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Summary

Soil microbial communities are essential for ecosystem function, but linking community 

composition to biogeochemical processes is challenging because of high microbial diversity and 

large spatial variability of most soil characteristics. We investigated soil bacterial community 

structure under switchgrass planted on soil historically supporting grassland vegetation at high 

spatial resolution to determine whether biogeographic trends occurred at the centimeter scale. 

Moreover, we tested whether such heterogeneity, if present, influenced community structure 

between treatments within our field site or among ecosystems at a global scale. Pronounced 

heterogeneity was observed at centimeter scales, with abrupt changes in relative abundance of 

phyla from sample to sample. At the ecosystem scale (>10 m), however, bacterial community 

composition and structure were subtly, but significantly, altered by fertilization, with higher alpha 

diversity in fertilized plots. Moreover, by comparing these data with data from 1,772 soils from the 

Earth Microbiome Project, we found that 20% of bacterial taxa were shared between our site and 

diverse globally sourced soil samples, while grassland soils shared ∼40% of their OTUs with the 

current study. By spanning several orders of magnitude, our analysis suggests that extreme 

patchiness characterizes community structure at smaller scales but that coherent patterns emerge at 

longer length scales.
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 Introduction

Soil microbial communities are essential to the character of terrestrial ecosystems because 

they are largely responsible for decomposition of organic residues, mineralization of 

nutrients, and formation of stable soil organic matter (Cotrufo et al., 2013). The structure of 

microbial communities (presence and relative abundances of various organisms) can have 

important ramifications for these processes. For instance, microbial diversity promotes plant 

coexistence and ecosystem functions such as productivity and N cycling (Miki et al., 2010; 

Philippot et al., 2013), and shifts in microbial community structure can affect important 

processes such as plant litter decomposition (Strickland et al., 2009; McGuire and Treseder, 

2010) and denitrification rates (Philippot et al., 2009; Jones et al., 2014). However, 

quantifying the effects of microbial community structure on such functions has been 

challenging because soil microbial communities are highly diverse (Fierer et al., 2007) and 

microbial communities, like other soil characteristics, are extremely variable across spatial 

scales (Ettema and Wardle, 2002).

Microbial biogeography has been examined over regional to continental gradients (Fierer et 
al., 2009; Bru et al., 2011; Barberán et al., 2012; Fierer, et al., 2012; Fierer et al., 2013; Liu 

et al., 2014; Whitaker et al., 2014), and at ranges of 1 m to a few 100 m within a plot 

(Klironomos et al., 1999; Franklin & Mills, 2003; Noguez et al. 2005; Zhou et al., 2008; 

Philippot et al., 2009; Ushio et al., 2010; Correa-Galeote et al., 2013; Barberán et al., 2014), 

but the centimeter scale has been explored in only a few cases (Morris, 1999; Grundmann 

and Debouzie, 2000; Franklin and Mills, 2003; Oline et al., 2006; Keil et al., 2011). 

Communities are known to differ among widely different biomes (e.g., Fierer, et al., 2012), 

or across regional gradients (e.g., Griffiths et al., 2011; Ranjard et al., 2013). Evidence for 

biogeographical patterns among microbes is also available at smaller scales (e.g. Noguez et 
al., 2005). Several studies have revealed striking heterogeneity in community fingerprints 

(Franklin and Mills, 2003) and N-cycle genes (Keil et al., 2011) over distances shorter than 

1 m and in microbial biomass (Morris, 1999) and nitrifiers (Grundmann and Debouzie, 

2000) across distances of only a few centimeters. Still, the very large sample volumes 

typically collected in a soil core are so large compared to microbial cell size that bacterial 

biogeographical patterns at scales shorter than 1 m are virtually unknown (Vos et al., 2013). 

Thus, it is still unclear how small-scale spatial heterogeneity influences the relative 

abundance of the myriad taxa that constitute soil communities, or how this influences spatial 

patterns at ecosystem or continental scales.

Understanding the small-scale distributions of soil microbial communities has several 

benefits. For example, it could narrow down the factors driving community structure patterns 

and link that structure to observed heterogeneity in biogeochemical processes. Such 

mechanisms could then be included in Earth system models, which currently treat microbial 
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communities as a black box represented by a fixed or variable parameter (Todd-Brown et al., 
2011) despite growing evidence that explicitly including microbial processes in global soil 

carbon models can improve spatial representation of soil C by as much as 50% (Wieder et 
al., 2013). Characterizing spatial variability of microbial communities at short length scales 

has practical implications as well. First, information on the natural variability of a parameter 

is required for designing experiments with adequate sampling replication and for making 

inferences based on the results (Klironomos et al., 1999; Peigné et al., 2009). Second, spatial 

variability could hamper detection of the many microbial and ecosystem processes that are 

dynamic over short time scales (i.e., minutes to days). Given the paucity of sensors to 

conduct real-time, nondestructive measurements of microbial activity (metabolism, biomass, 

physiology) and the rates of resultant biogeochemical processes, destructive serial sampling 

is necessary in order to construct time series datasets. However, little evidence exists to 

support the somewhat optimistic assumption that two points close in space are similar 

enough that they can reliably serve as temporal replicates.

