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Abstract

The importance of angiogenesis in Pancreatic Ductal Adenocarcinoma (PDAC) and its therapeutic 

potential have been explored in both pre-clinical and clinical studies. Human PDACs overexpress a 

number of angiogenic factors and their cognate high-affinity receptors, and anti-angiogenic agents 

reduce tumor volume, metastasis, and microvessel density (MVD), and improve survival in 

subcutaneous and orthotopic pre-clinical models. Nonetheless, clinical trials using anti-angiogenic 

therapy have been overwhelmingly unsuccessful. This review will focus on these pre-clinical and 

clinical studies, the potential reasons for failure in the clinical setting, and ways these 

shortcomings could be addressed in future investigations of angiogenic mechanisms in PDAC.
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1. Introduction

Pancreatic Ductal Adenocarcinoma (PDAC), which comprises >85% of pancreatic cancers, 

is the 4th leading cause of cancer death in the United States with a 1- and 5-year relative 

survival of 28% and 7%, respectively [1–3]. These statistics are largely due to advanced 

stage at clinical presentation, the high frequency of major driver mutations, marked 

resistance to chemotherapy and radiation, and extensive desmoplasia that impedes drug 

delivery [4–8]. Because advances in screening, prevention, and treatment are limited 
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compared to other cancers, PDAC is now projected to surpass breast, prostate, and colorectal 

cancers to become the second leading cause of cancer death by 2030 [9].

At presentation, only 15–20% of patients are eligible for surgical resection, the only chance 

for cure [1–3]. Even then, outcomes are poor, with a 5 year survival between 20–25% post-

resection, since most of these patients develop disease recurrence [10]. Therefore, 

chemotherapy is recommended as adjuvant treatment for those undergoing surgical resection 

and is the mainstay of treatment for patients with locally advanced or metastatic disease [2]. 

The current standard of care for patients with metastatic disease includes gemcitabine plus 

nab-paclitaxel or fluorouracil plus leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) 

[2, 11].

2. Angiogenesis

Blood vessel growth throughout adult life is primarily achieved via angiogenesis [12–18]. 

However, the adult vasculature is mostly quiescent as only 0.01% of the endothelium 

undergoes cell division at any time [12, 13, 15, 17, 18]. Examples of physiologic 

angiogenesis in the adult include wound healing, tissues undergoing growth, exercise 

induced angiogenesis in heart and skeletal muscle, the hair cycle, skeletal growth, and 

female reproductive processes. Pathologic examples include intraocular neovascular 

disorders, infantile haemangiomas, immunogenic rheumatoid arthritis, psoriasis, and 

tumorigenesis [12, 13, 16–20].

Through the use of models like the mouse retina, which becomes vascularized postnatally, 

we now understand many of the key players and processes involved in physiologic 

angiogenesis [21]. In general, activation of endothelial cells by pro-angiogenic molecules 

leads to the detachment of pericytes from the endothelium and remodeling of the basement 

membrane and cell-to-cell junctions (Figure 1) [22]. The best known pro-angiogenic 

molecule is vascular endothelial growth factor A (gene: VEGFA) (VEGF-A). VEGF-A binds 

to vascular endothelial growth factor receptor 2 (gene: KDR) (VEGFR-2) on endothelial 

cells, and its signaling is enhanced by the neuropilin-1 (NRP1) co-receptor, which facilitates 

complex internalization (Figure 1) [22]. Downstream signaling results in increased 

expression of the Notch ligand delta-like protein 4 (DLL4), which binds to Notch receptors 

on neighboring endothelial cells (Figure 1) [22]. This releases the notch intracellular domain 

(NICD) in these cells, which down-regulates VEGFR-2 and NRP1, and up-regulates 

vascular endothelial growth factor receptor 1 (gene: FLT1) (VEGFR-1), a decoy receptor for 

VEGF-A (Figure 1) [22].

The goal of this process is to isolate one cell that will migrate toward the pro-angiogenic 

gradient (called the tip cell), while de-sensitizing neighboring cells to the same signal. It is 

believed that DLL4 and Notch signaling are balanced in the quiescent vasculature, and that 

tip cells will offset the balance in response to pro-angiogenic signals [14]. The cells adjacent 

to the tip cell are called stalk cells, and they proliferate behind the tip cell to elongate the 

sprout and form a lumen (Figure 1) [22]. Once two tip cells on different sprouts meet, they 

will anastomose to form a perfused branch (Figure 1) [22]. Basement membrane then forms, 

and pericytes are recruited to cover the vessel (Figure 1) [22]. The process is dynamic in that 
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endothelial cells will compete for the tip position with different cells displaying the 

phenotype over time.

