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Abstract. 	Active DNA repair pathways are crucial for preserving genomic integrity and are likely among the complex 
mechanisms involved in the normal development of preimplantation embryos. MicroRNAs (miRNA), short non-coding RNAs, 
are key regulators of gene expression through the post-transcriptional and post-translational modification of mRNA. The 
association of miRNA expression with infertility or polycystic ovarian syndrome has been widely investigated; however, there 
are limited data regarding the importance of miRNA regulation in DNA repair during preimplantation embryo development. 
In this article, we review normal miRNA biogenesis and consequences of aberrant miRNA expression in the regulation of 
DNA repair in gametes and preimplantation embryos.
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Mammalian preimplantation embryo development follows a 
series of critical events. These events begin at gametogenesis 

and continue until parturition. Male and female gametes are derived 
from primordial germ cells during spermatogenesis and oogenesis, 
respectively. Following fertilization, oocyte and sperm nuclei fuse, 
resulting in syngamy. In preimplantation embryos, because the 
cell cycle is short, the risk of genetic errors during replication or 
segregation is increased [1]. Once DNA damage is detected, cells 
may undergo apoptosis or activate different DNA repair mechanisms, 
such as base excision repair (BER), nucleotide excision repair (NER), 
double strand break repair (DSBR) and mismatch repair (MMR) [2–4, 
5]. Poor activation of DNA repair may affect embryo implantation, 
because apoptosis of even a single cell at the cleavage stage is likely 
to delay embryo development into the blastocyst.

In the early stages of preimplantation embryo development, 
maternal mRNAs direct DNA repair. In mammals, during the cleavage 
stage divisions programming of maternal and paternal chromosomes 
occurs to create the embryonic genome (embryonic genome activation, 
EGA) and to begin preimplantation embryo development. Upon EGA, 
remarkable reprogramming of expression occurs. In mammals, these 
reprogramming events are controlled by transcription, translation, 
and microRNA (miRNA) regulation [6]. miRNAs form a large 
family of short non-coding RNAs between 17–25 nucleotides (nts) 
in length that have been shown to be expressed in preimplantation 
embryos [7–9].

The biological significance of miRNAs and the roles of these 

small non-coding RNAs in gametes and preimplantation embryos 
are poorly understood. This review briefly summarizes the biogenesis 
of miRNAs and their expression in gametes and preimplantation 
embryos, as well as their role in regulating DNA repair.

MicroRNA Biogenesis

The biogenesis of a small group of miRNAs is induced in an 
ATM-dependent manner. These miRNAs are associated with KH-type 
splicing regulatory protein, an AU-rich binding protein involved in 
Drosha and Dicer processing and in mRNA decay [10–12]. Generally, 
miRNAs are transcribed into long RNAs with a stem-loop structure 
by RNA polymerase II [13] (Fig. 1). Intergenic miRNAs, which 
contain their own promoters and regulatory units, are transcribed into 
pri-miRNA by RNA polymerase II, whereas intronic miRNAs are 
co-transcribed using host genes from a common promoter [14, 15]. 
The intergenic pri-miRNAs are processed by Drosha, a 130–160-kDa 
protein with one dsRNA-binding and two catalytic domains [16]. 
In the presence of Pasha/DiGeorge syndrome critical region gene 8 
(DGCR8), both strands of the hairpin are cut, generating a pre-miRNA 
product of approximately 70 nt in size [17]. Although both Drosha 
and DGCR8 were found to be essential for the formation of mature 
miRNA in Drosophila melanogaster and Caenorhabditis elegans, some 
pri-miRNAs do not involve these processes by Drosha and DGCR8 
and they either use other endonucleases or are directly transcribed into 
short hairpin structures [18–20]. Pre-miRNAs are then transported 
from the nucleus into the cytoplasm by Exportin-5 (Exp5), which is 
a nucleocytoplasmic transporter in the karyopherin family and has 
binding sites for pre-miRNAs in the presence of Ras-related nuclear 
protein and guanosine triphosphate [21, 22]. Pre-miRNAs are further 
cleaved by the cytoplasmic RNase endonuclease Dicer, forming 
21–22-nt double-stranded structures. The mRNA levels of Dicer in 
oocytes are higher compared to those in other cell types, suggesting 
that Dicer plays an important role in the female germline [23]. The 
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crucial role of Dicer in the female germline was also supported in a 
recent study showing that loss of a splice variant of Dicer, DicerO, 
led to sterility in female rodents [24]. Reduced and disorganized 
spindles and incorrect chromosome alignment were observed in 
Dicer mutant mice and C. elegans oocytes, respectively [7, 25]. 
Both strands of the pre-miRNA can be associated with Argonaut 
(Ago)-protein-containing complex and mediated by RNA-induced 
silencing complex/mi-ribonucleoprotein (RISC/miRNP); however, 
one strand is mostly degraded [16, 26]. There is no discrimination of 
which miRNA strand is degraded in mammals. However, the strand 
that regulates and is involved in the loading of the other strand, miR*, 
on RISC is typically degraded in mammals [27]. Selection of the 
strand for degradation may also depend on the stability of the 5′ end 
and the sequence characteristics such as the bias for A and U [28, 29].

