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ABSTRACT Cells that mutate or commit to a specialized function (differentiate) often undergo conversions that are effectively
irreversible. Slowed growth of converted cells can act as a form of selection, balancing unidirectional conversion to maintain both
cell types at a steady-state ratio. However, when one-way conversion is insufficiently counterbalanced by selection, the original
cell type will ultimately be lost, often with negative impacts on the population’s overall fitness. The critical balance between se-
lection and conversion needed for preservation of unconverted cells and the steady-state ratio between cell types depends on
the spatial circumstances under which cells proliferate. We present experimental data on a yeast strain engineered to undergo
irreversible conversion: this synthetic system permits cell-type-specific fluorescent labeling and exogenous variation of the rela-
tive growth and conversion rates. We find that populations confined to grow on a flat agar surface are more susceptible than their
well-mixed counterparts to fitness loss via a conversion-induced ‘‘meltdown.’’ We then present analytical predictions for growth in
several biologically relevant geometries—well-mixed liquid media, radially expanding two-dimensional colonies, and linear
fronts in two dimensions—by employing analogies to the directed-percolation transition from nonequilibrium statistical physics.
These simplified theories are consistent with the experimental results.
INTRODUCTION
Irreversible change is an important aspect of both develop-
ment (1) and evolution (2). Many mature tissues retain stem
cells that replenish specialized cells lost to damage or aging.
Proliferation balanced by irreversible differentiation can
maintain stem and specialized cells in a dynamic steady
state (3), but an imbalance between these forces can
eliminate the stem cell population, with dire health conse-
quences (4). Like differentiation, harmful mutations can
be effectively irreversible; natural selection can check their
spread if the mutants reproduce more slowly, but if the mu-
tation rate is too great or selection too weak, these mutations
can fix permanently. Such a mutational meltdown is known
as Muller’s ratchet in the population genetics literature
(5,6). We will employ the generic term ‘‘conversional melt-
down’’ to describe the loss of an unconverted cell type due to
an unfavorable balance between mutation and selection,
differentiation and proliferation, and, more generally, any
form of irreversible conversion and differential growth.
The abrupt shift from maintenance to extinction of the un-
converted cell type as conversion rate increases is analogous
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to the well-studied directed-percolation phase transition in
statistical physics (7–9).

Though most analyses of this important phase transition
have focused on well-mixed populations, spatial structure
can play a crucial role (8,10,11). Here, we investigate
conversional meltdown for one-dimensional growth without
subsequent migration, a geometry relevant in natural cir-
cumstances such as population expansions and growth of
the plant meristem, as well as in experimentally tractable
systems such as microbial range expansions (12,13). Yeast
(13) and immotile bacteria (12) on petri dishes grow in col-
onies that remain relatively flat, proliferating primarily at
the edges (14). Due to the small effective populations that
compete to divide into virgin territory, the thin region of
dividing cells at the frontier can be treated as a one-dimen-
sional population. Note that even though conversion events
may occur in a larger portion of the population, they will not
influence the long-time behavior of the expansion unless
they occur at the leading edge of the population that settles
new territory. Deeper in the colony core, nutrient depletion
preserves the colony interior, which reflects the past history
of such populations: the balance between cell types can be
studied by differentially labeling cells using fluorescence
techniques. When a particular cell type has locally fixed at
the colony frontier, its descendants form a ‘‘sector,’’ as
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Spatial Conversional Meltdown
shown in blue in Fig. 1 a. The geometric properties of the
spatial sectors reflect the underlying evolutionary dynamics:
for example, the sector opening angle, q, provides an esti-
mate of the selective advantage of cells in the sector relative
to their neighbors (13,14).

This investigation focuses on the effect of spatial popula-
tion structure on the conversional meltdown phase transi-
tion. We perform in vivo experiments, complemented with
analytical and simulation-based approaches, which show
the striking effects of spatial structure on evolutionary dy-
namics. We employ a strain of budding yeast engineered
to undergo irreversible conversions with independently
tunable frequency and fitness cost to study population dy-
namics in well-mixed liquid media, as well as microbial
range expansions on petri dishes. We find that the spatial
FIGURE 1 (a) A micrograph of the edge of a two-dimensional budding

yeast S. cerevisiae cell colony grown on petri dish, with the initial popula-

tion containing mostly yellow converted cells, with a few unconverted blue.