3. Tumor Angiogenesis

Whereas physiologic angiogenesis is tightly controlled and comes to a resolution, pathologic 

angiogenesis is abnormal and does not resolve [13, 16, 17, 20, 21]. Because cells need 

nutrients and oxygen from nearby capillaries to function and survive, early tumor growth is 

often restricted to a volume of only a few cubic millimeters until they are able to switch to 

an angiogenic phenotype [13, 16, 17, 19, 20, 23, 24]. Activation of angiogenesis occurs 

when pro-angiogenic molecules predominate over anti-angiogenic molecules, whereas, 

inactivation occurs when the anti-angiogenic molecules dominate [12, 13, 25]. In 

tumorigenesis, the observed activation from a quiescent state is often described as an 

“angiogenic switch” [12, 13, 25].

The vessels formed during tumor angiogenesis are tortuous or disorganized, immature, and 

convoluted with excessive vessel branching that lacks pericyte coverage rendering them 

fragile and leaky with bleeding and exudation of plasma proteins [15–18, 21, 22, 24, 26]. 

The distribution of new vessels in the tumor is also heterogeneous with some areas 

demonstrating intense neovascularization [15, 19, 20, 22, 26]. The vessels are often 

functionally defective with low blood flow and reduced oxygen delivery due to high 

interstitial pressure [15, 18, 22, 26]. The resulting hypoxic environment exacerbates the 

pathologic condition by further up-regulating pro-angiogenic molecules [15, 22, 26]. While 

one might assume that neovascularization would improve delivery of chemotherapeutic 

agents to the tumor, the poor perfusion and compression of the vascular supply actually 

impedes drug delivery [15, 16, 18, 20, 22]. Therefore, in addition to inhibiting angiogenesis 

and causing vessel regression, anti-angiogenic agents can enhance the effects of 

simultaneously administered chemotherapeutic drugs by normalizing the remaining 

vasculature [15, 16, 18, 20–22, 26].

4. PDAC is Hypovascular

Though the previously discussed concepts are generalities common to many cancers, we 

now specifically consider concepts relevant to PDAC. Using the KrasLSL−G12D/+; 

Trp53LSL−R172H/+; Pdx-1-Cre (KPC) PDAC mouse model, which has oncogenic kirsten rat 

sarcoma viral oncogene homolog (Kras) and mutated transformation related protein 53 

(Trp53) in the pancreas due to Cre-mediated recombination, Olive et al. showed that KPC 

tumors are poorly vascularized, poorly perfused, and have impaired drug delivery when 

compared to KPC transplant models or normal mouse pancreas [27]. Likewise, using both 

KrasLSL−G12D/+; Pdx-1-Cre (KC) mice, which have oncogenic Kras in the pancreas due to 

Cre-mediated recombination, and KPC mice, Provenzano et al. reported that in addition to 

having reduced vascularity, KC and KPC tumors have a paucity of large diameter (>10 um) 

vessels when compared to normal mouse pancreas [28]. This is likely due to vascular 

collapse caused by the presence of very high interstitial fluid pressures in these tumors, in 

the range of 75–130 mm Hg, compared to 8–13 mm Hg in normal mouse pancreas [28]. 

This observation also offers an explanation for the poor perfusion and drug delivery 
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observed by Olive et al. [27]. Human PDAC samples were also shown to be poorly 

vascularized compared to normal human pancreas or adjacent normal human pancreas, and 

to have fewer large diameter vessels compared to adjacent normal human pancreas [27, 28].

Because PDAC is inherently hypovascular, it might be assumed that this cancer either does 

not demonstrate significant angiogenesis or that it is not likely to benefit from anti-

angiogenic agents. However, both concepts have been disproven in other cancers [29]. All 

tumor types need sufficient levels of nutrients and oxygen and are growth limited unless they 

are able to induce angiogenesis. This is also true of hypoxic tumors, which likely have 

increased requirements to drain away toxic by-products released by cancer cells. Instead of 

measuring angiogenesis, microvessel density (MVD) rather reflects the metabolic burden of 

the supported tumor cells [29]. In fact, because the oxygen consumption rate is often lower 

in tumors compared to the corresponding normal tissue, it is not uncommon for tumors to 

have lower MVDs as we see in PDAC [29]. This is also the case for renal cell carcinoma, a 

cancer known clinically to respond to anti-angiogenic therapy [29]. Both poorly and highly 

vascularized cancers have been shown to respond to anti-angiogenic therapy [29].