Gametogenesis and miRNA Expression

miRNA expression has been observed as early as oogenesis and 
spermatogenesis in mouse, bovine, and human (Supplementary Table 
1: online only). Two percent of the miRNAs analyzed (15/722) in 
human oocytes showed different expression levels between GV 
and MII oocytes, such that four miRNAs, including hsa-miR-602, 
hsa-miR-193a-5p, hsa-miR-297, and hsa-miR-625, were up-regulated 
in oocytes matured in vitro compared to immature GV oocytes, 
whereas 11 miRNAs, including hsa-miR-888, hsa-miR-212, hsa-
miR-662, hsa-miR-299-5p, hsa-miR- hsa-miR-339-5pm hsa-miR-20a, 
hsa-miR-486-5p, hsa-miR-141, hsa-miR-768-5p, hsa-miR-376a, 

and hsa-miR-15a, were down-regulated in mature oocytes [30]. 
Ago2-deficient oocytes were matured with abnormal spindles, 
the chromosomes could not unite properly, and showed reduced 
expression levels of miRNAs [31].

Similar to the oocyte, sperm carries a range of miRNAs. 
Approximately 20% of these miRNAs are located in the nuclear 
or perinuclear region of the sperm, indicating that these miRNAs 
are transferred to the zygote at the time of fertilization. However, 
the role of these sperm-borne miRNAs is not clear since they are 
already present in the mature oocyte (meiosis II) [32].

Aberrant expression of miRNA biogenesis genes causes defects 
in both oogenesis and spermatogenesis. Complete loss of Dicer in 
somatic cells in the mouse reproductive tract not only showed reduced 
expression of miRNAs, but also caused the female mice to become 
infertile with compromised oocytes and embryo integrity [7, 9, 33–35]. 
Loss of Dicer in the germ-line of male mice (homozygote Dicer) 
led to decreased fertility resulting from abnormal spermatogenesis. 
In these mice, the number of germ cells was reduced with abnormal 
spermatids, abnormal phenotype of spermatocytes with condensed 
nucleus, abnormal sperm motility, and mutant testes with Sertoli 
tubules [36]. However, it has been suggested that maternal cytoplasmic 
Dicer transfer disguised the early abnormal phenotypes [25, 37]. 
Deletion of Dicer led to the loss of sperm, which may be related to 
the reduced levels of miRNA production [7, 38–40].

Preimplantation Embryos and miRNA Expression

Similar miRNA expression profiles in mature mouse oocytes 
and early developing embryos indicate that the zygote contains 
maternally inherited miRNAs [7]. As mouse and bovine embryos 
undergo cleavage divisions, variation in the expression levels of 
some miRNAs were observed (Supplementary Table 1). In murine 
embryos, miRNA expression is reduced by as much as 60% between 
the 1- and 2-cell stages. However, at the end of the 4-cell stage, the 
expression of miRNAs were doubled in mouse embryos compared 
to the 2-cell stage embryo, supporting that EGA begins between 
the 1-cell and 4-cell stages (Supplementary Table 1) [7]. Although 
the synthesis and degradation of miRNAs co-occur during mouse 
preimplantation embryo development, overall miRNA expression 
increases towards the blastocyst stage [41]. Despite numerous studies 
in mice, only two studies have analyzed the expression of miRNAs 
in human blastocysts [9, 42].

