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Abstract

The ability of regulatory T cells (Treg) to prolong allograft survival and promote transplant 

tolerance in lymphodepleted rodents is well-established. Very few studies, however, have 

addressed the therapeutic potential of adoptively-transferred, CD4+CD25+CD127−Foxp3+ (Treg) 

in clinically-relevant large animal models. We infused ex vivo-expanded, functionally stable, non-

selected Treg (up to a maximum cumulative dose of 1.87 billion cells) into anti-thymocyte 

globulin-lymphodepleted, MHC-mismatched cynomolgus monkey heart graft recipients before 

homeostatic recovery of effector T cells. The monkeys also received tacrolimus, anti-IL-6R mAb 

and tapered rapamycin maintenance therapy. Treg administration in single or multiple doses 

during the early post-surgical period (up to one month post-transplant), when host T cells were 

profoundly depleted, resulted in inferior graft function compared with controls. This was 

accompanied by increased incidences of effector memory T cells, enhanced IFNγ production by 

host CD8+ T cells, elevated levels of proinflammatory cytokines and anti-donor alloAb. The 

findings caution against infusion of Treg during the early post-transplant period following 

lymphodepletion. Despite marked but transient increases in Treg relative to endogenous effector T 

cells and use of reputed “Treg-friendly” agents, the host environment/immune effector 

mechanisms instigated under these conditions can perturb rather than favor the potential 

therapeutic efficacy of adoptively-transferred Treg.
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 Introduction

Regulatory immune cell therapy offers a promising approach to the improvement of long-

term outcomes in chronic, immune-mediated inflammatory disorders (1, 2). In particular, the 

therapeutic potential of regulatory T cells (Treg) has been demonstrated extensively in 

rodent models, including humanized mice (3). These results provide a strong rationale for 

testing the efficacy of Treg in suppression of auto- or allo-immunity in humans (4). Indeed, 

in limited clinical studies, ex-vivo expanded, naturally-occurring (thymic-derived) third-

party polyclonal Treg have shown promise in attenuating acute graft-versus-host disease 

following allogeneic hematopoietic stem cell transplantation (5). Furthermore, several phase 

1/2 Treg dose-escalation studies are already underway in organ transplantation (4, 6, 7) 

(https://clinicaltrials.gov/ct2/show/NCT02088931; NCT02091232; NCT02129881; 

NCT02188719; NCT02244801). Many questions remain however, regarding the optimal 

conditions for Treg safety and efficacy (8–13). These relate to manufacturing issues, dosage, 

timing and frequency of cell infusion, Treg specificity, migratory properties and longevity. 

Of particular concern is Treg functional plasticity (11, 14–16) and their potential 

reprogramming into pathogenic effectors under inflammatory conditions (17–19), such as 

exist in transplant recipients (4, 10, 20). Indeed, there is recent evidence that under such 

conditions, adoptively-transferred regulatory immune cells lose function (21). Additional 

considerations include the selection of appropriate immunosuppressive agents that do not 

antagonize and that may promote Treg function. There is also a need to overcome potential 

barriers to Treg therapy, in particular immunologic memory (22), that is more prevalent in 

humans than in short-lived, inbred, specific pathogen-free rodent models.

Non-human primates (NHP) offer much closer immunologic proximity to humans than 

rodents, including high frequencies of alloreactive memory T cells (Tmem) (23). They are 

regarded as robust, pre-clinical models for testing the most promising innovative approaches 

to improved long-term graft survival/induction of transplant tolerance (24). In monkeys, 

endogenous (25) or adoptively-transferred Treg/anergic T cells appear important in 

suppression of renal allograft rejection (26, 27). Significantly, considerable recent progress 

has been made in the characterization of ex vivo expanded NHP Treg (28–30). This includes 

documentation of their ability to suppress alloreactive effector T cell proliferation (29, 31) 

and their pharmacokinetics/persistence in blood and trafficking to host lymphoid tissue 

following adoptive transfer (32, 33). Several immunosuppressive agents are regarded as 

‘Treg-sparing’, including rabbit anti-thymocyte globulin (ATG) (34, 35) and the serine/

threonine kinase mechanistic target of rapamycin inhibitor, rapamycin (31, 36, 37).