Here we applied an intensive sampling scheme to determine whether the fine-scale (cm) 

geographic distribution of bacterial communities leads to differences in community structure 

at larger scales, i.e. within an experimentally altered ecosystem (m) or among ecosystems 

(km). We used a high-resolution sampling approach to characterize bacterial communities in 

a grassland soil and a replicated fertilization experiment with switchgrass to test if nutrient 

availability impacts community structure or its spatial structure. We analyzed these soil 

community profiles using the 16S rRNA amplicon sequencing protocols outlined by the 

Earth Microbiome Project (EMP; www.earthmicrobiome.org (Gilbert et al., 2014)) and then 

compared them to communities found in other studies sequenced by the EMP. We 

hypothesized that (1) communities would exhibit significant spatial autocorrelation at the 

centimeter scale, given that the soil type and plant community were consistent among 

samples; (2) fertilizer application would increase the range of spatial autocorrelation by 

smoothing uneven resource availability; and (3) few OTUs would be shared between the 

switchgrass experimental site and disparate soil ecosystem types (e.g., desert, forest) in the 

EMP database, demonstrating that bacterial populations are more geographically restricted 

in soils than in other well-mixed ecosystems such a the marine environment (e.g., Gibbons et 
al., 2013).

 Results

 Relationships between edaphic variables and bacterial community composition

Twenty-eight of the 750 samples collected were excluded from the final analysis because of 

inadequate soil volume, sequence depth below the rarefacation threshold, or poor sequence 

quality. Gravimetric soil moisture was 36%, on average (SE = 0.26), and was unaffected by 

fertilizer or block (treatment P = 0.19, block P = 0.08, n = 6). Moisture did not predict the 

Shannon index (P= 0.82, n=30), total species richness (P = 0.17, n = 30), or proportion of 

the dominant group, Verrucomicrobia (P = 0.95, n = 30). Soil pH (measured on dry material 

composited by grid after gravimetric moisture quantification), did not differ between 

fertilization treatments (fertilized = 5.58, unfertilized = 5.60; P = 0.616, n = 6). Relative 

abundance of Verrucomicrobia, richness, and moisture were not good predictors of CO2 
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efflux (n = 24; P = 0.612, 0.182, and 0.100, respectively). Total carbon (39.9 ± 0.5 mg g-1) 

and total N (3.46 ± 0.04 mg g-1) did not differ between treatments (C: P = 0.64 N: P = 0.71) 

and did not explain variation in bacterial diversity (Shannon index; C: P = 0.891 N: P = 

0.618, n= 48; Fig. S2) or proportion of Verrucomicrobia (C: P = 0.9650 N: P = 0.750, n = 

48).

 Centimeter-scale spatial structure of bacterial communities

Bacterial community structure was remarkably patchy at centimeter distance scales. For 

instance, relative abundances of Verrucomicrobia (the dominant phylum) ranged roughly 

2.5-fold within any single 10 cm × 10 cm grid (average min = 0.18 ± 0.01, average max = 

0.46 ± 0.02; Table 1; Figs. 1, 2a). Although other phyla were less abundant, the relative 

magnitude of core-to-core variability was similar (Table 1). No significant co-occurrence 

structure was observed between samples in the full dataset (C-score = 0.46; P = 0.61; 20,000 

iterations) or within treatments (fertilized C-score = 0.44, P = 0.52; unfertilized C-score = 

0.49, P = 0.76) and few significant correlations were observed among taxa (Fig S3). 

Furthermore, Moran's I, a metric of spatial autocorrelation, was significant for only 15% of 

instances tested (six dominant taxonomic groups [phyla or, in the case of Proteobacteria, 

classes] in thirty grids yielded twenty-seven significant cases), and the magnitude of the 

effect was nearly zero (-0.024 ± 0.003), indicating a lack of coherent spatial structure at 

centimeter length scales (Table S2). Similarly, Mantel tests of the correlation between 

pairwise UniFrac distances and spatial distances in each grid yielded no significant results 

after Bonferroni correction for multiple comparisons (P>0.002), and all were nearly zero 

(0.039 ± 0.015; Table S3). Despite a low degree of spatial autocorrelation, the degree of 

spatial patchiness itself was nonrandom. In all thirty grids, the mean pairwise beta diversity 

distance (weighted UniFrac) between samples within a grid was significantly greater than 

expected by chance (Table S4).