Abnormalities in Preimplantation Embryos Resulting 
from Aberrant miRNA Biogenesis

The correct biogenesis and expression of miRNAs is important 
in preimplantation embryos, as any changes in the expression of 
DNA repair genes may cause defective DNA repair in the embryos. 
The 5′ and 3′ nucleotides of the mature miRNAs are determined 
by Drosha cleavage, and defects in Drosha cleavage may lead to 
changes in the seed sequence of miRNAs. Exp5 is fundamental for 
miRNA expression in human and Drosophila, as the knock-down of 
Exp5 reduces miRNA and tRNA levels in human and Drosophila, 
respectively [43]. Exp5 was also suggested to stabilize pre-miRNAs. 
In the absence of Exp5, no pre-miRNA accumulation was detected in 

Fig. 1.	 Schematic diagram of miRNA biogenesis. Pri-miRNAs are 
cleaved by the Drosha/DGCR8 complex producing pre-miRNA. 
Exp5 transports pre-miRNAs into the cytoplasm that are then 
processed by Dicer and Ago2/RISC complex to form mature 
miRNA. Adapted from [13]. Copyright adapted with permission 
from “Development”, via DOI:- http://dev.biologists.org/
content/138/9/1653.long/.
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the nucleus [22], while when Exp5 was over-expressed, endogenous 
and exogenous miRNA levels were increased [44]. Knockout of Ago2 
in mouse embryonic fibroblasts and hematopoietic cells decreased 
the levels of mature miRNAs [38, 45, 46]. Any changes to the 
miRNA sequence or miRNA expression level will likely alter the 
regulation of mRNAs, which may cause changes in crucial pathways 
in preimplantation embryos [47] (Table 1).

The early differentiation of the maternal to zygotic transition was 
normal in Dicer mutant zebrafish and mouse embryos; however, 
defects were triggered in somatogenesis, morphogenesis that affected 
gastrulation, and heart development, as well as led to apoptosis in 
the limb mesoderm [25, 48–51]. Injection of miR-430, which is 
expressed at the time of EGA and increases the rate of deadenylation 
and degradation of maternal mRNAs [49], partially repaired the 
gastrulation, retinal development, and somatogenesis in zebrafish 
and C. elegans [25].

Deletion of DGCR8 caused cell proliferation defects; however, 
injection of miR-19, miR-20a, miR-20b, miR-294, and miR-295 
prevented these aberrations in mouse embryonic stem cells [52]. 
A lack of Dicer in Drosophila germ line stem cells postponed the 
G1/S phase transition [53], suggesting that miRNAs may be vital 
for stem cells to bypass this checkpoint. Additional studies showed 
that deletion of Dicer in the developing animals caused aberrations 
[54, 55]. Dicer deficiency and loss of Ago2 function led to embryo 
death in mice around embryonic day 7.5 [7, 25, 56] and 9.5 [57], 
respectively, and in zebrafish [58].

Regulation of mRNAs by miRNAs

miRNAs are either transcribed as separate genes or as miRNA 
clusters from precursor transcripts, whereas intronic miRNAs are 
encoded by introns of protein-coding genes, and are formed fol-
lowing pre-mRNA splicing. Approximately 30% of genes in the 
human genome are estimated to be targeted by miRNAs [59]. Until 
recently, all studies reported that miRNAs down-regulated their target 
mRNAs; however, in the past few years, miRNAs were suggested 
to stabilize their targets [60–67]. This stabilization of mRNAs is not 
well understood; however, several possible mechanisms have been 
proposed. miRNA regulation through binding to AU-rich elements of 
specific proteins [68, 69], miRNA regulation between repression and 
activation of genes with repression more active in proliferating cells 
and activation in G1/G0 arrest [70], a computational hypothesis of 
differential mRNA regulation by miRNAs [61, 62], and competition 
of pseudogenes with their legitimate genes for the same miRNAs, 
reducing the down-regulatory effect of miRNAs on their target 
genes [67], are the main proposed stabilization pathways. Therefore, 
pseudogenes, non-coding genes, and circular RNAs can function as 
endogenous decoys for miRNAs [64–67, 71–73]. From a similar 
perspective, it was also suggested that if an miRNA has multiple 
mRNA targets, the down-regulatory effect of the miRNAs is reduced 
[63]. Based on these observations, the competitive endogenous RNA 
(ceRNA) hypothesis was proposed, in which coding and non-coding 
RNAs can regulate the mRNA/miRNA association by competing for 
miRNA binding sites (miRNA response elements) [60]. Similarly 