5. Correlation of VEGF-A Expression or Microvessel Density with Health 

Outcomes in PDAC

VEGF-A, a potent inducer of angiogenesis, was first discovered as a secreted protein that 

can enhance vascular permeability [12]. Many different isoforms exist, and their different 

binding affinities for heparan sulfate proteogylycans (HSPGs) function to create a gradient 

for guiding vessels during vascular development [16]. In recent years, more insight into the 

alternative splicing and translation of the gene has revealed that anti-angiogenic forms and a 

translational read through can also be produced [30, 31].

Using immunohistochemistry (IHC), several groups found that between 60–65% of human 

PDAC samples have a substantial amount of VEGF-A immunoreactivity [32–34]. In terms 

of gene expression, Ikeda et al. found that 27/40 (67.5%) human PDAC samples overexpress 

VEGFA compared to a colon cancer cell line while Itakura et al. found a 5.2 fold increase in 

VEGFA expression in human PDAC samples (n=7) compared to normal human pancreas 

samples (n=4) [32, 34]. More recently, by RNA-Seq, The Cancer Genome Atlas (TCGA) 

dataset shows that only 8 out of 178 (4%) human PDAC samples overexpress VEGFA, 

suggesting that this molecule may not be as important in PDAC as was first surmised [8, 35, 

36].

MVD has not been shown to be an accurate measure of angiogenesis in other cancers [29]; 

nonetheless, three [32–34] of four [37] studies of human PDAC samples have shown an 

association between VEGFA mRNA or VEGF-A protein (IHC) expression and the amount 

of vascularity seen in the tumor. Patients with high levels of VEGFA mRNA or VEGF-A 

protein (IHC) also had increased liver metastasis [33], larger tumors [34], enhanced local 

spread [34], and decreased survival in two [32, 33] out of four [34, 37] studies. Lastly, one 

[32] out of two [37] studies reported that increased vascularity was associated with 

decreased patient survival.
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6. Pre-Clinical Studies Targeting VEGF Signaling in PDAC

Many studies have examined the potential role of targeting VEGF signaling using 

subcutaneous or orthotopic nude mouse models of human PDAC. Injection of human PDAC 

cells expressing an anti-sense VEGFA into the flanks of nude mice led to an 80% reduction 

in tumor size compared to controls [38]. When diphtheria toxin, which inhibits protein 

synthesis in target cells, was fused with VEGF-A to target it to the vasculature in orthotopic 

nude mouse models of human PDAC, it led to reduced tumor volume, tumor spread, and 

MVD, and improvement in survival in 1 of 2 models [39]. Injection of adenovirus vectors 

encoding the soluble form of the decoy receptor VEGFR-1 into subcutaneous tumor 

xenografts of human PDAC in SCID mice also resulted in reduced tumor growth and MVD 

[40]. Additionally, injection of adenovirus vectors encoding soluble VEGFR-1 or soluble 

VEGFR-1 plus a soluble fibroblast growth factor receptor 1 (gene: FGFR1) (FGFR-1) into 

subcutaneous tumor xenografts of human PDAC in nude mice resulted in reduced tumor 

growth [41].

The tyrosine kinase inhibitor PTK 787/ZK222584 (vatalanib) targets VEGF receptors, the 

platelet-derived growth factor receptors (PDGFRs), the mast/stem cell growth factor receptor 

Kit (gene: KIT) (SCFR), and macrophage colony-stimulating factor 1 receptor (CSF1R). 

Use of this compound in an orthotopic nude mouse model of human PDAC led to reduced 

tumor volume and MVD, and increased survival [42]. Moreover, use of VEGF-Trap (ziv-

aflibercept), which is a recombinant fusion protein of the extracellular portions of VEGFR-1 

and VEGFR-2 and the Fc fragment of human immunoglobulin IgG1, resulted in reduced 

tumor growth and MVD in subcutaneous tumor xenografts of human PDAC and reduced 

tumor growth and metastasis in an orthotopic nude mouse model of human PDAC [43]. 