 Ecosystem-scale bacterial response to fertilizer application

Fertilizer treatment induced a significant or marginally significant increase in most measures 

of diversity (n = 6; richness: F = 548 ± 14, U = 511 ± 10 P = 0.106; Shannon index: F = 8.40 

± 0.04, U = 8.11 ± 0.03, P = 0.041; Simpson index: F = 0.990 ± 0.003, U = 0.986 ± 0.002, P 
= 0.045; Chao1: F = 1123 ± 52 U = 1014 ± 14 P = 0.163; Phylogenetic branch length: F = 

79.1 ± 0.8, U = 74.8 ± 0.7 P = 0.09; Phylogenetic distance per OTU: F = 0.1451 ± 0.0006, 

U= 0.1471 ± 0.0004, P = 0.121; Fig 2a) which was attributable to changes in community 

structure. Verrucomicrobia, the most abundant phylum with 31.6 ± 1.6 % of reads on 

average, significantly decreased in relative abundance in response to fertilizer treatment (Fig. 

2a; Table 1). Of the 248 OTUs whose abundance was significantly different between the 

fertilized and unfertilized soils (P<0.05 after false discovery rate correction; Table S5), 

roughly 40% were related to Verrucomicrobia (18.5%) or Acidobacteria (19.4%) (Table S5). 

In addition, subtler but still significant increases were also observed in Deltaproteobacteria 

and Gammaproteobacteria (Fig. 2a). A small but significant difference in beta diversity 

(weighted UniFrac, ANOSIM P-value < 0.05) was observed, although principal coordinates 

analysis showed no clear differences between treatments (Fig. 2b). Fertilizer treatment 

resulted in a larger OTU-OTU correlation network, with 24 OTUs compared to 14 OTUs in 

the network from unfertilized plots (Fig 2c). The most-connected OTUs (highest degree 
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nodes) were Candidatus Solibacter in the Acidobacteria phylum and three members of the 

MC18 genus in the Spartobacteriaceae family of the Verrrucomicrobia phylum. No 

differences in spatial autocorrelation were detected, with no significant differences in mean 

Moran's I between fertilized and unfertilized treatments (Acidobacteria P = 0.40, 

Alphaproteobacteria P = 0.53, Betaproteobacteria P = 0.818, Deltaproteobacteria P = 0.753, 

Gammaproteobacteria P = 0.159, Verrucomicrobia P = 0.975; Table S2).

 Regional to global-scale community overlap

We compared the diversity present in our dataset against that in other soils that were 

similarly processed to test whether observed diversity scales with sequencing effort or if 

substantially more data would reveal a “core” microbiome for soil (similar to methods in 

Gibbons et al., 2013). The 1,772 EMP soils samples had 2,041 ± 17 OTUs on average, 

whereas the “deeply sequenced” fertilized and unfertilized Fermilab samples had 86,023 and 

76,851 OTUs, respectively. On average 22% of the OTUs (97% clusters) found in individual 

EMP soil samples were also observed in soil from our experimental site (Fig. 3a). Little 

clustering was found among EMP sites, although separations along the first axis appear to be 

related to moisture availability (Fig. 3b). OTUs in the Verrucomicrobia phylum were the 

most commonly shared organisms between our study and at least 69% of the EMP soil 

datasets (Fig. S4), with a member of the DA101 genus of the Chthoniobacteraceae family 

being highly abundant in our soils and present in 70% of the EMP samples. When the “core” 

community (i.e., those organisms found in both our data and in EMP soil data) was defined 

by a lower threshold of shared sites (e.g., shared with 15% of EMP sites), its membership 

was more diverse. The OTU overlap was even higher when EMP grassland soils were 

considered separately, with an average of 40% of the taxa in individual EMP grassland 

samples appearing in the “deeply sequenced” Fermilab soil (Fig. 3a).

 Discussion

 Centimeter-scale spatial structure of bacterial communities

Our sampling scheme revealed unexpected heterogeneity in soil community structure at 

centimeter-distance scales, with the relative abundance of bacterial taxa varying 

considerably between soil cores collected only centimeters apart (Fig 1; Table 1; Table S2; 

Table S3). Such heterogeneity could arise from some unmeasured environmental parameter 

that varies stochastically across the spatial scales sampled in this study (Landesman et al., 
2014). Indeed, turnover of bacterial diversity has been linked to shifts in edaphic properties 

over regional gradients (e.g., Ranjard et al., 2013). At the cm-scale, our samples included 

rhizosphere soil, and so the uneven influence of roots could have contributed to patchiness in 

bacterial community structure. Because we aimed to characterize bacterial community 

distribution patterns at small spatial scales, our samples were necessarily too small to 

measure many other edaphic properties that might explain variability in community 

structure. However, we also took care to reduce edaphic influences by restricting our 

sampling to a single soil series (Grays silt loam). In addition, heterogeneity could arise from 

fine-scale historical environmental differences (Andersson et al., 2014), or as a result of 

variation in the size and versatility in bacterial genomes, which are hypothesized to underlie 

habitat breadth (Barberán et al., 2014). However, bacterial patchiness could also be due to 
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dispersal limitation, which might allow less-adaptable taxa to inhabit niches where they 

would otherwise be excluded by competition.

