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ABSTRACT We present a hybrid computational methodology to predict multiple energetically accessible conformations for
G protein-coupled receptors (GPCRs) that might play a role in binding to ligands and different signaling partners. To our knowl-
edge, this method, termed ActiveGEnSeMBLE, enables the first quantitative energy profile for GPCR activation that is consis-
tent with the qualitative profile deduced from experiments. ActiveGEnSeMBLE starts with a systematic coarse grid sampling of
helix tilts/rotations (~13 trillion transmembrane-domain conformations) and selects the conformational landscape based on
energy. This profile identifies multiple potential active-state energy wells, with the TM3–TM6 intracellular distance as an approx-
imate activation coordinate. These energy wells are then sampled locally using a finer grid to find locally minimized conformation
in each energy well. We validate this strategy using the inactive and active experimental structures of b2 adrenergic receptor
(hb2AR) and M2 muscarinic acetylcholine receptor. Structures of membrane-embedded hb2AR along its activation coordinate
are subjected to molecular-dynamics simulations for relaxation and interaction energy analysis to generate a quantitative energy
landscape for hb2AR activation. This landscape reveals several metastable states along this coordinate, indicating that for
hb2AR, the agonist alone is not enough to stabilize the active state and that the G protein is necessary, consistent with exper-
imental observations. The method’s application to somatostatin receptor SSTR5 (no experimental structure available) shows
that to predict an active conformation it is better to start from an inactive structure template based on a close homolog than
to start from an active template based on a distant homolog. The energy landscape for hSSTR5 activation is consistent with
hb2AR in the role of the G protein. These results demonstrate the utility of the ActiveGEnSeMBLE method for predicting multiple
conformations along the pathways for activating GPCRs and the corresponding energy landscapes, thereby providing detailed
structural insights into the initial molecular events of GPCR function that are not easily accessible by experiments.
INTRODUCTION
Gprotein-coupled receptors (GPCRs) serve critical signaling
functions in numerous cellular processes and thus are impor-
tant targets for therapeutics. The development of such
therapeutics is complicated because the activation of
GPCRs, which is integral to their function, involves multi-
ple distinct conformations along the pathway for activation.
Moreover, since some GPCRs are capable of activating
more than one intracellular (IC) signaling pathway (1), it
is essential to identify multiple active conformations that
may be involved and have different functions. To under-
stand GPCR activation mechanisms and carry out struc-
ture-based drug design, it is necessary to obtain accurate
three-dimensional (3D) structures for each of these impor-
tant conformations. This creates a huge problem for
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structure-determination experiments, since each one of
these structures must be sufficiently stabilized to obtain an
ordered crystal. Indeed, despite huge efforts and remarkable
experimental breakthroughs, experimental structures are
available for only 3% of the ~800 human GPCRs. Most of
these structures are for an inactive conformation and only
four are for active-like conformations. In addition, of the
four GPCRs with both the active and inactive struc-
tures crystallized, only one (rhodopsin) has more than one
active experimental structure.

There is a huge potential role for theory and simulation to
fill in this crystal structure gap for GPCRs. However, there
are major problems with using theory to predict the acti-
vation of such complex membrane-bound proteins. Milli-
second-long molecular dynamics (MD) simulations have
not been successful in following activation from an inactive
state to an active-like state along an activation pathway.
In addition, the sequence homologies between most GPCRs
and available active-state GPCR templates are too low to get
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Modeling the GPCR Activation Landscape
active structures for the remaining GPCRs. To begin
to address this problem, we previously developed the
GEnSeMBLE (2) method to predict the ensemble of low-
energy (stable) 3D structures of GPCRs. This method has
successfully predicted the structures for several class A
and class B GPCRs: C-C chemokine receptor type 5
(CCR5) (3), adenosine A3 receptor (AA3R) (4), cannabi-
noid receptor type 1 (CB1) (5), taste receptor type 2 mem-
ber 38 (Tas2R38) (6), olfactory receptor 1G1 (OR1G1)
(7), glucagon-like peptide 1 receptor (GLP1R) (8), and pros-
taglandin D2 receptor (DP) (9). Most of the predictions are
for inactive-state structures, but we were able to predict and
validate active-state structures of AA3R (4) and CB1 (5).