We have reported recently (33) that adoptively-transferred, ex vivo expanded cynomolgus 

monkey polyclonal Treg maintain a signature similar to endogenous Treg, although with 

progressively diminishing Foxp3 expression, following their transfer to surgically-intact, 

lymphodepleted hosts given tapered rapamycin maintenance immunosuppression. To 

investigate the influence of these ex vivo-expanded Treg on heart allograft survival, we 

administered single or multiple infusions to ATG-treated, MHC-mismatched recipients. The 

monkeys were also given anti-IL-6R monoclonal antibody (mAb) (to antagonize potential 

inhibitory/destabilizing effects of IL-6 on Treg function (38–40)) and rapamycin. These 

agents were administered in an effort to promote/augment Treg survival/function in the early 
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post-surgical period (up to 1 month post-transplant) before homeostatic recovery of effector/

memory cells (41, 42), when host T cells were profoundly depleted.

Our data show that, under these conditions, polyclonal Treg infusion(s) results in inferior 

graft function, associated with increased incidences of circulating T effector memory cells 

(Temra), enhanced circulating B cell numbers, and augmented proinflammatory cytokine 

and anti-donor alloAb levels. These data suggest a causative relationship between infusion 

of large numbers of exogenous Treg and enhanced host immune effector mechanisms under 

conditions of lymphodepletion. They caution against the infusion of Treg during the early (1 

month) post-transplant period following lymphodepletion when, despite marked transient 

enhancement of the regulatory to effector T cell ratio and use of reputed ‘Treg-friendly’ 

agents, the host environment/immune effector mechanisms appears to disrupt their potential 

efficacy.

 Materials and Methods

 Animals

Healthy cynomolgus monkeys (Macaca fascicularis) of Indonesian origin (3–5 kg; 5–7 years 

old) were obtained from specific pathogen-free colonies at Alpha Genesis, Inc, or the 

National Institute of Allergy and Infectious Diseases colony (both Yamassee, SC). All 

animal procedures were performed in accordance with the Guide for the Care and Use of 
Laboratory Animals prepared by the Institute of Laboratory Animal Resources and 

published by the National Institutes of Health (NIH Publication No. 86-23, revised 1985), 

and under a University of Pittsburgh Institutional Animal Care and Use Committee-approved 

protocol. Environmental enrichment was provided.

 MHC typing

Major histocompatibility complex (MHC) typing was performed as described (43) on all 18 

monkeys used in the study. The degree of disparity between donors and recipients, that were 

mismatched in at least 3 major alleles, is shown in Supplemental Table S1.

 Heart transplantation and graft monitoring

Nine monkeys received heart transplants from ABO-compatible, MHC-mismatched donors. 

Anesthesia, excision of the donor organ and heterotopic, intra-abdominal heart 

transplantation were performed as described (44). Graft function was monitored by regular 

palpation under chemical restraint (twice a week, by two experienced independent 

observers). A palpation score (45, 46) was used to assess graft function, including both 

contraction strength and heart rate, with grade 3 representing strong/excellent, grade 2 

moderate, grade 1 weak and grade 0 complete cessation of contraction. Additionally, graft 

status was monitored by determining cardiac biomarkers in the blood, including cardiac 

troponin, total creatinine phosphokinase (CPK), CPK-MB isoenzyme and relative CPK-MB 

relative index (RI) before transplantation and 1 month post-transplant. Samples obtained 

from healthy monkeys served as controls.
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 Immunosuppression

Rabbit ATG (Genzyme; Boston, MA) was given intravenously (i.v.); slowly over 4 hours on 

days -3 and -1 before transplant and on days 6 and 13 post-transplant at doses of 10, 5, 5 and 

5 mg/kg, respectively. Methylprednisolone was given immediately before each ATG infusion 

at doses of 5, 2.5, 2.5 and 2.5 mg/kg, respectively. Anti-IL-6R mAb (Actemra; Genetech, 

CA) was administered i.v. over 1 hour at 10 mg/kg on days -1, 6, 13 and 20, and then once 

every 4 weeks. Tacrolimus was given by intramuscular (i.m.) injection from day -3 to 14 

(target whole blood trough levels: 10–15 ng/ml), followed by rapamycin (i.m.; LC 

Laboratories, Woburn, MA) from days 14 to 54 (target whole blood trough levels: 10–15 ng/

ml), after which rapamycin was weaned slowly and discontinued completely on day 84. The 

immunosuppressive protocol is summarized in Figure 1.

 Blood and lymphoid tissue sampling

Peripheral blood mononuclear cells (PBMC) and serum/plasma samples were collected 

before the start of immunosuppression, at various times pre- and post-transplant, and at the 

time of euthanasia. Donor spleens and lymph nodes (LN) were collected at the time of 

transplantation.