In this linear range expansion (characterized by a conversion rate, m, and a

selective advantage, s, of blue cells over yellow cells), some of the blue

cells at the colony periphery form a spatial sector with an opening angle,

q, marked with overlaid black lines. With each cell division, the blue cells

enjoying a selective advantage, s, convert to yellow ones at a rate m, which

creates yellow patches within the blue sector. The growth, or timelike, di-

rection is indicated. (b) A phase diagram indicating where theory predicts

the eventual extinction of the blue strain as a function of its selective advan-

tage, s, and conversion rate m for a linear range expansion. In the yellow

‘‘inactive’’ phase, a genetic sector formed by a blue cell always dies out,

leading to a fully converted population. In the blue ‘‘active’’ phase, there

is a nonzero probability of forming a surviving cluster, leading to a popu-

lation with conversion occurring stochastically. The transition line for a

well-mixed population is also shown for comparison (dashed line). In

the well-mixed case, the active phase forms a much larger region in the

ðm; sÞ-plane. The insets show examples of simulated sectors. Note the

resemblance between the sector in the active phase and the experimental

sector in (a). To see this figure in color, go online.
distribution of the cells qualitatively changes the dynamics.
Only adjacent individuals in spatially distributed popula-
tions compete, and the local effective population size is
thus small relative to the total population. The small number
of competing individuals amplifies the importance of num-
ber fluctuations, i.e., genetic drift. We will show through ex-
periments, simulation, and theory that this enhanced genetic
drift significantly favors extinction of the unconverted type,
relative to well-mixed situations. This enhancement of
extinction may have important consequences for diverse
processes including tissue renewal (3), meristematic growth
(15), and mutation-selection balance (16), since the relative
proliferation of the unconverted strain must occur faster in a
spatially distributed population than expected from experi-
ments on well-mixed populations to prevent extinction of
the unconverted population. To study these effects in
spatially distributed populations, we will focus on two
different initial conditions: populations in which all cells
start in the unconverted state and populations with mostly
converted cells and a few unconverted cells, which then
form distinct, well-separated sectors (as in Fig. 1 a). The
latter populations allow us to study the geometry of the sec-
tors, whereas the former allow us to observe the extinction
of the unconverted cells as we go through the extinction
transition.

Crucially, the extinction transition we study here is
distinct from extinction due to neutral competition dy-
namics. For example, previous studies of stem cells in intes-
tinal crypts (3,10,17) found that different stem cell clones
may compete until a single clone takes over the whole pop-
ulation while the other clones go extinct. These previous
studies found that the clones are neutral with respect to
each other, so that any one of them may take over. However,
apart from this competition, the clones also terminally
differentiate into other cell types. The evolutionary dy-
namics of this differentiation process is not expected to be
neutral, as the differentiated cells may reproduce more
slowly and suffer a selective disadvantage. Moreover, even
when the selection is weak, the associated extinction transi-
tion is of a different type from neutral competition: its
dynamical scaling laws are governed by spatial mutation-
selection balance and not by genetic drift alone. Since
different cell types generically have different growth rates,
we expect that our theory and experimental results describe
features of extinction transitions in a broad range of biolog-
ical systems.
MATERIALS AND METHODS

Microbes such as the budding yeast, Saccharomyces cerevisiae, are easily

cultured in both test tubes and on petri dishes. This makes them excellent

candidates for comparing well-mixed and two-dimensional spatial dy-

namics. Construction of a yeast strain that undergoes irreversible conver-

sion events with exogenously tunable conversion rates and fitness cost

was described in (18). Briefly, an S. cerevisiae strain was genetically engi-

neered to lose a cycloheximide-resistant ribosomal protein coding sequence
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via excision of a fragment of DNA by site-specific recombination, as illus-

trated schematically in Fig. 2. The activity of Cre, the site-specific recom-

binase, was controlled by varying the concentration of b-estradiol in

the medium as described by Lindstrom et al. (19). This irreversible conver-

sion event occurs once per cell division (during mitotic exit) with a

probability m, which we will call the conversion or mutation rate (per divi-

sion). The probability m depends on the ambient b-estradiol concentration.

