering coefficient and modularity were not significantly correlated with HbA1c or FPG. No cor-
relation was found between small-worldness and HbA1c, or between small-worldness and
FPG. Age, duration of diabetes, blood pressure, fasting plasma cholesterol and triglyceride con-
centration or presence of diabetic microvascular complications were not significantly corre-
lated with the parameters of network segregation and integration.

Correlation between white matter microstructural alteration and glycemic
control
To further determine if the altered brain networks in participants with diabetes could be due to
microstructural changes in the local regions of white matter, we performed voxel-wise TBSS on
DTI images, since FA values are believed to reflect overall health, maturation and organization
of white matter [33]. As shown in Fig 4, regional FA values of persons with T2DM were
decreased in the distributed white matter regions including projection, commissural, and asso-
ciation fibers (TFCE corrected P<0.05). At each cluster peak in Table 2, the FA values were
negatively correlated with HbA1c (FDR corrected P<0.05) with the specific projection fibers
(the posterior thalamic radiation including optic radiation; P = −0.45, and the retrolenticular
part of the internal capsule; r = −0.34), commissural fibers (splenium of the corpus callosum;
r = −0.47), and association fibers (the fornix; r = −0.52, the external capsule; r = -0.39, and the
sagittal stratum; r = −0.53). In addition, negative associations between FPG and regional FA
values were found in the retrolenticular part of the internal capsule (r = −0.36), splenium of the
corpus callosum (r = −0.45), fornix (r = −0.48), and external capsule (r = −0.40). However,
there were no significant tract-specific diffusivity differences (MD, AD, and RD) between two
groups at TFCE P<0.05.
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Global FA values of the whole white matter regions (DM; 0.35±0.01, HC; 0.35±0.02) and
the extracted white matter tracts from fiber tractography (DM; 0.26±0.01, HC; 0.25±0.02) did
not differ between two groups, nor were they correlated with HbA1c and FPG.

Discussion
We found less integrated brain organization as measured by longer characteristic path length
and lower global network efficiency in adults with poorly controlled T2DM in comparison to
those in healthy subjects (Fig 2B). The longer path length and the lower global network effi-
ciency were correlated with higher level of HAb1c and FPG in the whole populations (Fig 3).
Contrary to the impaired network integration, the parameters of network segregation were not
altered in the patients with T2DM.

Segregation and integration are two complementary principles of brain organization. Brain
is segregated into highly specialized modules for rapid and automatic information processing
as seen in the movement control in the primary motor cortex or early visual input analysis in
the occipital cortex [9]. In contrast, integrated brain networks are necessary for consciously
effortful cognitive processes such as IQ tests recruiting distributed brain networks [23, 34].
Decreased integration and increased segregation have been observed in the brain networks of
the patients with chronic neurological disorders including Alzheimer’s disease and multiple

Fig 3. Correlations between the computed networkmeasures and (a) HbA1c and (b) FPG. The HbA1c showed significant associations with
characteristic path length and network efficiency (**FDR corrected P<0.05; solid lines), while FPG had a negative correlation with network efficiency
(*uncorrected P<0.05; solid line), suggesting that disrupted network integration of the brain structure is associated with increased blood glucose levels.
Dots and crosses represent T2DM patients and healthy controls, respectively.

doi:10.1371/journal.pone.0157268.g003
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sclerosis, possibly since the pathology preferentially affects the hub nodes linking the modules
of the networks [35]. The hub areas with long-distance connections are metabolically expensive
with higher wiring cost and thus more vulnerable to oxidative stress than other areas [9].
Microvascular structural impairment in poorly controlled diabetes mellitus [36] could involve
hub regions of the brain networks susceptible to this oxidative stress, and would result in dis-
ruption in the integration of the brain networks.

Cognitive performance is thought to be mediated by multiple interacting brain circuits and
their connections [37]. Network path length and efficiency represent how efficiently a node (i.
e., a parcellated brain region) is connected to the remaining nodes [24] and thus may reflect
the efficiency of information transfer in the network [28]. Widespread deterioration of the
brain network has previously been shown to reflect an age-related reduction in information-
processing speed [38] and functional network reorganization [39]. Psychomotor slowing was
significantly associated with poor glycemic control [40]. Although we did not assess cognitive
performance, the slowing of information processing was a prominent cognitive feature in
patients with type 2 diabetes and similar demographic and metabolic characteristics as our
cohort—middle-aged adults (mean age 50.8 ± 7.7 years) with poorly controlled T2DM (HbA1c
10.2 ± 2.4%) [41]. Using DTI and graph theory, Reijmer and colleagues have recently shown