 Isolation, expansion and infusion of polyclonal Treg

Briefly, cynomolgus CD4+ T cells were negatively-enriched from fresh PBMC using NHP 

CD4+ T cell isolation kits (Miltenyi Biotech, Auburn, CA). CD4+CD25+CD127− Treg were 

then flow-sorted (Supplemental Figure S1) using a BD FacsAria (BD Biosciences, San Jose, 

CA) and expanded over 3 weeks using artificial antigen-presenting cells (aAPCs) (L-32), as 

described (33, 47). The L-32 cells expressing CD32, CD80 and CD58 were kindly provided 

by Dr. M. K. Levings, University of British Columbia, Vancouver, Canada (48). Either 

single or multiple infusions (x4 or 5) of expanded Treg were administered to the heart graft 

recipients in the doses and at the times shown in Table 1.

 Treg-specific demethylation region analysis

Expanded Treg were frozen and aliquots submitted to EpigenDX Inc. (Hopkinton, MA) for 

Treg-specific demethylation region (TSDR) analysis on 10 cytosine-phosphate-guanine 

(CpG) motifs (49).

 In vitro Treg suppression assay

CD4+CD25+CD127− - depleted T cells labeled with 4 μM carboxyfluorescein succinimidyl 

ester (CFSE; Invitrogen) served as responders. A fixed number (1×105) was stimulated with 

NHP-specific anti-CD3/CD28 microbeads (Miltenyi), at a cell:bead ratio of 10:1, in the 

presence of various numbers of ex vivo-expanded Treg for 4 to 5 days. Proliferation was 

determined by dye dilution and the extent of suppression determined as described previously 

(29).

 Enumeration of host immune cell populations

Distinct PBMC populations were enumerated by flow cytometry, as described (33, 50). 

Phenotypic analyses were performed using Abs directed against CD3 (clone SP34-2), CD4 
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(L200), CD8 (RPA-T8), CD14 (M5E2), CD20 (2H2), CD45RA (5H9), CD56 (MY31) and 

CD127 (HIL-7R-M21) from BD Pharmingen (Franklin Lakes, NJ). Anti-CD159a (NKG2A) 

(Z199) was from Beckman Coulter and anti-CD28 (CD28.2) from Biolegend (San Diego, 

CA). Anti-CD25 (BC96) was from eBioscience (San Diego, CA) and anti-CD62L (SK11) 

from Becton Dickinson (Franklin Lakes, NJ). Data were acquired on a LSR II or LSR 

Fortessa (BD Bioscience) and analyzed with FlowJo software.

 Intracellular cytokine staining and cytokine quantitation

For intracellular cytokine staining, T cells were activated for 3h with PMA and ionomycin in 

the presence of GolgiStop (BD Bioscience), followed by anti-IFNγ (4S.B3; Biolegend) or 

anti-IL-17 (eBio64Dec17; ebiosciences). Levels of IFNγ and IL-17 secreted by T cells 

stimulated for 4 days under Th1-, Th2- or Th17-polarizing conditions were measured using 

a Cytometric Bead Array (CBA) Flex Set system (BD Bioscience) and analyzed with FCAP 

Array Software (BD Bioscience). Cytokine levels in serum were determined by the 

University of Pittsburgh Cancer Institute Luminex Core Laboratory using MILLIPLEX NHP 

kits from Millipore (Billerica, MA), according to the manufacturer’s instructions.

 Measurement of circulating alloAb

Serum samples collected before and 1 month post-transplant and at the time of rejection 

were stored at −20°C. Donor CD3+ T cells (from either spleen or LN) were used as targets 

for quantitation of anti-donor MHC class I IgM and IgG alloAbs by flow cytometry, as 

described (51, 52). Anti-CD3-APC (cat# 557597) was obtained from BD Bioscience, anti-

human IgM-PE (cat# 2020-09) from Southern Biotech and goat anti-human IgG-FITC (cat# 

62-8411) from Invitrogen.

 Histopathological examination of grafts

All transplant and native hearts were examined histologically in a blinded fashion at the time 

of cessation of graft contraction by an experienced transplant pathologist (MAN). Rejection 

was graded according to the 2004 and 1990 International Society of Heart and Lung 

Transplantation (ISHLT) criteria (53, 54). Additionally, the overall pattern of inflammation 

was recorded and semi-quantitative estimates provided for the extent of confluent necrotic 

foci, arteritis, and the presence of nodular B cell aggregates (based on CD20 staining).

 Statistical analyses

Differences between means were evaluated using Student’s paired ‘t’-test or the non-

parametric Mann-Whitney U test, as appropriate. Statistical analyses were conducted using 

the standard formula in Microsoft Excel software. A ‘p’ value <0.05 was considered 

significant.