Table 1	 Functions of miRNA processing genes and defects caused by abnormal functioning of these genes

Genes Functions Defects caused by abnormal functioning of genes
Drosha • Vital for the formation of mature miRNA [47] • 5′ and 3′ nucleotides of the mature miRNA are determined by Drosha cleavage 

and any defects in Drosha cleavage may lead to changes in the seed sequence 
of miRNAs [47]

• miRNA processing by cutting both strands of miRNA 
forming pre-miRNA product in the presence of DGCR8 
[16, 127]

Exp5 • Stabilization of pre-miRNAs [44] • Knockdown of Exp5 was shown to reduce miRNA expression [43]
• Transport of pre-miRNAs from the nucleus into the 

cytoplasm in the presence of Ran and GTP [44]
Dicer • Maturation of miRNA [16, 26] • Cell proliferation defects [36]

• Lack of Dicer in Drosophila germ line stem cells postponed the G1/S phase 
transition

• Dicer deletion in hippocampal, mouse and zebrafish initiated problems in 
nervous system and led to inability of forming mature miRNAs that resulted 
in variations of brain morphogenesis and differentiation of neurons [128, 129]

• Complete loss of Dicer1 caused reduced expression of miRNAs and infertile 
female mice [7, 9]

• Homozygote Dicer1 germ-line mutant male mice caused decreased male 
fertility [36]

• Dicer deficiency led to embryo death in mouse around embryonic day 7.5 [7, 
25, 56] and in zebrafish [58]

Ago2 • Component of miRISC [16, 26] • In the absence of Ago2, oocytes developed to the mature oocytes but with 
abnormal spindles, and chromosomes were not able to unite properly with 
reduced miRNA expression levels [57]

• miRNAs associated with Ago2/RISC complex target 
mRNAs [13]
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to the ceRNA hypothesis, it is also possible that miRNA/miRNA 
interactions positively regulate mRNAs, such that one miRNA 
down-regulates another miRNA, leading to increased expression 
of its target gene [69].

Regulation of Genes Involved in the Cell Cycle by 
miRNAs Expressed in Preimplantation Embryos

Several miRNAs targeting mRNAs function at cell cycle check-
points and in DNA repair mechanisms. Proper coordination of the 
cell cycle is crucial in the response to DNA damage. Cell cycle arrest 
occurs during replication and at G1/S (first gap phase/DNA synthesis 
phase) or G2/M (second gap phase/mitosis) checkpoints to activate 
the correct repair pathway [74]. If the repair mechanisms are unable 
to repair the damage, which can be caused by inactive DNA repair 
mechanisms, apoptosis of an embryonic cell can be detrimental to the 
early developing embryo. Therefore, the correct activation of genes 
and proteins is critical for fully functioning DNA repair pathways.

Many miRNAs expressed in preimplantation embryos regulate or 
are regulated by genes functioning at cell cycle checkpoints [75–77]. 
As described above, DNA replication and cell proliferation are shorter 
in preimplantation embryos. Therefore, the correct regulation of 
mRNA function during the cell cycle is crucial for avoiding genetic 
errors, cell cycle arrest, or apoptosis [78].