These promising results provide support for the testing of anti-VEGF agents in human 

PDAC clinical trials.

7. Clinical Studies in PDAC

To date, many phase II and phase III human PDAC clinical trials using different anti-

angiogenic agents have been completed. Several of these involved bevacizumab, an anti-

VEGF-A monoclonal antibody, that has already been FDA approved for the treatment of 

several other cancer types, including persistent, recurrent, or metastatic cervical cancer, 

metastatic colorectal cancer, or non-small cell lung cancer in combination with 

chemotherapy; metastatic renal cell carcinoma in combination with interferon alpha; or in 

glioblastoma as a second-line therapy.

An initial Phase II trial of bevacizumab plus gemcitabine in untreated advanced PDAC 

patients showed a 21% objective response rate (ORR), a 6-month survival rate of 77%, and a 

median survival of 8.8 months (Table 1) [44]. Because these were favorable numbers 

compared to the pivotal trial for gemcitabine approval [45], which observed an ORR of 5%, 

a 6-month survival rate of 46%, and a median survival of 5.7 months, several other Phase II 

and Phase III studies were launched.
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Several Phase II trials added bevacizumab to any existing regimen that had previously shown 

any sort of modest activity in PDAC. These regimens included: cisplatin and gemcitabine 

[46]; capecitabine and gemcitabine [47]; capecitabine, radiation, and gemcitabine [48]; 

oxaliplatin and gemcitabine [49]; gemcitabine and radiation [50, 51], and docetaxel [52] 

(Table 1). However, results from the Phase III trial directly comparing bevacizumab plus 

gemcitabine to placebo plus gemcitabine in advanced PDAC patients showed that the 

addition of bevacizumab does not result in an improvement in overall survival (OS) or 

progression free survival (PFS) or differences in the ORR (Table 3) [53].

The difference between the Phase II and Phase III results was suggested to be due to the 

Phase II trial recruiting a more fit population [53]. Because such disparities are common in 

trials of PDAC, it was also suggested that the use of a single-arm Phase II trial is not ideal 

[53]. The majority of Phase II trials with other regimens were single-arm trials, and thus, 

most of them also concluded that the addition of bevacizumab produced questionable 

benefit.

In addition to VEGF-A, epidermal growth factor receptor (EGFR) and its ligands are 

commonly overexpressed in human PDAC, and high expression levels are also associated 

with worse outcomes [54–57]. The addition of cetuximab, a monocloncal antibody targeting 

EGFR, to gemcitabine has not led to improvements in ORRs, PFS, or OS [58], but the 

addition of erlotinib, a small molecule inhibitor of EGFR, to gemcitabine has been shown to 

provide a statistically significant improvement in survival [59]. However, the clinical 

relevance of this result is often questioned since the median gain in survival is only 10 days 

[59].

There is also evidence for EGFR’s role in angiogenesis and simultaneous inhibition of 

EGFR and VEGFR-2 has been shown to be synergistic [54, 56, 60–62]. Therefore, several 

regimens combining cetuximab or erlotinib with bevacizumab have been tried with limited 

success (Table 2) [63–65]. A Phase III trial comparing bevacizumab plus erlotinib plus 

gemcitabine to placebo plus erlotinib plus gemcitabine in metastatic PDAC patients did not 

show benefit in OS, but it did show a statistically significant one month improvement in the 

median PFS (Table 3) [66]. Therefore, there is some rationale for using this drug 

combination in metastatic PDAC patients.

Additional anti-angiogenic agents that have been tried in human PDAC include axitinib, 

sunitinib, sorafenib, vatalanib, ziv-aflibercept, and elpamotide. The Phase II or III trial 

comparing axitinib, a VEGFR tyrosine kinase inhibitor, plus gemcitabine to gemcitabine 

alone did not provide a significant improvement in overall or PFS (Table 1, Table 3) [67, 

68].

Sunitinib is a small molecule tyrosine kinase inhibitor of VEGFRs, PDGFRs, and SCFR. 