 Results

 Characterization of ex vivo expanded cynomolgus Treg

Cynomolgus Treg were flow-sorted and expanded from peripheral blood of healthy 

monkeys, including prospective heart graft recipients (third party or autologous Treg). The 
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phenotype of the expanded infused Treg is shown in Supplemental Figure 1. Their ability to 

potently suppress T cell proliferative responses was confirmed (Figure 2A) as described 

previously in detail (33, 47). To confirm the functional stability of the expanded Treg in 

vitro, we examined their response to stimulation under culture conditions that promote Th1, 

Th2 and Th17 cell polarization. As shown in Figure 2B, in contrast to CD4+CD25− T 

effector cells (Teff), expanded Treg failed to secrete IFNγ or IL-17 and retained high levels 

of Foxp3+ expression after 4 days of culture under these conditions (data not shown). Each 

batch of expanded Treg for infusion into transplanted monkeys exhibited high percentages of 

TSDR demethylation at the Foxp3 locus (Figure 2C) and potently suppressed proliferation 

of anti-CD3/CD28-activated T cells, obtained from either healthy monkeys or monkeys 

undergoing heart allograft rejection, as described previously (33) (data not shown).

 Heart allograft function and survival

In non-immunosuppressed NHP, heterotopic heart allografts usually reject 6–7 days post-

transplant (51). In this study, all monkeys received immunosuppression, as shown in Figure 

1, either without (control group; n=3 monkeys) or with Treg infusion (Treg group; n=6 

monkeys) at the times and cell doses shown in Table 2. In the control group, graft function 

(palpation score) began to decline in individual monkeys on days 28, 35 and 53, respectively 

(Figure 3A). With a single Treg infusion, similar reductions in the palpation score were first 

observed on days 32, 41, 53 and 53, respectively, whereas with multiple Treg infusions, 

reductions in the score were first observed earlier, on days 12 and 14, respectively. In all 

recipients, graft contraction strength declined progressively until total cessation of 

contraction (graft rejection), as shown in Figure 3A. To evaluate cardiac muscle injury, we 

monitored cardiac biomarker levels in serum. Significantly higher CPK-MB isoenzyme 

levels and an increased CPK-MB relative index were found in monkeys given Treg infusions 

compared to the control group (Figure 3B). No differences in cardiac biomarker expression 

were observed between the groups at the time of graft rejection (experimental endpoint; data 

not shown). In control monkeys (no Treg infusion), graft survival times were 88, 92 and 116 

days post-transplant (median survival time [MST] = 92 days), whereas, in monkeys given a 

single Treg infusion, graft survival times were 74, 85, 109 and 112 days (MST = 97 days) 

and in animals given multiple infusions, 55 and 82 days (MST = 69 days) (Figure 3C). All 

allografts exhibited ISHLT grade 3B ejection, as described in Supplemental Table S2.

 Kinetics of immune cell recovery in transplanted monkeys

Following lymphodepletion, absolute numbers of peripheral blood CD3+T cells remained 

profoundly below pre-treatment levels (> 95 % depletion) in all graft recipients until 6–8 

weeks post-transplant (Figure 4A), after which they began to recover. While CD4+T cells 

exhibited a similar depletion and recovery pattern to CD3+ T cells in all groups (Figure 4B), 

CD8+T cells (that also remained below baseline for at least 12 weeks in the control group 

[no Treg]) recovered earlier and achieved higher than baseline levels by 9–12 weeks post-

transplant in four (M125, M122, M124 and M118) of the six graft recipients given Treg. In 

control monkeys, CD20+B cell numbers remained below baseline until 10–12 weeks post-

transplant, when a 200–600% increase above baseline was observed in four (M125, M122, 

M124 and M118) of the six recipients given Treg infusion. In all graft recipients, circulating 
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monocytes were depressed initially, but after 2–4 weeks they were restored to levels similar 

to baseline.

 Recovery of Tmem after transplantation

Tmem subsets were identified in peripheral blood based on their differential expression of 

CD45RA and CD62L. Effector memory (Tem; CD45RA−CD62L+) and terminally-

differentiated effector memory (Temra; CD45RA+CD62L−) CD4+ and CD8+ T cells were 

evaluated sequentially in individual graft recipients 2, 4, 8 and 12 weeks post-transplant 