The tumor suppressor p53 is a DNA damage-induced transcription 
factor. Recent studies showed that the miR-125b [79], miRNA-380-5p, 
miR-34, and miR-200 families inhibit the expression of p53 and its 
related family member p63 in cancer cells [80]. miRNAs expressed in 
preimplantation embryos, such as miR-16-1, miR-143, and miR-145, 
were up-regulated by p53- and p68/p72-dependent pathways upon 
DNA damage in human colon cancer cell lines [81]. Additionally, 
p53 transcriptionally regulates the miR-192, miR-194, miR-215, 
and miR-17-92 clusters, and the miR-34 family that targets genes 
involved in G1/S and G2/M checkpoints [82–86]. Ectopic expression 
of these miRNAs results in cell cycle arrest in cancer cells and cell 
lines [79, 82, 83, 87–89]. Over-expression of miR-34c, a member of 
the miR-34 family, suppressed c-Myc expression, which regulates the 
G1/S cell cycle transition and prevents the replication of damaged 
DNA in cell lines, whereas inhibition of miR-34c prevents DNA 
damage-induced S-phase arrest [89]. RB1, another important gene 
functioning at the G1/S cell cycle transition, has recently been 
shown to have a direct expression association, indicating a possible 
stabilization effect of this miRNA on its target mRNAs. miR-21, 
which is involved in the epithelial-mesenchymal transition and 
represses tumor suppressors [90], negatively regulates the G1/S 
phase in laryngeal carcinoma tissues [91]. Members of miR-17-92 
in embryonic stem cells [92] and miR-371 and miR-302 clusters in 
humans [93] were also suggested to control the G1/S transition, and 
this cluster along with the signaling processes by Oct4, Sox2, and 
c-Myc may be vital for embryonic cell pluripotency and self-renewal 
[92]. Additionally, ectopic expression of miR-421 influences the 
efficiency of the S-phase cell-cycle checkpoint by down-regulating 
ataxia-telangiectasia mutated (ATM) kinase and increases the sensitiv-
ity to ionizing radiation in cell lines [94]. This effect was reversed by 
blocking the miR-421 and ATM 3′UTR interaction [95]. Similarly, 
over-expression of miR-18a in colorectal cancer cells suppressed 

ATM expression [96]. Additionally, over-expression of N-Myc, 
frequently amplified in neuroblastoma, is capable of inducing miR-
421 expression, leading to ATM down-regulation. This suggests that 
N-Myc-mediated oncogenesis may be associated with the miRNAs 
in DNA damage response and repair. Up-regulation of miR-101 in 
the plasmid constructs reduces ATM and DNA-dependent protein 
kinase protein levels [97]. M059J glioblastoma DNA-PK-deficient 
cells expressed high levels of miR-100, leading to low expression 
levels of ATM [98]. Over-expression of miR-143 protects cells from 
DNA damage-induced death, leading to G2 checkpoint arrest by 
targeting fragile histidine triad (FHIT) [99]. Figure 2 summarizes 
the association between miRNAs expressed in mouse, bovine, or 
human preimplantation embryos and the cell cycle genes and proteins.

Cell cycle checkpoint genes play an important role in activating 
the appropriate DNA repair pathways. It is possible that DNA repair 
pathways are not fully functional in preimplantation embryos. 
However, several genes associated with these pathways, including 
nucleotide excision repair (Fig. 3), base excision repair (Fig. 4), 
mismatch repair (Fig. 5), and double-strand break repair (Fig. 
6), are regulated by miRNAs and these genes expressed during 
preimplantation embryo development.

DNA Repair Genes and miRNA Expression

DNA repair is a multi-protein repair system and miRNAs regulate 
the expression of genes involved in different repair mechanisms. 
Several studies have reported the down-regulatory effects of miRNAs 
on their target mRNAs, resulting in defective repair. However, 
many of these studies were performed in tumors, cancer cells, and 
cell lines. Since there is only one published study describing the 
possible regulatory roles of miRNAs on repair genes in gametes or 
embryos [8], these studies in tumors, cells, or cell lines may provide 
a foundation for understanding the possible relationship between 
miRNAs and mRNAs during preimplantation development. In this 
part of the review, we will summarize the studies demonstrating the 
effects of miRNA expression on DNA repair mechanisms.