Though a Phase III study has not been done, this molecule has been tested in the metastatic 

setting as either a second-line therapy [69] or as a maintenance therapy in patients who did 

not progress after first-line chemotherapy [70]. Interestingly, in these patient groups, the 

drug did not do well as a second-line therapy (Table 1), but produced a statistically 

significant improvement in PFS compared to observation alone in the maintenance setting 
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(hazard ratio (HR) 0.51 [95% confidence interval (CI): 0.29–0.89], p-value < 0.01) [70]. 

Because the duration of first-line chemotherapy is often debated due to its cumulative 

toxicity and unproven efficacy, sunitinib may offer an advantage in the maintenance setting.

Similarly, sorafenib is a small molecule tyrosine kinase inhibitor of serine/threonine-protein 

kinase B-raf (BRAF), VEGFRs, and platelet-derived growth factor receptor beta (PDGFRB) 

that has been tested in many different settings without benefit (Table 1, Table 2) [71–74]. 

These observations were confirmed in a Phase III trial that observed no improvement in 

overall or PFS upon the addition of sorafenib to gemcitabine in the treatment of advanced 

PDAC patients (Table 3) [75].

Vatalanib is also a multi-kinase inhibitor targeting VEGFRs, PDGFRs, SCFR, and CSF1R. 

In a Phase II trial, it was used as a second-line therapy in advanced PDAC patients and 

produced a favorable 6 month survival rate of 29% compared to historic controls (Table 1) 

[76]. However, it was only a single-arm trial, and with the failure of several other similar 

receptor tyrosine kinsase inhibitors, it remains to be seen whether this drug will pan out.

Ziv-aflibercept, a recombinant fusion protein consisting of the extracellular portions of 

VEGFR-1 and VEGFR-2 and the Fc fragment of human immunoglobulin IgG1, is another 

drug that targets the VEGF pathway by trapping VEGF-A, VEGF-B, and PlGF. This drug 

yielded negative results in a Phase III trial compared to gemcitabine alone (Table 3) [77].

Elpamotide, a VEGFR-2 peptide, is a vaccine immunotherapy that can induce a cellular 

immune response against VEGFR-2 expressing endothelial cells [78, 79]. In a Phase II/III 

trial (Table 3) of locally advanced or metastatic pancreatic cancer patients, there were no 

improvements in overall or PFS compared to gemcitabine alone, but a subgroup with severe 

injection site reactions tended to do better, suggesting that this may be a sign of immune 

response to the vaccine [79].

Thus, targeting the VEGF pathway alone is not an efficacious route in PDAC. Even targeting 

multiple players in the neoplastic process, like EGFR or other receptor tyrosine kinases, 

produced marginal benefit, with only two trials showing an improvement in PFS, but not OS 

[66, 70].

8. Reasons for Failure

The overwhelming failure of anti-angiogenic agents in the clinic leads us to speculate on the 

reasons for the failure. Over the last 20 years, efforts in targeting angiogenesis in cancer 

have focused almost entirely on the pro-angiogenic molecule VEGF-A, and there are now 

several FDA approved drugs for various cancers [15, 18, 21, 22, 26, 80]. In reality, despite 

very convincing pre-clinical data, some cancers are resistant to such therapy or develop 

resistance over time [15, 18, 21, 22, 25, 26, 80]. This suggests that other angiogenic 

pathways that we have yet to address are involved. Indeed, other pro-angiogenic molecules 

include fibroblast growth factors (FGFs), platelet-derived growth factors (PDGFs), 

angiopoietins (ANGPTs), transforming growth factor beta (gene: TGFB1) (TGF-β), and 

cytokines like interleukin-8 (gene: CXCL8) (IL-8) [61, 81]. Thus, to block angiogenesis 

effectively, we need to target multiple molecules simultaneously.
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Because many pro-angiogenic growth factors such as VEGF-A, FGF2, PDGFs, TGF-β, and 

heregulin (gene: NRG1) (HRG) bind to HSPGs to facilitate their signaling, another 

targetable common denominator would be these proteoglycans [61, 81]. The validity of this 

strategy has been shown with KrasLSL−G12D/+; Cdkn2aLoxP/LoxP; Pdx-1-Cre (KIC) mice that 

were null for glypican-1 (Gpc1), one of the HSPGs. KIC mice have oncogenic Kras and 

deleted cyclin-dependent kinase inhibitor 2A (Cdkn2a), which encodes for the p16INK4a cell 

cycle inhibitor and the p19Arf tumor suppressor, in the pancreas due to Cre-mediated 

recombination. KIC mice null for Gpc1 showed attenuated tumor growth, progression, and 

invasiveness, and decreased expression of pro-angiogenic genes compared to KIC mice that 

were wild type for Gpc1 [82].