The GEnSeMBLE methodology starts with several tem-
plate configurations that specify the initial helix packing
(helix locations, tilts, and rotations) for the seven helical
transmembrane domains (TMDs) based either on an exper-
imental structure of a similar GPCR or on a previously
predicted structure. Then, we consider all possible simulta-
neous rotations by multiples of 30� about the helical axes for
all seven TMDs. We estimate the energies of all 127z35
million conformations sampling helix rotations by calcu-
lating the energies for all combinations of the 12 interacting
pairs of helices (BiHelix), including optimized side chains.
We build the best 1000 of these conformations by energy
into seven-helix bundles with optimized side chains and
then select ~20 of the lowest conformations by energy for
further consideration. This is done for all plausible tem-
plates to identify which templates are the best and which ro-
tations best accommodate the target sequence. This is
followed by an exhaustive sampling of simultaneous tilts
and rotations of the seven helices (SuperBiHelix), leading
to ~13 trillion helix tilts/rotation combinations. The energies
for all 13 trillion conformations are again estimated by
combining the BiHelix energies to identify the best 2000
conformations, which are then built into seven-helix bundles
for final side-chain optimization. From this list, the ~20
lowest-energy conformations are selected for binding to
different ligands and for further studies (2).

Although such conformational sampling is exhaustive, it
tends to be biased toward inactive conformations because
1) the available templates are mainly inactive, 2) inactive
conformations usually have lower energy than active con-
formations and the procedure seeks lower-energy struc-
tures, and 3) the agonists that might stabilize the active
configurations are not present during the reduction from
13 trillion to 20 structures. Even so, GEnSeMBLE has
successfully modeled some active GPCRs. In this work,
we propose a hybrid method, denoted ActiveGEnSeMBLE,
that builds upon the original GEnSeMBLE method to
systematically predict multiple potentially active conforma-
tions of GPCRs. It utilizes a hierarchical sampling scheme
that first samples conformations on a coarse grid, followed
by another conformational sampling with a finer grid. In
addition, rather than using only energy-based scoring, the
ActiveGEnSeMBLE method uses both structural and energy
information to identify the higher-energy candidates for
active conformations that may reside in local energy wells
stabilized by appropriate agonists or other cellular effectors
(e.g., G protein or b-arrestin).

In this work, we first validated the ActiveGEnSeMBLE
method against experimental structures of GPCRs that
were previously obtained in active conformations with non-
covalently bound ligands: human b2 adrenergic receptor
(hb2AR) (10,11) and humanM2muscarinic acetylcholine re-
ceptor (hM2) (12,13). (The x-ray structure of the agonist-
boundmousem-opioid receptor (mOPRMormOR) stabilized
with a nanobody (14) was not available at the time of this
study, so we did not include it as a test case.)We then applied
ActiveGEnSeMBLE to predict multiple active and inactive
forms of human somatostatin receptor subtype 5 (hSSTR5).
We selected hSSTR5 because 1) it plays an important role
in antiproliferation, hormone secretion, and human diseases
such as pancreas cancer (15); 2) no experimental structure for
hSSTR5 is available for use in drug development; and 3) a
recent study identified hSSTR5 as themost valuable template
for homology modeling of the nonorphan and nonolfactory
class A GPCRs that constitute the majority of this class of
GPCRs (16).
MATERIALS AND METHODS

Protocol

Our original GEnSeMBLE method involves the following steps, as

described in detail elsewhere (2):

Step 1. Align the target sequence to the other GPCR sequences homol-

ogous up to an Expect (E) value of 0.1, and use the PredicTMmethod

to determine the lengths and ranges of the helical hydrophobic core

regions. Then use secondary-structure prediction servers to predict

helical regions that might extend beyond the hydrophobic core

outside the membrane.