In a recently published study reporting the possible regulatory 
roles of miRNAs on their target repair genes, it was shown that 
the expression of hsa-miR-23b was inversely associated with the 
expression of its target nucleotide excision repair gene GTF2H2, 
indicating a possible down-regulatory role of this miRNA on repair 
gene [8]. Furthermore, forced expression of another miRNA, miR-192, 
impaired nucleotide excision repair because increased expression of 
this miRNA was shown to down-regulate ERCC3 (XPB) and ERCC4 
(XPF) in hepatoma HepG2.2.15 cells [100]. Similarly, the down-
regulatory effects of miRNAs on genes involved in double-strand 
break repair, including inverse expression association of hsa-miR-128 
with its target genes DCLRE1A and RAD50 in human blastocysts [8], 
were reported. Over-expression of miR-24 and miR-138 reduced the 
expression of H2AX, leading to an increased sensitivity to ionizing 
radiation and reduced repair capacity [88, 101, 102]; over-expression 
of miR-138 inhibited homologous recombination, leading to an 
increased sensitivity to DNA damaging agents [102]. Moreover, 
miR-23a, miR-23b [103], miR-24 [88], and miR-145 [104], target 
the initial sensor gene H2AX, which is involved in double-strand 
break repair. In breast cancer cell lines and tumors, miR-18a was 
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Fig. 2.	 miRNAs involved in the regulation of cell cycle checkpoint genes at G0, S, G2, and M phases. a) miRNAs involved in the regulation of cell cycle 
checkpoint genes at the G1/S transition. b) miRNAs involved in the regulation of cell cycle checkpoint genes at G0/G1 and S/G2 transitions. c) 
miRNAs involved in the regulation of cell cycle checkpoint genes at G2/M and M/G1 transitions. Main cycles of checkpoint, including G1 (first 
gap phase), S (synthesis phase), G2 (second gap phase), M (mitosis), and G0 are shown. Cell cycle regulators and effectors, which regulate and/or 
are regulated by miRNAs expressed in preimplantation embryo development, are grouped according to the cell cycle phase. Positive and negative 
relationship between miRNAs and mRNAs are shown according to the cell cycle: a) miRNAs involved in the regulation of cell cycle checkpoint 
genes at G1/S transition. b) miRNAs involved in the regulation of cell cycle checkpoint genes at the G0/G1 and S/G2 transitions c) miRNAs 
involved in the regulation of cell cycle checkpoint genes at the G2/M and M/G1 transitions [75, 80, 93, 95, 97, 118–126].
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over-expressed and the ectopic expression of miR-18a down-regulated 
ATM by interacting with the 3′UTR of the gene. Over-expression 
of miR-18a reduced homologous recombination and DNA repair in 
breast cancer cells and, as expected, inhibition of miR-18a improved 
the homologous recombination and DNA repair efficiency [105]. 
miR-182 targets BRCA1; over-expression of this miRNA may be 
involved in the up-regulation of BRCA1 in sporadic breast tumors 
and increase the sensitivity to PARP1 inhibition in cultured cells or in 
xenograft models [106]. miR-99 [107] and siSNF2H, which facilitates 
homologous recombination and the non-homologous end joining 
repair pathways [108], affect the localization of BRCA1 and Rad51 
to DNA damage sites and therefore influence DNA repair efficiency 
[109]. Forced expression of miR-210 suppressed RAD52 expression, 
while over-expression of miR-373 decreased RAD23B and RAD52 
[110]. Both of these miRNAs are induced in a hypoxia-inducible 
factor-1α-dependent manner, indicating an association between the 
miRNA and DNA repair pathways [110, 111]. Another study showed 
that the tumor suppressor miR-146, which is expressed in cleavage 
stage embryos, reduced the expression of BRCA1 in tumor tissues 
[112]. In silico studies showed that the conserved binding sites 

for miR-205 within BRCA1 and this miRNA and miR-146b were 
down-regulated in BRCA1 tumors [107].

Studies suggest that miR-155, which is expressed at different 
cleavage stages in mouse preimplantation embryos, down-modulates 
the mismatch repair heterodimer proteins MSH2-MSH6, MLH1, 
and PMS2 [113]. Mismatch repair recognition protein complex, 
involving hMSH2 and hMSH6, is down-regulated by increased 
miR-21 expression in colorectal tumors [114].