In our study, taxa appeared to co-occur randomly rather than in a structured way (Fig. S3; 

Table S2). Significant correlations between the presence of taxa have been found in other 

soils. These correlations have been used to identify keystone taxa within land use types 

(Lupatini et al., 2014) and to assign ecological roles to taxonomic groups across sites 

(Barberán et al., 2012). Significant spatial autocorrelation at centimeter or meter scales has 

also been reported (Morris, 1999; Grundmann & Debouzie, 2000; Franklin & Mills, 2003; 

Noguez et al. 2005; Keil et al., 2011). However, these studies all characterized microbial 

communities at a much coarser taxonomic resolution than we report here. Our data indicate 

a lack of co-occurrence structure and a lack of strong spatial autocorrelation, which suggests 

that bacterial populations are subject to small-scale dispersal limitation. If, as is likely, they 

respond to variation in environmental factors at scales shorter than 1 cm, it would indicate 

that the environmental conditions driving niche competition at this site occur at length scales 

shorter than 1 cm. This might explain why we observed beta diversity within each grid that 

was greater than expected by chance (Table S4). It is possible that recent disturbances 

associated with establishing the switchgrass stands disrupted larger-scale patterns, and if so, 

such patterns could develop again over time.

Heterogeneity in microbial habitats at even smaller scales than we measured—within the 

inter- and intra-aggregate pore network—undoubtedly drives spatial structure in bacterial 

communities at scales more relevant to cellular processes. Cells likely inhabit distinct 

microenvironments that promote diversity by encouraging trade-offs in resource utilization 

and relieving competition (Vos et al., 2013) whereby isolation derived from low pore 

connectivity increases diversity (Carson et al., 2010). Community structure has been shown 

to differ among different size classes of soil aggregates (Davinic et al., 2012), between 

individual aggregates (Bailey et al., 2013), from aggregate interiors to their surfaces (Chenu 

et al., 2001; Mummey et al., 2006), among particle size fractions (Neumann et al., 2013), 

and even on surfaces of clays with differing mineralogy (Carson et al., 2009). Indeed, spatial 

autocorrelation at sub-millimeter scales has been observed by using direct counts of stained 

cells from thin sections (Nunan et al., 2002). Microscale habitat diversity (e.g., 

heterogeneous inter- and intra-aggregate pore networks) would explain why we observed 

significant within-grid beta diversity values (Table S4) and little correlation between 

community structure and factors such as soil N and CO2 flux (Fig S2). If the cellular-scale 

environmental profile varies stochastically with distance, then presence of an organism in 

one location would have little bearing on the presence of another species in a nearby spot, 

even within the same small soil core. Indeed, our sampling design captured heterogeneity 

not observed before, but our samples were still was quite large compared to the scale of 

bacteria.

Several unmeasured biotic factors could also play a role in the remarkable small-scale 

heterogeneity we measured. For instance, roots can shape microbial communities by altering 

the physical environment (e.g. soil water relations, gas exchange; Young et al., 2009), 

affecting resource availability (e.g., exudation; (Paterson et al., 2007), or by associations 

with fungi. Fungi might also influence bacterial community structure and contribute to soil 
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biodiversity. Fungi compete with bacteria for resources, consume bacterial biomass or are 

consumed by mycolytic bacteria, and create unique microhabitats that could drive bacterial 

niche differentiation (De Boer et al., 2005). Mycorrhizal fungi also exhibit significant spatial 

heterogeneity (Bahram et al., 2015) that could impact bacterial diversity patterns. This effect 

might become more important over time in our experiment, since fungal-to-bacterial ratios 

tend to increase with time since disturbance at this and other sites (Allison et al., 2005; Bach 

et al., 2010).

If the total bacterial community we measured does not reflect functional heterogeneity of the 

community, either because of dormancy or high functional redundancy (Lennon and Jones, 

2011), then the heterogeneity we observed might not manifest in differential ecosystem 

function. However, community structure has been shown to affect function (Strickland et al., 
2009; Fierer et al., 2011; Philippot et al., 2013; Jones et al., 2014), and community activity 

has been shown to vary dramatically at centimeter distances (Becker et al., 2006). Further, 

high fidelity between 16S rRNA profiles and protein-encoding genes from shotgun 

metagenomic data (Fierer, et al., 2012) suggest that the heterogeneity in community profiles 

we found is likely meaningful for soil function.

Our findings also have critical implications for design of future soil microbiology studies. 

Morris (1999) found hotspots and cold spots of microbial biomass that averaged 

approximately 2 cm, roughly the diameter of commonly used soil cores. Our community 

composition results are consistent with Morris's biomass findings, implying that multiple 

cores should be composited or that substantial replication is necessary. Given the variability 

we observed, we estimate that an ANOVA would require roughly 235 samples to detect 

significant difference (95% confidence interval) in the relative abundance of the most 

dominant group (Verrucomicrobia, power = 0.9). These results are particularly important for 

experiments where samples will be collected at high temporal frequency or where sampling 

is restricted to small volumes in order to limit site disturbance.