(Figure 5). In the control group (no Treg infusion), no to modest increases in the incidences 

of CD4+Tem at 4 weeks were observed, whereas CD4+Temra were reduced initially, but 

recovered gradually to baseline levels by 12 weeks post-transplant. In transplant recipients 

with Treg infusion, increases in the incidences of CD4+Tem compared to baseline levels 

were observed at 4 weeks, followed by gradual decreases towards baseline levels by 12 

weeks. Concomitantly, the incidences of CD4+Temra were reduced initially at 2 weeks, but 

increased progressively starting 4 weeks post-transplant to significantly above baseline 

levels by 8 and 12 weeks (Figure 5A). CD8+Tmem showed minimal change over time in the 

control group and remained similar to baseline levels at 12 weeks. Although they were 

reduced at 2 weeks, CD8+ Temra levels increased progressively but not above baseline levels 

until 8 and 12 weeks. With Treg infusion, similar kinetics (compared with CD4+ T cells) of 

circulating CD8+Tem and CD8+Temra were observed (Figure 5B). CD8+Tem were 

markedly increased above baseline levels at 4 weeks in the two recipients given multiple 

infusions. In all recipients with Treg infusion, CD8+Temra levels were similar to baseline 

levels by 4 weeks and were increased significantly at 8 and 12 weeks compared to baseline 

levels. Interestingly, an inverse association between CD8+Tem and CD8+Temra levels was 

observed in the two recipients with multiple Treg infusions. Notably, the incidences of both 

CD4+ and CD8+ Temra were elevated significantly (p<0.05) in the Treg-infused animals 

compared to control monkeys at 4 and 8 weeks post-transplant (Figure 5C). Similarly, 

absolute numbers of Tem and Temra CD4+ and CD8+ T cells were higher at 4 and 8 weeks 

in the Treg-infused monkeys compared to controls, although the differences were not 

statistically significant, except for CD4+ Temra 8 weeks after transplantation (Figure 5D).

 Kinetics of Treg relative to Teff in transplanted monkeys

An important consideration concerning the potential efficacy of adoptively-transferred Treg 

is their impact on the regulatory: effector cell ratio in vivo. Figure 6 shows the ratio of 

Teff:Treg in peripheral blood of individual control and Treg-infused monkeys at various 

times pre- and post-transplant. Although in all graft recipients, CD4+ and CD8+ T cell 

numbers were profoundly reduced as the result of ATG administration (Figure 4B), the 

CD4+ Teff:Treg ratio was skewed markedtly in favor of Treg during the first 4 weeks post-

transplant. As anticipated, multiple Treg infusions resulted in more profound skewing of the 

Teff:Treg ratio towards Treg. In each experimental group, however, progressive recovery of 

the Teff/Treg ratio was observed, with the ratio returning towards baseline levels by the time 

of graft rejection.
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 Incidence of CD8+IFNγ+ Teff

Figure 7 shows the incidence of IFNγ+CD8+ T cells in control and Treg-infused graft 

recipients following ex vivo host CD8+ T cell stimulation at various times pre- and post-

transplant. The data show higher levels of IFNγ+CD8+ T cells in the graft recipients given 

Treg infusion (mean 67.6%; range 53.7–78.8%) compared with controls (mean 22.0%; range 

9.1–44.1%) 8 weeks post-transplant.

 Circulating cytokine levels

Figure 8 shows systemic levels of specific cytokines in individual graft recipients pre- and 

post-transplant. Compared to pre-transplant levels, higher median levels of IFNγ, IL-1Ra, 

IL-6, IL-15, and IL-21 were observed 4 weeks post-transplant in the Treg-infused monkeys. 

No comparable significant increases were observed in the control group at 4 weeks 

compared to pre-transplant levels.

 Circulating alloAb levels

All heart graft recipients developed circulating anti-donor IgM and IgG alloAbs. In the 

control group, all monkeys developed high IgM titers. Increased IgG alloAb levels were also 

detected by day 28, with further increases by the time of rejection. Similar increases in 

levels of both anti-donor IgM and IgG alloAbs were observed in monkeys given Treg 

infusion (Figure 9). No significant differences in IgM levels were observed between the two 

groups, either 4 weeks post-transplant or at rejection. Similarly, no significant differences in 

IgG levels were observed between the groups 4 weeks post-transplant; however, at the time 

of euthanasia, higher IgG levels were detected in those monkeys given Treg infusion.