Studies suggest that defects in mismatch repair post-replication 
cause defects in microsatellites, which are short tandem repetitive 
DNA sequences [115]. Differential expression of miRNAs, including 
miR-31, miR-625, miR-196b, miR-181c [116], and several members 
of the miR-17-92 family [117], between tumors with microsatellite 
instability and/or the absence of protein expression of hMLH1 and 
tumors with no microsatellite instability and normal protein expres-
sion of hMLH1 were reported. Additionally, 39 miRNAs showed 
differential expression levels between normal colon tissue and tumor 
specimens. Up-regulation of miRNAs are thought to directly or 

Fig. 3.	 Schematic diagram of nucleotide excision repair pathway with 
genes and miRNAs regulating these genes. Genes involved in 
nucleotide excision repair and miRNAs predicted to regulate 
these genes are shown (http://www.microrna.org/microrna/home.
do, http://www.targetscan.org/, http://mirdb.org/miRDB/). Several 
miRNAs targeting or suggested to target the initial sensor genes 
and genes functioning at later stages of nucleotide excision repair 
pathway.

Fig. 4.	 Schematic diagram of base excision repair pathway with genes 
and miRNAs regulating these genes. Genes involved in base 
excision repair and miRNAs predicted to regulate these genes are 
shown (http://www.microrna.org/microrna/home.do, http://www.
targetscan.org/, http://mirdb.org/miRDB/). Several miRNAs 
were shown to target PARP1, which interacts with several genes 
involved in base excision repair and genes functioning at later 
stages of the base excision repair pathway. Bioinformatics 
studies also showed that PCNA is regulated by two miRNAs. 
Although a direct relationship among miRNAs and base excision 
repair genes, proteins, and polymerases has not been established, 
base excision repair components may be indirectly regulated by 
miRNA-regulated PARP1.
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Fig. 5.	 Schematic diagram of the double-strand break repair pathways with genes and miRNAs regulating these genes. Genes involved in a) non-
homologous end joining and b) homologous recombination pathways, and miRNAs predicted to regulate these genes are shown (http://www.
microrna.org/microrna/home.do, http://www.targetscan.org/, http://mirdb.org/miRDB/). Several miRNAs target the initial sensor genes of non-
homologous end joining and homologous recombination repair pathways. Several more miRNAs regulate the expression of genes functioning at 
later stages of both non-homologous end joining and homologous recombination repair pathways.

Fig. 6.	 Schematic diagram of mismatch repair pathway with genes 
and miRNAs regulating these genes. Genes involved in 
mismatch repair and miRNAs predicted to regulate these 
genes are shown (http://www.microrna.org/microrna/
home.do, http://www.targetscan.org/, http://mirdb.org/
miRDB/). Multiple miRNAs have been suggested to 
regulate the expression of mismatch repair sensor genes 
(MSH2, MSH3, MSH6, PCNA) and genes functioning at 
later stages of mismatch repair (MLH1 and PMS2).
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indirectly lower the tumor suppressor protein expression, leading 
to improper cell division and tumor formation [116].

Although the expression of several genes involved in repair 
mechanisms was suggested to be regulated by miRNAs, the possible 
association between these miRNAs and mRNAs must be further 
analyzed in gametes and embryos.

Conclusion

Short non-coding RNAs, miRNAs, have gained attention for their 
regulatory roles of mRNAs and their involvement in many diseases, 
such as cancers and infertility. Studies of miRNA expression in 
preimplantation embryos have recently increased to understand their 
regulatory roles on gene expression. A limited number of articles 
have been published regarding miRNA expression in gametes and 
preimplantation embryos. Most of these expressed miRNAs have been 
associated with DNA repair and aberrant expression of these miRNAs. 
However, further studies are required to understand the complete 
contribution of miRNAs in preimplantation embryos. Therefore, 
the analysis of miRNA expression may identify a regulatory role 
for these small non-coding RNAs in the expression of DNA repair 
genes affecting the overall repair activity of the embryo.
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