Another major contributor to the lack of efficacy is the fact that drug delivery in PDAC is 

impaired due to high interstitial pressures and collapsed vessels [28]. It is possible that 

efficacy could be improved if anti-angiogenic therapy was administered simultaneously with 

a stromal depleting agent known to increase perfusion. Out of three recent pre-clinical 

studies that depleted various components of the stroma, two resulted in improved perfusion 

[27, 83, 84], while only one did not cause other untoward effects [28, 85]. This was the 

study that utilized recombinant hyaluronidase (PEGPH20) to deplete the stroma, an agent 

now fast-tracked by the Food and Drug Administration (FDA) to be used as an investigative 

therapy in combination with gemcitabine and nab-paclitaxel for the treatment of patients 

with metastatic pancreatic cancer [28, 85]. Initial Phase II results combining PEGPH20 with 

nab-paclitaxel/gemcitabine have shown a statistically significant doubling of the ORR, with 

a trend towards improved PFS and OS in patients with high levels of hyaluronan [86]. 

Another strategy to promote better drug delivery would be to normalize the vasculature via 

stromal remodeling instead of depletion [87], or via vascular promotion, a mechanism which 

involves administering agents that enhance angiogenesis, flow, and the leakiness of vessels 

[88].

Additionally, it has been shown that the tumor microenvironment of transplantable models is 

not the same as that seen in a genetically mouse model (GEMM) [27]. In the transplantable 

models, there is a lack of stroma and the pancreatic cancer cells are close to the vessels [27]. 

For that reason, many cytotoxic agents that were shown to be ineffective in human trials 

initially showed efficacy when tested in xenograft models [27, 89]. Later, it was found that 

such agents were just as ineffective when used in GEMMs [27, 89]. It is perhaps the same 

story with the anti-angiogenic agents, as they were primarily only tested in subcutaneous or 

orthotopic nude mouse models of human PDAC. Future studies should also utilize the 

increasing number of available GEMMs for PDAC [90, 91].

As is often observed in many clinical trials, patient responses are variable, with only a subset 

of patients benefiting from the therapy, while overall, no positive effect may be seen. It 

would be useful if we could identify those patients who might benefit the most via the use of 

predictive biomarkers. Though some trials have attempted to look for correlations between 

certain known pro-angiogenic molecules circulating in the plasma and treatment response, 

none have been successful to date [44, 46, 52, 76]. With an increasing number of studies 

utilizing high throughput technologies like RNA sequencing (RNA-Seq) to profile human 
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tumors, it is possible that a gene expression signature could be used. In fact, we have already 

identified such a signature by using TCGA RNA-Seq data [92].

Because most approved indications for bevacizumab involve concomitant administration 

with some form of cytotoxic chemotherapy, at least one clinical study suggested that even if 

bevacizumab was effective at normalizing the vasculature sufficiently to improve drug 

delivery, the fact still remains that we lack any effective chemotherapeutic or targeted agent 

for the treatment of PDAC [53].

In summary, future studies of angiogenesis in PDAC should consider potential resistance 

mechanisms to targeted therapies, use appropriate pre-clinical models that can recapitulate 

the microenvironment seen in human PDAC, and use biomarkers or gene signatures to select 

patients for clinical trials.
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Abbreviations

ANGPT angiopoietin

BRAF serine/threonine-protein kinase B-raf

CAF Cancer Associated Fibroblast

Cdkn2a cyclin-dependent kinase inhibitor 2A

CI confidence interval

CSF1R macrophage colony-stimulating factor 1 receptor

DLL4 delta-like protein 4

EC Endothelial Cell

ECM Extracellular Matrix

EGFR epidermal growth factor receptor

FDA Food and Drug Administration

FGF fibroblast growth factor

FGF2 fibroblast growth factor 2

FGFR-1 fibroblast growth factor receptor 1 (gene: FGFR1)
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FOLFIRINOX fluorouracil plus leucovorin, irinotecan, and oxaliplatin

GEMM genetically engineered mouse model

Gpc1 glypican-1

HIF-1α hypoxia inducible factor 1, alpha subunit (gene: HIF1A)