The cycloheximide-resistant sequence (the cyh2r allele of the ribosomal

protein L28 (20)) confers a measurable selective advantage for the uncon-

verted strain relative to the converted strain when the strains are grown in

the presence of cycloheximide. The precise selection coefficient sR0 asso-

ciated with this advantage is tunable by varying the cycloheximide

concentration in the medium. Both the conversion rate, m, and selection co-

efficient, s, can be directly measured in well-mixed media and tuned over

more than an order of magnitude by selecting appropriate b-estradiol and

cycloheximide concentrations.

The agar plates for spatial range expansions were prepared using agar so-

lutions with varying b-estradiol and cycloheximide concentrations. Since

these compounds are not consumed by the cells and diffuse readily through

agar, we expect that the concentrations are constant and uniform inside the

plates during the experiments. Moreover, because the yeast colonies are not

particularly thick, the cells in the range expansion likely experience the

same uniform concentration of b-estradiol and cycloheximide, just as

they would in a well-mixed medium. Hence, we may be reasonably confi-

dent in using the relationship between the b-estradiol and cycloheximide

concentrations and the m and s parameters calculated from the well-mixed

cultures to analyze the range-expansion experiments.

To measure the fraction of converted versus unconverted cells in the pop-

ulation over time, we labeled the two cell types with fluorescent markers.

Specifically, the coding sequence for the fluorescent protein mCherry is

excised along with cyh2r via the Cre-mediated recombination. After the

recombination event, an mCitrine fluorescent protein is expressed, instead,

as shown in Fig. 2. This set-up allows us to monitor the unconverted and

converted cells using two different fluorescence channels. Throughout

this article, we have chosen to color the unconverted, mCherry-expressing

cells blue and the converted, mCitrine-expressing cells yellow (see Fig. 1 a,

for an example).

To visualize the conversional meltdown (i.e., the directed-percolation

transition), we produced linear range expansions on agar media with

b-estradiol and cycloheximide concentrations chosen to have correspond-
FIGURE 2 A simplified schematic of the genetic switch. (a) The coding

sequence in an unconverted strain has a region between two loxP sites,

which gets spliced out in the converted strain by a Cre recombinase-medi-

ated excision. The coding segment contains, among other features, a cyclo-

heximide-resistant sequence (segment labeled cyh2r), a coding sequence for

an mCherry fluorescent protein (blue segment), and a termination region

(red segments) that prevents the transcription of the mCitrine fluorescent

protein coding sequence (yellow segment) that follows. (b) After excision,

the converted strain’s coding sequence has an mCitrine fluorescent protein

sequence that is expressed. In both (a) and (b), the promoter (green

segment) is constitutively expressed. For a more detailed description of

the strains and their construction, see (18). To see this figure in color,

go online.
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ing m and s values that span the mutational transition region of the phase

diagram (Fig. 1 b). We used 1% agar concentration because the yeast col-

onies are thin and have uniform frontiers at lower agar concentrations. The

lower agar concentration also facilitates the diffusion of the cycloheximide

and b-estradiol. However, the concentration is also high enough to maintain

the solidity of the plates (21). To initiate the (linear) expansion, a thin strip

of Whatman filter paper was submerged in a well-mixed liquid containing

unconverted and converted cells, then placed in the center of the petri dish;

the linear colonies were then imaged after 7 days’ growth (corresponding to

about a 1 cm advancement of the colony front) at 30�C. The ratio of uncon-
verted to converted cells in the inoculum was chosen to be small enough (in

the range between 10�2 and 10�4) so that resulting sectors of unconverted

cells would typically be sufficiently separated for easy analysis. We will

also consider range expansions in which we place a droplet of the yeast

cell solution of all unconverted cells at the center of the petri dish, which

then forms a circular colony that spreads out radially. These colonies

were sampled after 5 days, because the growth of these colonies starts to

slow down after this time, possibly due to nutrient depletion or the drying

out of the petri dish. We expect, however, that the populations are close to

their steady state after 5 days for most values of m and s tested.