Step 2. Generate the structures for the helical regions of the target recep-

tor with a variety of helical shapes using either OptHelix, which

generates a helical shape using minimization and MD, or homology

modeling based on TMD from known GPCR crystal structures with

high sequence identity to the target protein sequence.

Step 3. For each template-based structure (using OptHelix or homology

helix shapes), sample 127z35 million combinations of simultaneous

rotations (h) of all seven helices (using BiHelix), and then select

the best 1000 conformations (based on energy) to build full seven-he-

lix bundles (CombiHelix) with optimized side chains. From these

conformations, select a few diverse structures with the lowest pre-

dicted energies as the starting points for subsequent simultaneous

optimization of tilt angles (q, 4) and helix rotation angles (h). This

SuperBiHelix sampling generally involves (5� 5� 3)7 z 13 trillion

combinations. The best 2000 of these are selected and then built into

seven-helix bundles (SuperComBiHelix), from which the best ~20

conformations are selected (by energy) as the conformational

ensemble that might play a role in GPCR function. These ~20 confor-

mations are then analyzed in terms of interhelical hydrogen bonds,

particularly with regard to whether there are salt bridges between

different TMDs, including the salt-bridge interaction between do-

mains TM3 and TM6, which is associated with inactive conforma-

tions for many class A GPCRs (17). Typically, helix shapes based
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on homology lead to more stable conformations, except for CB1 (5)

and DP (9), where helix shape based on OptHelix was best.

Step 4. Use the DarwinDock/GenDock (18,19) method to validate the

predicted GPCR structures by exhaustive sampling of poses of

known agonists and antagonists (including numerous torsional con-

formations) over possible binding regions. This involves assessing

the contributions of binding from various protein residues in the

ligand-binding cavity (cavity analysis) and often comparisons of

binding for a range of ligands (structure-activity relationship (SAR)

analysis).

Step 5. Use homology or Monte Carlo procedures to add the loops and

the amino (N-) and carboxyl (C-) terminal segments to the TMD of

the predicted ligand-GPCR structures and optimize the loops by

annealing. Build these complete predicted structures into the lipid

membrane surrounded by explicit water and salt (~60,000 atoms

per cell) and carry out a modest MD simulation (10–50 ns) to

validate the stability of the predicted structures. The goal of the

MD simulations is to allow water and ions to interact with the

ligand-protein complex to relax the predicted structures. Here,

we analyze the changes in the strong interhelical interactions

within the GPCR and strong ligand-protein interactions. For a valid

structure, we expect to gain new interactions (sometimes due to

water molecules) while not losing the original strong couplings.

Such a short MD simulation would not allow an inactive structure

to become activated.

Two GPCRs (rhodopsin and hb2AR) have reported crystal structures in

which the full or partial Ga subunit C-terminus of the G protein is bound

to the IC side of the GPCR. It is believed that these structures capture a sta-

ble GPCR active state. A comparison of these active structures with their

inactive-state counterparts shows that the active states have a different

packing of the TM helices and that TM6 changes shape during activation.

In hb2AR, bovine rhodopsin (bRho), hM2, and mOPRM, the TM6 IC end

moves horizontally away from its position relative to TM3 in the inactive

state with a residue near the hydrophobic plane as the pivot point, resulting

in the TM3–TM6 space on the IC side opening up by ~3–5 Å (Table S1 in

the Supporting Material). Both experiment and previous predictions pro-

vide strong evidence that each GPCR sequence may have multiple active

states, with the active states generally being higher in energy (less stable)

than the inactive state (20).

These insights inspired us to modify steps 2 and 3 of GEnSeMBLE to

develop the ActiveGEnSeMBLE method. In ActiveGEnSeMBLE, for

step 2, the template for the homology model is based (in addition to

an inactive-state crystal structure) either on an available active-state

crystal structure (for validation purposes only) or on another model based

on a hybrid template in which only TM6 comes from an active-state

crystal structure, whereas the other six TMs (TM1–5 and TM7) come

from an inactive-state crystal structure. In ActiveGEnSeMBLE, step 3

of GEnSeMBLE is replaced by a two-step conformational sampling

scheme for SuperBiHelix that includes a coarse conformational sampling

aimed at locating structures in the active-state potential energy wells, fol-

lowed by a finer conformational sampling starting from specific potential

functionally diverse conformations identified by the coarse sampling.