 Ecosystem-scale bacterial response to nitrogen addition

Fertilizer induced a significant increase in diversity (Fig 2a), which is consistent with other 

observations (Turlapati et al., 2013). In contrast, long-term fertilizer suppressed diversity in 

the organic layer of moist acidic tundra (Campbell et al., 2010) and had no effect on 

diversity in grassland or agricultural sites (Fierer, et al., 2011). Community composition can 

affect microbial activity responsible for ecosystem processes such as productivity, litter 

decomposition, and N cycling, and carbon storage (Carney et al. 2007; Philippot et al., 2009; 

Strickland et al., 2009; McGuire & Treseder, 2010; Miki et al., 2010; Philippot et al., 2013; 

Jones et al., 2014). Although fertilizer increased diversity at our site, in contrast to our 

expectations, the spatial heterogeneity of bacterial communities was similar regardless of N 

addition (Fig. 1; Table S2), suggesting that fertilizer did not promote resource uniformity at 

a scale that affected bacterial biogeography. The connections between bacterial diversity, 

activity, and ecosystem processes such as decomposition have been shown to be more 

responsive to N than other factors (Matulich and Martiny, 2015), but the mechanisms 

underlying these observations require further study.
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The increase in diversity we detected was attributable to changes in community structure, 

which is commonly observed with fertilizer addition (Bradley et al., 2006; Turlapati et al., 
2013; Pan et al., 2014). This change in structure was most attributable to the 

Verrucomicrobia (Fig. 2a; Table 1; Table S5). N-induced suppression of Verrucomicrobia 

could indicate a shift toward a community favoring copiotrophs over oligotrophs, if easing N 

limitation gives a competitive advantage to more copiotrophic taxa that have higher N 

demands and specialize on more labile C pools such as root exudates (Bergmann et al., 
2011; Ramirez et al., 2012; Fierer et al., 2013). The correlation network was larger and more 

connected for the fertilized soil (Fig 2c), and together with the increase in Shannon index, 

suggests perhaps that more taxa were able to thrive via competitive release when N 

limitation was eased by fertilization. Such changes have been reported before, although there 

is substantial variation among sites (Ramirez et al., 2012; Pan et al., 2014), which could 

result from inconsistencies among experimental parameters, the quantity of N added (Fierer, 

et al., 2011), the length of exposure (Bradley et al., 2006), or differences in the structure of 

communities before fertilization. Our N addition rate of 67 kg N ha-1 is relatively low, and 

our experimental period (two years) is relatively short compared with that of other 

experiments, so we expected the effects to be subtle. Furthermore, the weak relationship 

between community structure and total soil N (Fig S2) suggests that bacteria were utilizing 

only a portion of the total N pool or that fertilization effects were indirect (but not a result of 

fertilizer-induced change in pH, which did not differ between treatments) which is consistent 

with fertilization experiments in other grasslands (Bradley et al., 2006).

 Regional to global-scale community overlap

Despite the centimeter-scale patchiness, we found that on average 22% of the OTUs found 

in EMP soil samples could be mapped back to our experimental site, suggesting that, as with 

marine bacteria (Gibbons et al., 2013), soil bacteria demonstrate a more cosmopolitan 

distribution than previously assumed. Recently, global soil microbial diversity was reported 

to be well represented within one sampling site, where the site comprised a wide range of 

soil characteristics (Ramirez et al., 2014). However, our study is the first time such a 

substantial core community has been identified between samples from a single soil type 

under a single plant species and sites from around the world. Little clustering was found 

among EMP sites, although separations along the first axis appear to be related to moisture 

availability, with deserts tending to be on the right and moister ecosystems tending to be on 

the left (Fig. 3b). Verrucomicrobia dominated the OTUs shared between our study and at 

least 69% of the EMP soil datasets (Fig. S4). The most representative OTU, present in 70% 

of the EMP samples and highly abundant in our data, was a member of the Verrucomicrobia 

in the DA101 genus of the Chthoniobacteraceae family. Despite its highly cosmopolitan 

distribution, few cultivated representatives are available. However, organisms in this family 

are known to utilize saccharides from plant biomass or engage in symbiosis with soil 

nematodes (Sangwan et al., 2004).

The overlap was even higher when EMP grassland soils were considered separately, with 

40% of the taxa in globally distributed EMP grassland soils appearing in the “deeply 

sequenced” Fermilab samples (Fig. 3a). This degree of overlap in soil, which is similar to 

the overlap found in marine systems (at an equivalent sampling depth; Gibbons et al., 2013), 
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is somewhat surprising because we would assume that slow mixing of the solid soil matrix 

generates wide variability in soil microsites. There is some evidence for long distance 

distribution of bacteria associated with dust (Kellogg and Griffin, 2006), but this regional- to 

global-scale mechanism for terrestrial redistribution of bacteria is likely much less efficient 

than the physical mixing of ocean waters. This sharing of taxa is likely indicative of a 

ubiquitous “seed bank” of soil microorganisms that is selected for and structured (abundance 

of each taxon) by local edaphic and plant distribution characteristics. Evidence for microbial 

cosmopolitanism is mixed, however, which could be due to undersampling and the relatively 

coarse taxonomic resolution of previous analyses (Green and Bohannan, 2006). Moreover, 

the 97% sequence similarity definition of OTUs (16S rRNA gene) is often inadequate to 

resolve pertinent functional differences among sites given the ecological distinctions that can 

be found among closely related bacteria (Eren et al., 2013).