Fig. 3 displays representative images of linear colonies grown in a variety

of agar media, the concentrations of b-estradiol ([b-est]) and cycloheximide

([CHX]) used in each, and the corresponding m and s values (as determined

in well-mixed media at the same [CHX] and [b-est]). The different prepa-

rations influence the range-expansion dynamics: we see that either

increasing b-estradiol concentrations or decreasing cycloheximide will

yield smaller blue sectors in Fig. 3, indicating an approach to extinction

of the unconverted blue strain. Thus, we are able to manipulate m and s

in experiment by varying [b-est] and [CHX], respectively, in either

the nutrient medium for well-mixed populations grown in test-tubes, or in

the agar for populations grown on plates. Note that it is possible to vary

m and s over a large range, covering values in the simulated phase

diagram in Fig. 1 b; in particular, we are able to tune through the line sepa-

rating the active and inactive phases and see extinction of the unconverted

strain.
RESULTS AND DISCUSSION

Experimental results

We first compare the steady-state concentration of uncon-
verted blue cells in well-mixed populations and two-dimen-
sional, circular range expansions as a function of the
mutation rate, m, and the blue-cell selective advantage, s.
We expect that if m is large enough compared to s, the fit
blue strain will be unable to survive in the population at
long times, and the average fraction of blue cells, hf i, will
eventually decay to zero. However, if m is small, the fraction
will approach some nonzero steady-state value, fN. We esti-
mate this value in the well-mixed populations by measuring
the fraction of mCherry-expressing unconverted cells by
flow cytometry after enough generations to achieve a steady
state (~40), or until the unconverted fraction is no longer
measurable (18). The steady-state fraction was averaged
over about six different cultures (two sets of fresh media
and cell cultures and three test tubes per culture), for which
we could verify convergent, steady-state behavior. Some
outliers that had unusual, nonconvergent behavior were
thrown out. Such outliers were more common at higher
cycloheximide concentrations, where we might expect
stronger selective pressures and more contamination by



FIGURE 3 Frontiers of linear range expansions under different growth

conditions. Scale bars, 2 mm. (a) The b-estradiol concentration in the

agar is varied with a fixed cycloheximide concentration (corresponding to

sz0:23). The corresponding conversion rates, m, are indicated. In the

topmost image, we indicate an opening sector angle. (b) The cycloheximide

concentration is varied instead, tuning the selective advantage, s, of the blue

strain over the yellow over a broad range. (The fixed b-estradiol concentra-

tion corresponds to mz0:0029.) Note that the sector angles get smaller as

we either increase m or decrease s to approach the directed-percolation

(conversional-meltdown) transition. To see this figure in color, go online.

FIGURE 4 The average steady-state fraction of unconverted cells, h f i, at
long times in (a) well-mixed populations cultured in a test tube (averaged

over approximately six test tubes) and (b) two-dimensional range expan-

sions (averaged over 10 colonies). The concentration for the range expan-

sions was measured by sampling cells at the edge of a circular colony

after 5 days of growth. The circles are the collected data points, which

are used to make the interpolated color density plot in the background.

The dashed lines are the theoretical predictions of the phase-transition lines

(see section titled Theory and simulation). In (a), we expect that the transi-

tion occurs around mzs. In (b), we find a significantly different line shape,

consistent with mzAs2, with Az1:5 as the single parameter fit to the data.

To see this figure in color, go online.

Spatial Conversional Meltdown
mutant strains. Similarly, we estimate the fraction of
unconverted cells in colonies at steady state by collecting
cells from the very edges of circular colonies (initially
composed of all unconverted cells) with a pipette tip and
performing flow cytometry. For each value of m and s, we
averaged the fraction over 10 colonies (five from one
plate and five from a plate grown separately). The popula-
tion frontier inflates in the circular range expansions,
which has consequences for the dynamics. However, the
steady-state fraction, fN, is insensitive to this change in ge-
ometry (9).

The experimental results in Fig. 4 illustrate the striking
effect of spatial fluctuations on the transition to extinction:
compared to the well-mixed case, there is a significantly
smaller section of the ðm; sÞ space that yields a nonzero
steady-state fraction of unconverted cells in the population.
The theoretical predictions for the phase boundaries
(described in detail in the next section) are consistent with
the experiment; We find mzs for the well-mixed population
and mzA s2 for the populations grown on petri dishes,
where Az1:5 is a fitting parameter.
It is also interesting to study the opening angle, q, formed
by the sectors in linear range expansions with relatively few
initial unconverted cells (like the one illustrated in Fig. 1 a)
as we approach the phase transition line from the active
phase. The measured opening angles as a function of the
shortest distance D from the phase transition line are shown
in Fig. 5. We will also change the sign of D as we cross the
transition line, such that D> 0 in the active phase and D< 0