 Discussion

The successful expansion of otherwise rare, functional CD4+CD25+Foxp3+ Treg has made 

Treg therapy a feasible experimental approach to reducing patients’ dependence on 

immunosuppressive agents and improved long-term allograft survival. In lymphodepleted 

rodent models, such as T and B cell-deficient (RAG−/−) (55), T cell-depleted (56, 57) or 

irradiated mice (58), many studies have shown that adoptively-transferred Treg can prolong 

allograft survival/promote tolerance. Only limited data have demonstrated control of 

allograft rejection with adoptively-transferred Treg in lymphoreplete animals (59). Our goal 

was to determine the influence of ex vivo-expanded, non-selected Treg infused following 

ATG-induced lymphodepletion, on heart allograft survival in a clinically-relevant NHP 

model. Our rationale was that (1), compared to the steady-state, adoptively-transferred 

functional Treg would be enhanced numerically relative to severely-depleted endogenous 

effector T cells in hosts treated with a lymphocyte-depleting immunosuppressive regimen 

and, therefore, better able to regulate alloimmunity and that (2), incorporation of anti-IL-6R 

mAb and rapamycin might spare/promote the suppressive function of the infused Treg in an 

environment that might promote their enrichment during immune reconstitution after ATG 

administration (60, 61).

The Treg that we expanded and infused either once or multiple times during the early post-

transplant period were phenotypically and functionally stable in vitro. They markedly 
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suppressed ex vivo proliferative responses of naïve and memory T cells from normal 

monkeys or from monkeys acutely rejecting cardiac allografts. We considered this (in vitro) 

ability to suppress Tmem responses to be of crucial importance since (unlike short-lived, 

specific pathogen-free mice), NHP normally have high frequencies of alloreactive Tmem 

(23, 62) that can dominate anti-donor responses following lymphodepletion at the time of 

transplantation (50, 63, 64). Moreover, CD4+ and CD8+ Tmem are relatively resistant to 

suppression by CD4+CD25+ Treg (22, 65). The cynomolgus Treg we generated exhibited 

high CXCR3, but low CD62L and CCR7 expression (33), consistent with potential to 

accumulate at sites of inflammation (e.g., an organ allograft), where their suppressive effects 

appear to be important (66, 67). They also retain a Treg signature in monkeys conditioned 

with ATG and rapamycin following their infusion, although Foxp3 expression diminishes 

over time (33). Despite these attributes considered favorable to their therapeutic potential, 

Treg infusion did not prolong heart allograft survival. Indeed, we show that, compared with 

identically-immunosuppressed recipients that did not receive Treg, allograft function in 

Treg-infused monkeys was inferior, particularly in those monkeys given multiple cell 

infusions. Furthermore, Treg infusion was associated with significant increases in the 

incidences of circulating CD4+ and CD8+ Temra and IFNγ-producing CD8+ T cells, and in 

levels of anti-donor alloAb.

Our findings clearly differ from previous reports of the ability of adoptively-transferred Treg 

to promote organ allograft survival in rodents. In these mouse studies, Treg were injected 

into lymphodepleted hosts either before or after transplantation (56–58). In the present 

study, failure of adoptively-transferred Treg infused post-transplant to prolong heart graft 

survival is also at variance with a recent report (27) that ex vivo-expanded Treg could 

prolong renal allograft survival in ATG-treated cynomolgus monkeys. In this latter 

investigation however, a much larger number of infusions (total=14) of expanded, donor 

alloAg-specific, host spleen-derived CD4+CD25+ Treg were infused daily (107 per day). 

Infusions were started earlier and in closer proximity to ATG administration than in the 

present study. They were commenced at the time of transplant, i.e., 1 day after a 3-day 

course of ATG (20mg/kg) and were combined with low-dose rapamycin for 14 days. Thus, 

renal allograft survival was prolonged from a MST of 22 days to 48.5 days in 

splenectomized hosts. In the only other NHP study (26) relevant to the present report, 

autologous anergic T cells generated ex vivo by blocking the CD80/CD86-CD28 

costimulatory pathway, suppressed renal allograft rejection after their adoptive transfer (79–

155 ×106), once only, 13 days post-transplant to splenectomized rhesus monkeys given 

cyclophosphamide (30 mg/kg on days 6, 7 and 8) and cyclosporine. Thus, in each of these 

studies in which regulatory/anergic T cells were reported to prolong NHP organ allograft 

survival, host splenectomy was performed. In addition, the timing, frequency and doses of 

Treg and the immunosuppressive regimen employed differed in each case from those in the 

present study. Also, in one case, the autologous Treg were alloAg-reactive.