Coarse conformational sampling casts a wide net to catch conformations

that are potentially active. Specific conformations from coarse sampling

are identified along an activation coordinate by using a geometric crite-

rion before the energetic criterion as described below. Fine confor-

mational sampling starting from these conformations relaxes them in

their local potential energy wells. We contend that this procedure is

much faster and efficient than using a standard MD simulation to identify

and relax active-like conformations.

In summary, the ActiveGEnSeMBLE method (Fig. S1) is performed as

follows:

Step 1. Same as step 1 of GEnSeMBLE.

Step 2. Same as step 2 of GEnSeMBLE, except that we include a template

based on an active-state crystal structure (for validation purposes
2620 Biophysical Journal 110, 2618–2629, June 21, 2016
only) and a hybrid template based on the inactive-state template

with an active-state TM6 for the active conformation prediction.

Step 3.1. We sample the orientations of the helices using BiHelix/

CombiHelix as in GEnSeMBLE, followed by a coarse SuperBiHelix/

SuperComBiHelix (D4 from �90� to 90� in 45� increments; Dq ¼
0,515� and Dh ¼ 0,530� as in GEnSeMBLE). In contrast to GEn-

SeMBLE, in which we select the conformations corresponding to the

20 lowest-energy states for further analysis, in ActiveGEnSeMBLE

we measure the distance between the TM3 and TM6 IC ends (R36) of

the 1000 lowest-energy structures generated during coarse conforma-

tional sampling. We also measure R36 for the inactive-state template,

and denote it as R36
(it).

To select potential active-state structures from the coarse conforma-

tional sampling, we search for the lowest-energy structure with R36 �
R36

(it) > 4 Å. We denote the selected structures S2.1 (for the case

with hybrid or active-state initial template) and S3.1 (for the case

with inactive-state initial template). We select potential inactive-state

structures from the coarse conformational sampling (S4.1) using the

same criteria described for GEnSeMBLE.

Step 3.2. All the structures identified in Step 3.1 go through Step 3.2a.

In addition, for structure S3.1, there is an alternative treatment

Step 3.2b:

Step 3.2a. Structure S2.1, S3.1, or S4.1 is used directly as the starting

structure of a finer SuperBiHelix/SuperComBiHelix (4 from �30�

to 30� in 15� increments; q and h similar to GEnSeMBLE).

Step 3.2b. TM6 in structure S3.1 is replaced by a TM6 shape from

anexisting active-state crystal structure as described inSupportingMa-

terials and Methods. The resulting structure, S3.1b, is then used as the

starting structure for fine conformational sampling (D4 from �30� to
30� in 15� increments; Dq and Dh similar to GEnSeMBLE).

Step 3.3. To select final active-state candidates, check that the lowest-

energy structure from step 3.2a or step 3.2b at least satisfies the

criterion R36 � R36
(it) > 3 Å. If it does, select this structure as a po-

tential active-state conformation for the target protein. If it does not,

check the second lowest-energy structure and so on. This step is car-

ried out separately for different initial templates to have a set of

candidate structures diverse in TMD shapes. The final inactive-state

candidates are again selected using the same criteria as employed in

GEnSeMBLE.

Step 4. Same as step 4 of GEnSeMBLE.