in the inactive phase. The values are collected by approxi-
mating the opening sector angle from images of the colony
edges and averaging over many sectors. The error bars are
calculated from the standard deviations of the sector angle
measurements used to compute the averages. Growth condi-
tions corresponding to many different values of m and swere
used, as illustrated in the inset of Fig. 5. The experiments are
consistent with the theoretical prediction described in detail
in the next section, except in the case of small D. Note that
in this regime, the sector angles are quite small and it is diffi-
cult to resolve them in the range-expansion images. It would
be interesting to study this regime in more detail in the
Biophysical Journal 110, 2800–2808, June 21, 2016 2803



FIGURE 5 Measured average opening angle (in

degrees) of sectors formed in experimental linear

range expansions as a function of the shortest dis-

tance, D, from the critical line found in Fig. 4 b.

The dashed line shows the fit to the expected

directed-percolation power-law behavior discussed

in the section titled Theory and simulation (see

Eq. 4). (Inset) The black line shows the position

of the transition, as determined in Fig. 4 b. The

red crosses show the ðm; sÞ coordinates of all the

growth conditions used to grow the colonies in

the experiment. The distance D is also shown for

one of these points with a solid red line. To see

this figure in color, go online.
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future with better-resolved sector angle images to see if the
directed-percolation theory describes the experiments, or if
a more sophisticated theory is necessary.
Theory and simulation

Wewill now develop a theory for the observed experimental
results based on the well-studied directed-percolation phase
transition (7). We begin with some approximations: As the
yeast cell colony spreads across the agar plate, the evolu-
tionary dynamics of interest occur at the frontier, where
cells settle virgin territory. Because yeast cells have low
motility, cells that are even a few cell diameters behind
the advancing population front may not be able to contribute
to the population at the frontier, even if they continue to
divide. Hence, we expect that the effective population of
cells at the frontier that competes to divide into new territory
is small. Thus, we focus our theoretical analysis on the pop-
ulation of cells living on a thin region at the colony frontier.
This assumption is consistent with a previous study of two-
dimensional colonies of mutualistic yeast, which also have
relatively small effective population densities (21). Then,
provided the yeast colony experiences a strong effective sur-
face tension that forces the colony boundary to remain
approximately circular, we may consider the dynamics
along a uniform, effectively one-dimensional flat front.
This geometry is consistent with microscopic observations
of the yeast colony frontier (13). Note that rough fronts
can significantly modify the nature of the extinction transi-
tion (22).

Consider the fraction f ðx; tÞ of blue cells along a uniform,
one-dimensional frontier at position x and time t. Every gen-
eration time, tg, the fraction f ðx; tÞ will change due to
the conversion probability, m, and the competition at the
frontier (which will depend on the selection coefficient, s).
For small s and m, the fraction f ðx; tÞ will evolve according
to the stochastic differential equation of the stepping stone
model (11):
2804 Biophysical Journal 110, 2800–2808, June 21, 2016
vt f ¼ Dsv
2
x f þ sf ð1� f Þ � mf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dg f ð1� f Þ

q
x; (1)
where s ¼ s=tg, m ¼ m=tg, and xhxðx; tÞ is a Gaussian,

white spatiotemporal noise with zero mean, hxðx; tÞi ¼ 0,
and unit variance: hxðx; tÞxðx0; t0Þi ¼ dðt0 � tÞdðx0 � xÞ.
The noise should be interpreted in the Itô sense (23), and de-
scribes the stochastic birth-death processes of the cells at
the frontier, which have some effective genetic drift
strength, Dg. We expect the scaling Dg � ‘=Ntg (11), where
‘ is the linear size of the frontier over which cells compete to
divide into virgin territory, and N is the number of these
competing cells. We expect ‘ to be a few cell diameters.
The diffusion term Dsv

2
x f describes cell rearrangements

caused by cell divisions at the frontier with an effective
spatial diffusion constant Ds � ‘2=tg. The parameters Ds

and Dg depend on the details of the microbial colony struc-
ture. They are measured for various microbial colonies in
(12,21). We will be primarily interested in how various so-
lutions to Eq. 1 depend on m and s, which we can control
in the experiment.