 Conclusions

By spanning length scales across several orders of magnitude, our dataset captured a 

discontinuity in the spatial trends in soil bacterial community structure. This scale-

dependent variation in heterogeneity can substantially influence how researchers approach 

experimental design and analysis (Fig. 4). We liken this to a photomosaic, where a large 

picture is composed of many smaller photographs; fine details can be observed in any of the 

small contributing photographs when viewed up close, but they blur together to give way to 

the larger composite image when viewed from farther away. Similarly, communities in our 

100-cm2 grids were enormously patchy, but together they represented a large proportion of 

the diversity found in grasslands worldwide. Yet, at scales somewhere in between, 

measurable differences in community structure (e.g., in response to resource manipulation) 

could be detected. While the implications of spatially nested patterns in soil ecology are 

manifold, further investigation is essential to determine how hierarchical heterogeneity in 

soil bacterial communities influences emergent biogeochemical properties at the local and 

landscape scales.

 Experimental Procedures

 Site description and field sampling

The study was carried out in the Sustainable Bioenergy Crop Production Research Facility at 

Fermi National Accelerator Laboratory (Fermilab) in Batavia, IL, USA (88°13′47′W, 

41°50′29′N). In the fall of 2007, standing vegetation (a mixture of the perennial, cool-season 

C3 grasses) was treated with herbicide and removed by burning. The following spring, 

vegetative regrowth was suppressed with another herbicide treatment. In June 2008, 42 plots 

(36 × 20 m) were established by no-till drill seeding with seven vegetative treatments 

replicated six times each over three blocks. Nitrogen fertilizer was applied to half the plots at 

a rate of 67 kg N ha-1 as urea in early June 2009 and 2010. The soil series was Grays silt 

loam (2–4% slopes; fine-silty, mixed, superactive, mesic Mollic Oxyaquic Hapludalf; https://

soilseries.sc.egov.usda.gov/OSD_Docs/G/GRAYS.html; United States Department of 

Agriculture, Natural Resources Conservation Service Web Soil Survey). Edaphic variables 

measured at the time of plot establishment in the areas of sampling are given in Table S1. 
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Average air temperature was 9.7 °C, and average annual precipitation was 797 mm for the 

period from 2001 to 2010 (www.wunderground.com/history for Batavia, IL).

In this study, we focused on the 6 plots (3 fertilized and 3 unfertilized) that were planted 

with Kanlow, a lowland cultivar of switchgrass (Panicum virgatum L.), originating from 

central Oklahoma. By selecting a plant community dominated by a single cultivar of a single 

species (notwithstanding the presence of non-planted, mostly low-stature cool-season 

grasses), we minimized spatial variability arising from plant influences (Millard and Singh, 

2009; Parker et al., 2012). In late November 2010, we collected soil from five sampling 

stations placed roughly 6 m apart along a 30 m transect centered on the short edge of each of 

the six Kanlow plots (Fig. S1). Sampling points were placed 1 m away from the transect in a 

random compass direction. Four of the sampling stations in each plot were randomly 

selected for soil CO2 efflux measurement using a LI-COR 8100 in survey mode with a 

portable chamber (LI-COR Environmental, Lincoln, NE). Collars (20 cm diameter × 10 cm 

tall) made from PVC pipe were inserted 4 cm into the soil next to a switchgrass crown at 

each location approximately 24 h before flux measurements were made. Within an hour of 

each respiration measurement, sterile cork borers (7 mm dia × 50 mm deep, yielding 1.9 g 

dry soil, on average) were used to collect twenty-five evenly spaced soil samples from a 10 

cm × 10 cm grid placed within the collar (stations where respiration measurements were not 

made were sampled similarly). The samples, still in the borers, were placed individually in 

sterile plastic collection bags (Whirl-Pak; Nasco, Fort Atkinson, WI) and immediately 

frozen on dry ice and stored at -80°C at the end of each day. An additional sixteen evenly 

spaced cores were collected from each grid for gravimetric moisture quantification with the 

same type of corers used to collect samples destined for DNA extraction. Total carbon and 

nitrogen (N) were measured on a subset of 50 samples (those from one fertilized and one 

unfertilized grid) by dry combustion with a Carlo Erba NC2500 elemental analyzer (Milan, 

Italy).

 DNA extraction, amplicon library preparation, and sequencing

Frozen soil was removed from the core tubes and briefly homogenized by manual 

manipulation through the collection bag, and then subsamples of each soil core were 

manually loaded into deep 96-well plates included with the PowerSoil®-htp 96 Well Soil 

DNA Isolation Kit (MO BIO Laboratories, Inc. Carlsbad, CA). DNA was extracted 

according to the manufacturer's protocol with an additional 20 minute 65°C heating step 

before being placed on the plate shaker. Fluorometric-based determination of DNA 

concentration was performed using PicoGreen (Invitrogen, Carlsbad, CA) according to the 

manufacturer's instructions.