Step 5. Same as step 5 of GEnSeMBLE, except that an MD simulation of

the docked active-state candidates with the agonist bound and the

G protein bound is performed.
Defining the distance between the TM3 and TM6 IC ends, R36

We define R36 as the minimal approach distance between the IC ends of the

TM3 and TM6 backbone atoms. We do not define it as the distance between

residues 3.50 and 6.30 (denoted in the Ballesteros-Weinstein numbering

scheme) (21), which usually form a salt bridge in the inactive-state crystal

structure, because pure rotations of TM3 and TM6 can increase the distance

between these two (or any two) residues without opening any space be-

tween the two TMs for Ga to couple to the receptor. To calculate R36,

we use the following algorithm:

Step 1. Orient the GPCR such that its hydrophobic plane is in the x-y

plane (z ¼ 0), the extracellular (EC) end has positive z-coordinates,

and the IC end has negative z-coordinates. For the IC ends of domains

TM3 and TM6, the one with the less negative z-coordinate value is

termed shortTM and the other one is termed longTM.

Step 2. Select a range of neighboring residues r1,r2,.,rn starting from

the most IC residue of shortTM. In the example presented here, we

used n ¼ 4 because there are usually four residues per turn on a pep-

tide a-helix.

Step 3. For each given residue, rm, selected in step 2, determine the z-co-

ordinate zm for each of its backbone atoms. Calculate all distances
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between the shortTM backbone atoms in rm and the longTM back-

bone atoms with z-coordinates in the range of (zm � DzIC, zm þ
DzEC). In general, the value of DzIC is chosen to be 5.4 Å because

this is the height of one turn of the a-helix. For structure-prediction

steps, DzEC is chosen to be 5.4 Å. To analyze the trajectory from the

MD simulation step discussed below, the value of DzEC is chosen

such that zm þ DzEC is about the same as the least-negative z-coordi-

nate of the Ga subunit C-terminus in the Ga-coupled case. For the

structure-prediction cases discussed in this work, the latter choice

of DzEC gives the same R36 value as choosing DzEC ¼ 5.4 Å.

Step 4. The smallest distance among all distances between TM3 and

TM6 calculated in step 3 is R36.

This definition provides a robust geometric and steric measure of the IC

distance between TM3 and TM6, which correlates with the potential of G

protein coupling to the active conformations.

Using R36 values to facilitate selection of the active-state
candidates

Let R36 for the active-state structure be R36
(a) and that for the inactive-state

structure be R36
(i). Define DR36 ¼ R36

(a) � R36
(i). Class A GPCRs hb2AR

and bRho are crystallized with the G protein or the C-terminus of the Ga

subunit in complex with the GPCR, and they both have DR36 z 4 Å

(Table S1). For hM2 and mOPRM, their active states are crystallized

with a G protein mimetic camelid antibody fragment and their DR36 values

are ~3 Å and 5 Å, respectively. Since the G protein couples to the receptor

with the C-terminus of the Ga subunit inserted into the IC side of the GPCR

in between TM3 and TM6, it is reasonable to estimate DR36 by adding the

diameter of a peptide a-helix (2.3 Å) to a C-C single bond length (1.5 Å),

which leads to 3.8 Å. Thus, we find DR36 > 3 Å as a reasonable target sep-

aration to locate active-like conformations. Below, we show that our final

predicted active hSSTR5 structures result in DR36 z 3.5 Å.
Details

Validation

Structure prediction. Starting from the TMD of the crystal structures

of each validation case, hb2AR (PDB ID: 3SN6 and 2RH1) and hM2

(PDB ID: 4MQS and 3UON), we performed step 3 according to the

ActiveGEnSeMBLE protocol as described above. The energy ECNti was

used in energy ranking and is defined in Supporting Materials and Methods.

The resulting active and inactive conformations were compared with those

observed in experimental structures.

MD of hb2AR crystal structures. We performed an MD simulation of

hb2AR starting from its active-state crystal structure (PDB ID: 3SN6)

and inactive-state crystal structure (PDB ID: 2RH1). The MD simulation

was carried out for the following cases with an explicit lipid and water envi-

ronment: agonistþactive GPCRþGas, agonistþactive GPCR, active GPCR

(apo)þGas, active GPCR (apo), agonistþinactive GPCR, inactive GPCR

(apo), Gas, and agonist. In the absence of experimental structures, this

can be done with the receptor conformations from ActiveGEnSeMBLE.