Equation 1 belongs to the directed-percolation universal-
ity class and exhibits a line of nonequilibrium phase transi-
tions as a function of m and s (7). The transition line may be
found using Eq. 1 by examining sectors of unconverted
cells, as in Fig. 1 b (i.e., by using Eq. 1 to evolve an initial
f ðx; t ¼ 0Þ with a localized ‘‘spike’’ of blue cells at the
origin), but a uniform initial condition (like the one used
to construct the experimental phase diagram in Fig. 4 b)
also exhibits a phase transition along the same phase bound-
ary (9,24). In particular, if we start with all blue cells at the
initial frontier ð f ðx; t ¼ 0Þ ¼ 1Þ, the average fraction of blue
cells h f ðx; tÞix (averaged over the noise x in Eq. 1 and over
all positions x along the frontier), will approach a nonzero
constant, h f ðx; tÞix/fN > 0; as t/N in the active phase
and h f ðx; tÞix/0 in the inactive phase. A phase diagram
similar to the one illustrated in Fig. 1 b may then be
constructed.



Spatial Conversional Meltdown
The directed-percolation phase transition occurs when
m � s2 for range expansions (9), compared to m � s for
well-mixed populations. A simple argument (developed in
more detail in, e.g., (9,16,25)) may be employed to under-
stand these relationships. For well-mixed populations, we
may apply Eq. 1, keeping in mind that f is now spatially in-
dependent. Also, the genetic drift strength, Dg, is negligible,
because Dg � 1=N and N is the total population size
because all cells compete in the well-mixed case. Therefore,
we find vt f ¼ sf ð1� f Þ � mf . We may set this equation
to zero and solve for the steady-state solutions, f �:
f � ¼ 1� m=s for m< s and 0 otherwise. Thus, the phase
transition occurs at m ¼ s, where f � first vanishes. Now,
for comparison, let’s think about a two-dimensional range
expansion that is a single cell layer thick and with an initial
population of all unconverted cells living along a line of
length L. We will not be able to easily solve Eq. 1, because
the diffusion and noise terms now contribute, but we may
make a simple scaling argument. As discussed previously,
the evolutionary dynamics of such populations are charac-
terized by sectoring. Specifically, as the population expands,
we expect to nucleate NY � mL sectors of the converted,
yellow strain. The boundaries of the sectors perform random
walks, so the width, w, of each sector performs a random
walk as well. Note that the selective advantage, s, of the un-
converted strain introduces a negative bias to the random
walk of w, since the yellow, converted cells will be outcom-
peted by the blue cells at the sector boundaries. Assuming
the yellow sectors are small and go extinct rapidly, we
expect the width of the yellow sectors, w, to scale like
w � ffiffiffi

tl
p

, where tl is the lifetime of the sector. Thus, clearly,
the yellow sector areas will scale like AY � wtl � t

3=2
l . We

now need to estimate t
3=2
l . The lifetime tl is the time it takes

for the width w to reach zero, starting from an initial sector
width of a single cell, say. It can be shown (16,26) that
the lifetime scales with the selection coefficient, s, as
t
3=2
l � 1=s2. Assuming the sectors do not collide, we may es-
timate the yellow, converted cell fraction, 1� f �, by simply
dividing the area of all of the yellow sectors by the total area
swept out by the range expansion after some time. We find
the scaling 1� f � � NYAY=L � m=s2. Thus, we find that the
extinction transition happens when m=s2 � 1, or m � s2, in
contrast to the well-mixed scaling, m � s.

We will now be more specific and consider the equation
for the phase-transition line for range expansions: mzAs2,
where A is a constant of proportionality that will depend
on Ds and Dg. We expect the noise term, Dg, to be important
near the conversional meltdown transition. In the strong
noise limit, we derive an approximation for A by mapping
the sector boundaries to random walks, as discussed briefly
above and in more detail in (9,16,25,27). We find the rela-
tion A � D

1=2
s =ðDgt

1=2
g Þ. We may roughly estimate A by us-

ing measured values for the various parameters for a related
yeast strain studied in (21): Dsz15 mm2/h, Dgz1:3 mm/h,
and tgz1:5 h. With these estimates, we expect Az2.
Note that the effective population size, Nz3, is quite small
for these expansions, which is consistent with the evolu-
tionary dynamics being dominated by competition at the
very edge of the population. However, our growth condi-
tions and yeast strains are different from those of (21),
and a detailed check of the scaling of A with Ds and Dg is
beyond the scope of this article. Hence, we use A as a fitting
parameter. Fitting A to our experimental results in Fig. 4
yields Az1:5, which is close to our crude estimate.