The doses of polyclonal Treg that we infused into profoundly lymphodepleted (peripheral 

blood and secondary lymphoid tissue (68)) 3–5 kg cynomolgus monkeys in this study 

ranged from 120–380×106 total cells in a single infusion, to cumulative totals of 878×106 –

1.87×109 given in multiple infusions. These doses were generally higher than those used in 

the two aforementioned NHP organ transplant studies. Currently, it is thought (69, 70) that 
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billions of Treg and high Treg:T effector cell ratios (1:1; 1:2) are needed, together with ATG 

induction at the time of transplant, to dramatically alter the Treg to effector/memory cell 

balance and to control graft rejection in humans. Technological advances indicate that this is 

feasible. However, despite infusing numbers of Treg that achieved and markedly exceeded 

this balance in NHP, albeit transiently, as the result of single or multiple infusions, we did 

not observe a therapeutic effect on heart graft survival.

A crucial factor for retention of the immunosuppressive potency by Treg, especially under 

chronic inflammatory conditions (14, 15, 40), including transplantation (16, 71), is the 

maintenance of Foxp3 expression and their functional stability following adoptive transfer. 

While we did not monitor Foxp3 in Treg following their infusion in this study, due to 

concerns that labeling might impair their survival/function (72), we (33) and others (32) 

have previously observed progressive Foxp3 diminution in infused Treg that persist (in much 

reduced numbers) in monkeys over time (3 weeks). In the case of our studies (33), this 

diminution was observed in animals similarly ATG-conditioned and rapamycin-treated (but 

non-transplanted) to those in the present report. Importantly, others have reported that Treg 

can lose Foxp3 expression and differentiate into non-regulatory (Foxp3−) pathogenic Th1/

Th17 cells, including under lymphopenic conditions (17, 73) and that Foxp3 instability leads 

to generation of pathogenic memory T cells in vivo (15). In the current graft recipients, 

environmental cues that can destabilize Treg and enhance Tmem and alloAb responses, in 

particular IFNγ, IL-6 and IL-15, were elevated, whereas increased B cell-activating factor 

levels and rapamycin-augmented B cell activation have been reported in human 

lymphodepleted graft recipients (74). In the current study, rapamycin maintenance therapy 

was tapered until its complete withdrawal, 84 days post-transplant. Notably, enhanced 

expansion of CD8+ Tmem, like we observed after Treg infusion, has been correlated with 

failure of immunosuppression withdrawal after organ transplantation using ATG induction 

and rapamycin (75). Thus, it is likely that a combination of factors underlie the untoward 

influence of Treg infusion on graft function and host alloimmunity that we observed in the 

present study.

In conclusion, multiple infusions of non-selected Treg into ATG-lymphodepleted NHP 

during the early post-transplant period, resulted in inferior graft function/survival, associated 

with elevated effector memory and anti-donor alloAb responses. In organ transplantation 

trials that have been instigated, Treg are being infused into patients at different times post-

transplant and under different immunosuppressive drug regimens, including use of ATG-

induced lymphodepletion and mTOR inhibition. Further appraisal of the conditions under 

which Treg are evaluated to promote graft survival/minimize immunosuppression, especially 

in clinically-relevant NHP models, is justified in order to assure both their safety and 

therapeutic potential.
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Refer to Web version on PubMed Central for supplementary material.
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 Abbreviations

ATG anti-thymocyte globulin

CFSE carboxyfluorescein succinimidyl ester

Foxp3 foxhead box P3

IS immunosuppression

MFI mean fluorescence intensity

NHP non-human primate

Teff effector T cells

Tmem memory T cells

Treg regulatory T cells
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Figure 1. Protocol for infusion of ex vivo-expanded Treg into heart-allografted monkeys treated 
with ATG, anti-IL-6R mAb, tacrolimus and rapamycin
Times of immunosuppressive drug administration in relation to the day of heart transplant 

are shown. The transplant recipients received either no Treg or single or multiple infusions at 

the time(s) indicated (days) in relation to heart transplantation.
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Figure 2a
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Figure 2b

Figure 2. Suppressive function and stability of ex vivo-expanded cynomolgus Treg infused into 
heart graft recipients
(A) Ex-vivo-expanded Treg were tested for their ability to suppress VPD450-labeled 

autologous or allogeneic anti-CD3/CD28-activated CD4+ and CD8+ T cell proliferation. 