Genomic DNA was amplified by using the Earth Microbiome Project barcoded primer set 

(http://www.earthmicrobiome.org/emp-standard-protocols/16s/), adapted for the Illumina 

MiSeq by adding nine extra bases in the adapter region of the forward amplification primer 

that support paired-end sequencing. The V4 region of the 16S rRNA gene (515F-806R) was 

amplified with region-specific primers that included the Illumina flowcell adapter sequences. 

The reverse amplification primer contained a twelve-base barcode sequence that supports 

pooling of up to 2,167 different samples in each lane(Caporaso, et al., 2010; Caporaso et al., 
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2012). Each 25 μl PCR reaction contained 12 μl of MO BIO PCR Water (Certified DNA-

Free), 10 μl of 5 Prime HotMasterMix (1x), 1 μl of Forward Primer (5μM concentration, 200 

pM final), 1 μl Golay Barcode Tagged Reverse Primer (5 μM concentration, 200 pM final), 

and 1μl of template DNA. The conditions for PCR were as follows: 94 °C for 3 minutes to 

denature the DNA, with 35 cycles at 94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s with a 

final extension of 10 min at 72 °C to ensure complete amplification. Triplicate PCR 

amplicon libraries were pooled and then quantified fluorometrically (PicoGreen, Invitrogen), 

and then pooled again into a single tube so that each amplicon library was represented 

equally. This pool was cleaned up using UltraClean® PCR Clean-Up Kit (MO BIO), and 

then quantified using the Qubit (Invitrogen). After quantification, the pool was diluted to 

2nM, denatured, and then diluted to a final concentration of 6.1 pM with a 30% PhiX spike 

for paired-end sequencing (151 bp × 12 bp × 151 bp) on the Illumina MiSeq. Sequence data 

are available in MG-RAST (metagenomics.anl.gov) under Project ID 342.

 Data analysis

Sequence data processing was carried out using the Quantitative Insights into Microbial 

Ecology pipeline (QIIME; Caporaso, et al., 2010). Data were demultiplexed, the paired 

reads were joined, and sequences that had any ambiguous bases or a phred score below 20 

over the entire read length were discarded. Operational taxonomic units (OTUs) were 

identified through open-reference OTU picking (97% similarity) against the Greengenes 

database (2012 release; McDonald et al., 2012). Singleton OTUs were removed and the data 

were rarefied to 1,000 sequences per sample. Representative sequences for each OTU 

centroid were aligned with PyNAST (Caporaso, et al., 2010), and phylogenetic trees were 

constructed using FastTree 2.0 (Price et al., 2010). Alpha diversity metrics (species richness, 

Shannon diversity, and Simpson diversity) were calculated for all read-depth-normalized 

samples by using the alpha_diversity.py script in QIIME. For beta-diversity analysis, 

distance matrices were constructed by using weighted and unweighted UniFrac scores 

(Lozupone and Knight, 2005). Plotting and statistical analyses were carried out using R v.

2.15.2 (R Development Core Team, 2013) and python (Ascher et al., 2001; Rossum and 

Drake, 2001; Thiruvathukal and Hunter, 2007).

Effects of N fertilization on alpha diversity and phylum relative abundances were tested by 

using one-way ANOVA with plot as the sampling unit (n = 6). One-way ANOVA was used 

to compare observed beta diversity (weighted UniFrac distances) with simulated beta 

diversity in order to test whether the within-grid patchiness was greater than expected by 

chance (n = 22–25). Beta diversity was simulated by randomly resampling from pooled data 

for each grid. Spatially explicit heatmaps were generated to visualize the structure of 

dominant members of the community in each of the thirty 10 cm × 10 cm sampling grids. 

Values between sampling points were interpolated based on ordinary kriging by using the R 

package SpatStat (Baddeley and Turner, 2005). Values for missing relative abundance data 

(see Results) were estimated by interpolation using the R package Zoo before spatial 

analyses (which prohibit missing data) but were omitted from all other statistical tests. 

Moran's index was used to test for spatial autocorrelation in relative abundances of the five 

most abundant phyla (divided by class for Proteobacteria) within each grid using the R 

package Ape (Paradis et al., 2004). Mantel tests were used to test for correlations between 
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similarity in overall community structure (weighted UniFrac distance) and spatial distance 

within each grid using the compare_distance_matrices.py script in QIIME. Checkerboard 

scores were calculated to test for significant co-occurrence in the entire dataset (Stone and 

Roberts, 1990) by using the R package Vegan (Oksanen et al., 2014), and Spearman's 

correlation was used to test for rank-order relationships among the presence of individual 

taxonomic groups (phylum, class, and family levels). Additional OTU-OTU correlations 

were conducted using SparCC, which appropriately handles compositional data, and 

significant correlative relationships were visualized using network analysis (Friedman and 

Alm, 2012). Data were grouped by treatment, and rare taxa (<0.1% of the community) were 

pruned, leaving 150–170 OTUs. Resulting OTU tables were normalized (500 sequences per 

sample) and then tested for SparCC correlations (pairwise OTU-OTU correlations, with 5 

iterations). Bootstrapping (500 times) on randomized OTU tables was used to generate P-

values for each SparCC correlation coefficient. Correlations with coefficients smaller than 

0.3 (absolute value) or a bootstrap P-value larger than 0.05 were discarded.