It is also possible to understand the sector angles illus-
trated in Fig. 1 a using properties of the directed-percolation
universality class. First, note that a genetic sector formed
from an unconverted (blue) cell at the frontier will have
an opening angle, q, given by (9)

q ¼ 2arctan
�
xt

�
xk
�
; (2)

where xt=xk is the slope of the sector boundaries, and xk

and xt are correlation lengths parallel and perpendicular
to the growth direction. The opening angle can be measured
in experiment. Note that long-time sector survival requires
that we are in the active phase (see Fig. 1 b), where there
is a nonzero probability that the unconverted cell type will
survive at long times. As we approach the phase transition
line from the active phase (D/0 with D> 0), we expect
that the dynamics will be governed by the directed-percola-
tion phase transition (9). In particular, the slope xt=xk of the
sector (measured near the population frontier) is predicted to
be proportional to a power of D:

xt
�
xk ¼ aqD

ntðz�1Þ; (3)

where aq is a constant of proportionality, zz1:581 is a

dynamical critical exponent, and ntz1:097 is a spatial cor-
relation length exponent (24). The constant of proportional-
ity, aq, is not universal and will depend on the position along
the transition line and on particular details of our model. So,
as we approach the directed-percolation transition, the
sector angle, q, is predicted to vanish according to

qz2arctan
�
aqD

ntðz�1Þ�z2aqD
0:637: (4)

Unfortunately, the sector angle experimental results in Fig. 5

are too noisy to check the particular power-law behavior
q � D0:637 (although the data are consistent with this
behavior). However, we can now check this particular po-
wer-law prediction via range-expansion simulations.

We simulate range expansions with flat, uniform frontiers
(corresponding to a linear innoculation) on a triangular lat-
tice with a single cell per lattice site. We take the frontiers of
actively dividing cells to be a single cell wide and corre-
spond to rows of the lattice, where each row has periodic
boundary conditions (i.e., the cells on the left and right
edge are treated as if they are adjacent). Cells at the frontier
then compete with their neighbors to divide into the next lat-
tice row. Specifically, on our triangular lattice, each pair of
Biophysical Journal 110, 2800–2808, June 21, 2016 2805
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adjacent cells on the frontier forms the base of a triangle,
and each pair competes to fill a single site in the next lattice
row, which sits at the apex of the triangle. For a more
detailed description (including illustrations), see (9). The
probability of division is proportional to the cell growth
rate. The unconverted blue cells have a growth rate normal-
ized to 1, whereas the converted yellow cells grow at a rate
of 1� s. This protocol implements the selective advantage
of the blue cells. After a cell division, the daughter cell mu-
tates with probability m if it is unconverted (just as in the
designed yeast strain). These competition rules are a gener-
alization of the Domany-Kinzel model updates (28). The
lattice model is expected to be in the directed-percolation
universality class, as well. Our previous model, Eq. 1, is a
possible coarse-grained description of the lattice model
with ‘ equal to the lattice spacing and an effective popula-
tion size of N ¼ 1 (see (9) for details). The simulation
code is posted at (29).

It is straightforward to evolve sectors by considering
initial frontiers with just a single blue cell surrounded by
all yellow cells. Some examples of the resulting sectors
are shown in the insets of Fig. 1 b. The average angle q sub-
tended by the blue cell sectors is measured by calculating
the width of a sector, WðtÞ, averaged over all sectors that
survive to time t. Then, in the active phase, we expect
WðtÞz2xt=xkt, from which we may extract the slope,
xt=xk, by fitting WðtÞ to a linear function. The angle is
then extracted from Eq. 2 for various distances D away
from the extinction transition line in the ðm; sÞ-plane (see
Fig. 6, inset). We find excellent agreement between the
simulation and Eq. 4 in Fig. 6. The parameter aqz0:88 is
found by fitting.
FIGURE 6 Average sector angles (in radians) measured from 25,600 sim-

ulations of two-dimensional range expansions as a function of the shortest

distance, D, away from the critical line separating the active and inactive

phases shown in Fig. 1 b. The inset illustrates the distance D in the

ðm; sÞ-plane. In the simulations, the distance D is varied by fixing s ¼ 0:3

and varying the mutation rate, m. The range expansion has a flat frontier of

4000 cells and is evolved for 4� 104 generations. We initialize the popula-

tions with a single unconverted cell at the frontier and average the opening

sector angle of all surviving sectors. To see this figure in color, go online.
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CONCLUSIONS