Percent divided cells was calculated using FlowJo software (top). The suppressive effect of 

this representative batch of Treg was tested on autologous (open circles) and three different 

allogeneic (closed circles) activated T cells (bottom). Treg function was expressed as percent 

suppression of T cell proliferation calculated using the formula: (percent divided T cells 

without addition of Treg – percent divided T cells with Treg)/percent divided T cells without 

addition of Treg x 100%. The expanded Treg showed strong suppressive activity when added 

to bead-stimulated T cells. Data are representative of the 4 batches of expanded Treg used 

for infusion after transplantation. (B) Primary CD4+CD25− effector T cells (Teff) or Treg 

expanded ex vivo for 3 weeks were stimulated with NHP-specific anti-CD3/CD28 

microbeads at a cell:bead ratio of 10:1 for 4 days under the following culture conditions: 

Th1 (IL-12 + anti-CD4 mAb), Th2 (IL-4 + anti-IFN-γ mAb), or Th17 (IL-6 + IL-21 + IL-23 

+ IL-1β + TGF-β + anti-IL-4 mAb + anti-IFN-γ mAb). Supernatants were collected and 

assayed for IFN-γ and IL-17 using CBA kits. Data (means ± 1SD) are from n=3 or n=4 

separate individual Teff or Treg cultures. (C) Demethylation status of Foxp3 TSDR in 

freshly-isolated Treg and Treg expanded for individual or multiple infusions from 4 different 

monkeys for 3 weeks before infusion into heart allograft recipients. Data are also shown for 

freshly-isolated and expanded Teff.
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Figure 3a
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Figure 3b

Figure 3. Heart allograft function and survival in control and Treg-infused monkeys
(A) Heart graft palpation scores at various times post-transplant in monkeys that did not 

receive Treg (control; n=3) and in those that received single (n=4) or multiple infusions 

(n=2). Vertical arrows indicate time(s) of Treg infusion. (B) Markers of cardiac muscle 

injury (CPK-MB isoenzyme) and CPK-MB Relative index in control and Treg-infused graft 

recipients pre-treatment and one month post-transplant. Open circles denote monkeys that 

received multiple Treg infusions. Open triangles denote the monkey that received a single 

autologous Treg infusion. (C) Heart graft survival times in the control and Treg groups. 

MST= median graft survival time.
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Figure 4a
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Figure 4b

Figure 4. Kinetics of peripheral blood T and B cell and monocyte numbers in lymphodepleted 
control and Treg-infused heart allograft recipients
(A) Kinetics of CD3+ T cell depletion and recovery in individual monkeys. (B) Absolute 

numbers of CD4+ and CD8+ T cells, CD20+ B cells, and monocytes in individual monkeys 

at various times pre-transplant and post-transplant. Vertical arrows denote the time(s) of Treg 

infusion(s).
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Figure 5a
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Figure 5b

Figure 5. Levels of CD4+ and CD8+ effector memory (Tem) and terminally-differentiated 
effector memory (Temra) cells in peripheral blood of lymphodepleted control and Treg-infused 
heart allograft recipients
(A) CD4+ and (B) CD8+ Tmem and Temra at various times pre-treatment and post-

transplant. (C) and (D) Mean values and significances of differences in relative and absolute 

numbers between control and Treg-infused monkeys at one month and two months post-

transplant. Open circles denote monkeys that received multiple Treg infusions. Triangles 

denote the one monkey that received a single autologous Treg infusion.
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Figure 6. T effector:Treg ratios in control and Treg-infused heart allograft recipients
Ratios of CD4+ or CD8+ T effector cells (Teff) to CD4+ Treg in peripheral blood are shown 

pre-treatment, one day after the initial ATG infusion, on the day of transplant and thereafter 

in control animals and those that received single or multiple Treg infusion(s). Values before 

and 30 min after the single or the first of multiple infusions are shown in the middle and 

lower panels, respectively.
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Figure 7. Incidences of CD8+ IFNγ+ effector T cells in Treg-infused heart allograft recipients
Incidences of CD8+ IFNγ+ cells in control and Treg-infused monkeys determined by flow 

cytometry after ex vivo stimulation of circulating CD8+ T cells with PMA and for 3 h, as 

described in the Materials and Methods. Pre-transplant values and those obtained 8 weeks 

post-transplant, and at the time of rejection are shown. POD=post-operative day.
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Figure 8a
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Figure 8b

Figure 8. Systemic levels of proinflammatory cytokines in Treg-infused heart allograft recipients
Various cytokines were determined in serum of individual monkeys by Luminex assay (as 

described in the Materials and Methods) pre-transplant and at one and two months post-

transplant in individual control and Treg-infused heart allograft recipients. Open circles 

denote monkeys that received multiple Treg infusions. Open triangles denote the monkey 

that received a single autologous Treg infusion.
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Figure 9. Circulating alloAb levels in heart allograft recipients
Levels of IgM and IgG alloAbs levels were determined by flow cytometry in the serum of 

control (no Treg) and Treg-infused monkeys before transplant, on day 28 post-transplant and 

at graft rejection. Numbers on panels denote mean fluorescence intensity (MFI). Horizontal 

bars in lower panels denote mean values obtained from individual monkeys.
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