We compared the diversity present in our dataset against that in other soils that were 

similarly processed to test whether observed diversity scales with sequencing effort, or if 

substantially more data would reveal a “core” microbiome for soil (similar to methods in 

Gibbons et al., 2013). Combining EMP soil 16S rRNA data with the data from this study, 

OTUs were repicked by using open reference workflow (Gibbons et al., 2013). EMP 

samples were rarified to 5,000 sequences per sample, whereas our data were pooled into two 

samples representing “deeply sequenced” soil (one fertilized and one unfertilized). These 

two “samples” were rarified to 1,000,000 sequences each and then compared with EMP soil 

data (∼1,700 samples) by dividing the number of co-occurring OTUs by the total OTU 

richness for each sample to yield a percentage of shared community.

Results are presented as means ± standard error. Heatmap, bar, and box-plots were generated 

using R v.2.15.2. Principal coordinate plots were constructed using the 

beta_diversity_through_plots.py script in QIIME.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Originality-Significance Statement

We conducted a novel set of analyses examining soil bacterial communities at three 

scales: centimeter, ecosystem, and regional-to-global. We found that (1) profound 

heterogeneity in bacterial communities is present at centimeter scales, despite samples 

being collected from a single soil series under a single plant cultivar; (2) fertilizer 

addition increased bacterial diversity and connectedness of OTUs, likely by relieving 

competition for soil nitrogen, but did not change spatial structure of bacterial 

communities; and (3) bacteria display unexpected cosmopolitanism in soil, where, unlike 

ocean waters, physical mixing is very slow and so mechanisms of dispersal are unclear. 

This is the first time centimeter-scale heterogeneity of this magnitude has been observed 

in soil microbial community structure, while also being the first example of such a large 

number of taxa shared between global soils and just one site.
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Figure 1. 
Spatially explicit, heatmaps representing relative abundance of Verrucomicrobia in thirty 10 

cm × 10 cm sampling grids. Values between sampling points were interpolated based on 

ordinary kriging. Blue represents areas of relatively low abundance, and yellow represents 

areas of relatively high abundance.
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Figure 2. 
Comparison of bacterial community structure in fertilized vs. unfertilized soil. (a)Relative 

abundance of the ten most abundant phyla (or classes, for Proteobacteria). Bars represent 

means and error bars are se (n=3). Symbols denote significant difference between treatments 

for that phylum based on Tukey's HSD. On average, 529 ± 7 OTUs were present per sample. 

* <0.05, **<0.01. (b) Principal coordinates analysis of all 722 individual soil cores based on 

weighted unifrac distances. Red squares represent samples collected from fertilized plots, 

and blue circles represent samples from unfertilized plots. (c) Network diagrams of 

significant SparCC correlations among taxa in unfertilized and fertilized soil. Blue edges 

indicate positive correlations among taxa, and red edges indicate negative correlations. 

Nodes are colored by phylogeny (see legend).
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Figure 3. 
Comparison of bacterial community structure in Fermilab soils vs. other soils in the Earth 

Microbiome Project database. (a) Proportion of operational taxonomic units (OTUs) present 

in both composite Fermilab soils (unfertilized and fertilized treatments) and soils in the 

EMP10k database from various biomes. Letters indicate significantly different overlap for 

that treatment among biomes (P<0.05 based on one-way ANOVA followed by means 

separation by least significant difference). Sample sizes: Grassland = 337, Forest = 261, 

Agriculture = 696, Tundra = 136, Permafrost = 66, Desert = 104, Other = 172. (b) Principal 

coordinates analysis with 10 randomly selected representatives from Fermilab and soils from 

terrestrial biomes in the EMP database. Biomes were identified from user-generated 

metadata.
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Figure 4. Conceptual figure highlighting ecological issues that could be impacted by 
heterogeneity occurring at each of the scales observed in this study
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Table 1
Variation in relative abundance and of ten most abundant phyla (or classes, for 
Proteobacteria)

Phylum Mean Range CV

Verrucomicrobia 0.316 0.053–0.701 30.9

Acidobacteria 0.153 0.055–0.418 23.2

Deltaproteobacteria 0.088 0.029–0.179 26.3

Bacteroidetes 0.077 0.017–0.433 40.1

Alphaproteobacteria 0.067 0.019–0.157 34.1

Betaproteobacteria 0.057 0.012–0.122 35.1

Gammaproteobacteria 0.040 0.008–0.361 52.9

Actinobacteria 0.038 0.007–0.141 50.9

Planctomycetes 0.031 0.007–0.058 25.4

Chloroflexi 0.012 0.001–0.031 44.2

N=722

CV=coefficient of variation
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