We have examined an extinction transition using a geneti-
cally modified yeast strain that irreversibly converts from
a more- to a less-fit strain. This synthetic strain maintains
many sources of biological variability, including variability
in growth rate and sector angle, while providing exquisite
control over conversion, relative growth rate, and visualiza-
tion of two cell types.

The experiments reveal that spatial dynamics enhances
conversional meltdown, a major qualitative prediction of
theory and simulations based on directed-percolation ideas
(9). Spatial fluctuations enhance extinction through genetic
drift, which is much larger at population frontiers than in
typical well-mixed experiments. According to theory, the
extinction in a well-mixed population occurs when m � s
and when m � s2 for a range expansion with a thin (approx-
imately one-dimensional) frontier. Hence, the unconverted
strain is maintained in a smaller region of the ðm; sÞ phase
space in the range expansion compared to the well-mixed
case, as shown in Fig. 4. We expect that this enhancement
is generic and may be observable in a wide range of spatially
structured populations, such as growing tissues, differenti-
ating stem cell populations, invading cancer cells, and
natural range expansions. Although we considered two-
dimensional populations here, three-dimensional ones with
thin two-dimensional frontiers also have an extinction tran-
sition described by directed percolation, and that extinction
is enhanced relative to the well-mixed case. However, the
enhancement may not be as pronounced because genetic
drift has a weaker effect at two-dimensional frontiers, and
the phase diagram for extinction will have a different shape
(30). Some natural populations fit in well with the theory
developed here. For example, stem cells in colonic crypts
grow on the inside of a tube, and appear to live in an effec-
tively one-dimensional population (17). Thus, their differen-
tiation dynamics may be described by our theory.

We also studied the opening sector angles of clusters of
the fit strain spreading through a less fit population. In the
flat front approximation, this opening angle is expected
to vanish with a directed-percolation power law as we
approach the extinction transition (9). This power law was
confirmed by simulations and is qualitatively consistent
with experiments (8,14). If front undulations are important,
similar to systems described by the Kardar-Parisi-Zhang
(KPZ) equation (31) or the noisy Burgers equation (32),
the transition line discussed here in the context of directed
percolation is expected to be in a different universality
class. We then expect similar power-law behavior, but
with different critical exponents. The modification to the
directed-percolation universality class in the presence of
such undulations was studied, for example, in (22). Such
modifications may be relevant for two-dimensional range
expansions of Escherichia coli, which produce genetic sec-
tors with super-diffusive boundaries (14), consistent with
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KPZ-like dynamics. Also, power-law sector dynamics
might be relevant for cancer, where driver mutations may
spread through an otherwise slowly growing cancerous
population while accumulating irreversible, deleterious
mutations (33). When many deleterious mutations can accu-
mulate in parallel, we expect that there is an analogous
extinction transition at which additional mutations accumu-
late fast enough to lead to a population collapse of the cells
with the driver mutation (16,30,33).

To better understand these dynamics in models of precan-
cerous tumors, we would need to consider three-dimen-
sional range expansions with effectively two-dimensional
frontiers, such as cells dividing at the surfaces of spherical
masses of growing cells (34). It would be interesting to
examine three-dimensional range expansions of this syn-
thetic strain to explore how these different spatial dynamics
influence the extinction transition. Experiments could be
done by embedding the yeast in soft agar, or growing
them up in cylindrical columns with nutrients supplied at
the base, as described in (35). Finally, some of these exper-
imental realizations, such as range expansions of organisms
with different mobilities or with more complex interactions,
may shed light on various aspects and extensions of
directed-percolation theory. One complication is that it is
difficult to get good enough statistics to find critical expo-
nents or scaling behavior, and directed percolation has
been notoriously difficult to confirm in experiments, with
recent progress being made using carefully controlled ex-
periments on turbulent liquid crystals (36).
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