Fig 4. Tract-based spatial statistics (TBSS) results.Results show decreases in fractional anisotropy (FA)
in the multiple brain areas of persons with T2DM. Significant TBSS results (red-yellow, P<0.05, family-wise
error corrected) in sagittal, coronal, and axial views overlaid onto the group averaged FA skeleton (green)
and the MNI152 T1 template. The coordinates represent the peak between-group difference in each cluster.
At the peaks, negative associations were found between FA value and the blood glucose levels as shown in
Fig 3.

doi:10.1371/journal.pone.0157268.g004
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that mental slowing is related to decreased network efficiency and increased shortest path
length [11]. Therefore, altered WM network topology that we observed in the study provides
an explanation for the slowing of information processing in subjects with diabetes.

On the other hand, we found a significant reduction in the FA values of the widespread
WM tracts in individuals with diabetes. The FA values in the multiple WM tracts including the
optic radiation, the internal and external capsules, the splenium of the corpus callosum, the for-
nix, and the sagittal stratum were inversely correlated with HbA1c. In line with our findings, a
significant reduction in FA values has been reported in the splenium of the corpus callosum,
the internal capsule, the external capsule, and optic radiations in type 1 and type 2 diabetic

Table 2. FA decreases at the cluster peaks from TBSS and correlations with HbA1c and FPG in T2DM patients.

Anatomical locations¶ MNI coordinates (mm) Size (mm3) t-value§ Correlation (r) with

x y z HbA1c FPG

Projection fibers

PTR including
optic radiation
(R)

34 -60 1 186 3.374 -0.454* -0.288

PTR including
optic radiation
(R)

33 -48 15 117 3.085 -0.378* -0.237

PTR including
optic radiation
(L)

-28 -63 17 22 3.946 -0.540* -0.312

Retrolenticular
part of internal
capsule (R)

36 -28 3 32 2.799 -0.343* -0.362*

Retrolenticular
part of internal
capsule (R)

39 -38 -3 4 2.803 -0.377* -0.433*

Commissural fibers

Splenium of
corpus
callosum (R)

26 -53 16 358 3.071 -0.470* -0.454*

Splenium of
corpus
callosum (R)

17 -35 33 70 2.636 -0.350* -0.205

Association fibers

Fornix (cres) /
Stria
terminalis (R)

28 -27 -4 89 3.568 -0.523* -0.480*

Sagittal
stratum
including ILF
and IFOF (R)

43 -29 -12 28 3.279 -0.526* -0.340

External
capsule (R)

35 -17 -7 9 2.059 -0.387* -0.405*

¶ Anatomical locations were defined from ICBM-DTI-81 WM atlas and JHU WM tractography atlas.
§ The effects are corrected for multiple comparisons by threshold-free cluster enhancement (TFCE) with P<0.05.
* Statistical significance was determined at P<0.05 (FDR corrected) controlling subject’s age, sex, and the number and strength of connections in the

networks.

Abbreviations: DTI, diffusion tensor imaging; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin A1c; ICBM, International consortium for brain

mapping; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; JHU, Johns Hopkins University; L, left hemisphere; MNI, Montreal

neurological institute; PTR, posterior thalamic radiation; R, right hemisphere; WM, white.

doi:10.1371/journal.pone.0157268.t002
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patients [2, 3] and lower FA values were reported to be associated with longer duration of dia-
betes in type 1 diabetes [42]. Along with the disruption in the integration of the brain networks,
the widespread disruption of WM fiber integrity found in the current study could be a “central
neuropathy induced by chronic hyperglycemia” [40].

Some limitations of this study should be taken into account. The sample size for each group
was relatively small (n = 20) due to difficulty in recruiting subjects with poor diabetes control.
Also the group with diabetes included more smokers than the control group although other
clinical variables [e.g., age, gender, education, cholesterol, and body mass index (BMI)] did not
differ between the diabetic and control groups. Furthermore, we did not examine cognitive/
behavioral characteristics in our participants of the study.

In summary, using DTI and graph theory, we found that poorly controlled hyperglycemia
disrupts the topology of the brain network in T2DM. The measures of network integration
showed decreased global efficiency and increased path length in patients with T2DM compared
to those in healthy subjects and the measures had a correlation with the level of hyperglycemia.
We suggest that disrupted network integration with widespread disruption of WM fiber integ-
rity represent a manifestation of central neuropathy in diabetes, possibly contributing to men-
tal slowing and cognitive impairments in individuals with diabetes.
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