HR hazard ratio

HRG heregulin (gene: NRG1)

HSPG heparan sulfate proteogylycan

I Immune Cell

IHC immunohistochemistry

IL-8 interleukin-8 (gene: CXCL8)

KC KrasLSL−G12D/+; Pdx-1-Cre

KIC KrasLSL−G12D/+; Cdkn2aLoxP/LoxP; Pdx-1-Cre

KPC KrasLSL−G12D/+; Trp53LSL−R172H/+; Pdx-1-Cre

Kras kirsten rat sarcoma viral oncogene homolog

MVD microvessel density

NCI National Cancer Institute

NICD notch intracellular domain

NIH National Institutes of Health

NRP1 neuropilin-1

ORR objective response rate

OS overall survival

PCC Pancreatic Cancer Cell

PDAC Pancreatic Ductal Adenocarcinoma

PDGF platelet-derived growth factor

PDGFR platelet-derived growth factor receptor

PDGFRB platelet-derived growth factor receptor beta

PFS progression free survival

PlGF placenta growth factor (gene: PGF)

RNA-Seq RNA sequencing
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SCFR mast/stem cell growth factor receptor Kit (gene: KIT)

TCGA The Cancer Genome Atlas

TGF-β transforming growth factor beta (gene: TGFB1)

Trp53 transformation related protein 53

VEGF vascular endothelial growth factor

VEGF-A vascular endothelial growth factor A (gene: VEGFA)

VEGF-B vascular endothelial growth factor B (gene: VEGFB)

VEGFA vascular endothelial growth factor A (protein: VEGF-A)

VEGFR vascular endothelial growth factor receptor

VEGFR-1 vascular endothelial growth factor receptor 1 (gene: FLT1)

VEGFR-2 vascular endothelial growth factor receptor 2 (gene: KDR)

VEGFR-3 vascular endothelial growth factor receptor 3 (gene: FLT4)
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Highlights

• Pancreatic Ductal Adenocarcinoma (PDAC) is hypovascular.

• Vascular endothelial growth factor A (gene: VEGFA) (VEGF-A) is 

overexpressed in PDAC.

• Increased VEGF-A or microvessel density is associated with poor 

patient outcome.

• Blocking VEGF-A in mouse models reduces tumor volumes and 

improves survival.

• Clinical trials targeting angiogenesis elicit marginal survival benefit.
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Figure 1. PDAC Angiogenesis
In PDAC, Pancreatic Cancer Cells (PCCs) proliferate within a desmoplastic stroma that 

consists of both cellular components such as Cancer Associated Fibroblasts (CAFs), 

Immune Cells (Is), and Endothelial Cells (ECs) as well as Extracellular Matrix (ECM) 

components like soluble growth factors, cytokines, collagens, fibronectin, laminin, 

glycoproteins, and proteoglycans.

Up-regulation of hypoxia inducible factor 1, alpha subunit (gene: HIF1A) (HIF-1α) and the 

pro-angiogenic molecule VEGF-A within PCCs results in secretion of VEGF-A molecules 

into the tumor microenvironment. When VEGF-A signals through VEGFR-2 and its NRP1 

co-receptor on endothelial cells, downstream signaling results in increased expression of 

DLL4. DLL4 will bind to Notch receptors on neighboring cells, subsequently releasing 

NICD, which then down-regulates VEGFR-2 and NRP1 expression and up-regulates 

expression of the VEGFR-1 decoy receptor. This favors migration of a tip cell towards the 

VEGF-A gradient while the neighboring stalk cells become de-sensitized to the signal. In 

the quiescent vasculature, DLL4 and Notch signaling are balanced.

Small molecule inhibitors of angiogenesis, such as Axitinib, Sunitinib, Sorafenib, and 

Vatalanib primarily act on the vascular endothelial growth factor receptor complexes 

(VEGFR-1, VEGFR-2, and Vascular endothelial growth factor receptor 3 (gene: FLT4) 

(VEGFR-3)) while recombinent protein inhibitors of angiogenesis like Bevacizumab, 

Elpamotide, and Ziv-Aflibercept act on vascular endothelial growth factor ligands like 

VEGF-A, vascular endothelial growth factor B (gene: VEGFB) (VEGF-B), and/or placenta 

growth factor (gene: PGF) (PlGF).
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