We chose the agonist to be BI-167107, which is in the binding site of the

active-state crystal structure for hb2AR.Only theGa subunit of theG protein

was included in the simulation because our main focus was on the binding

interface between the GPCR and the G protein, which only involves the

Ga subunit and the GPCR. The active GPCR (apo)þGas case starts from

the equilibrated agonistþactiveGPCR (apo)þGas with the agonist removed.

MD simulation. For the MD simulation, we used the AMBER force-field

engine implemented in NAMD 2.9 (22). The conjugate-gradient method

was used in minimization. The Nosé-Hoover Langevin piston pressure con-

trol was used in the NPT dynamics. The 51 ns MD simulation was per-

formed as detailed in Supporting Materials and Methods.

Energy analysis of the MD trajectories. We used the self-interaction

energy function of NAMD 2.9 to perform a single-point energy calculation
of each component in the complexes along the trajectories obtained from

the MD simulation above. We carried out a minimization of 5000 steps on

each frame before calculating the single-point energy. We then computed

the energies for the receptor, the Ga protein, the ligand, and the interac-

tions of Ga/ligand with the receptor, for whichever nonsolvent molecules

were present in the complex to be studied. We then clustered the com-

plexes along each trajectory that were saved every 100 ps, such that com-

plexes within a root mean-square deviation (RMSD) of 2 Å of each other

were grouped into one family. The families were then classified as inac-

tive, intermediate, or active states, defined as R36 < 10 Å, 10 Å <

R36 < 13 Å, and R36 > 13 Å, respectively. For each of these activation

states of a trajectory, the mean value of the energy of each component

was calculated and labeled as ER, EG, EL, ELR, ERG, or ELRG, with the

component under consideration subscripted (R denotes the receptor, G de-

notes the Ga protein, L denotes the ligand, LRG denotes the li-

gandþreceptorþGa complex, LR denotes the ligandþreceptor complex,

and RG denotes the receptorþGa complex). We also calculated the corre-

sponding standard deviations. We were then able to calculate the total en-

ergy of the receptor plus the stabilization from the interaction between the

receptor and the ligand and/or the Ga protein as follows:

ELRG
Rþinteraction ¼ ELRG

LRG � ELRG
L � ELRG

G

ELR
Rþinteraction ¼ ELR

LR � ELR
L

ERG
Rþinteraction ¼ ERG

RG � ERG
G

ER
Rþinteraction ¼ ER

R:

The total energy of the system, with the internal energy of the ligand and the

Ga protein also considered, was calculated as follows:

ELRG
Total ¼ ELRG

LRG

ELR
Total ¼ ELR

LR þ EG
G

ERG
Total ¼ ERG

RG þ EL
L

ER
Total ¼ ER

R þ EL
L þ EG

G:

The superscript letters indicate the MD simulation case from which the

energy was obtained, and the subscript letters indicate which components

of the case were grouped to obtain the energy.

Application

Structure prediction and ligand docking. We applied the ActiveGEnSeM-

BLE method to the hSSTR5 receptor, for which no experimental struc-

tures are available. The exact procedures of steps 1–3 follow the

ActiveGEnSeMBLE protocol mentioned above and are described in detail

in our previous SSTR5 publication (23). The ligands (L-817,818 and F21)

were docked to each of the five predicted hSSTR5 structures (Inactive-

Conf1,2,3 and ActiveConf1,2) as described in Supporting Materials and

Methods.

MD simulations and analysis. We carried out MD simulations of the

following complexes: agonistþActiveConf2þGai, agonistþActiveConf2,

apo-ActiveConf2þGai, apo-ActiveConf2, agonistþInactiveConf2, apo-In-

activeConf2, Gai alone, and agonist alone.

As with the MD simulation of hb2AR, we chose to use these systems so

that we could perform an interaction energy analysis of the MD trajectories

to extract meaningful information regarding the GPCR activation mecha-

nism. The starting agonist-GPCR complexes were the lowest-energy

L-817,818-bound inactive- and active-state structures obtained from dock-

ing. We obtained the starting structure for apo-ActiveConf2þGai by

removing the agonist from the last frame of a 51 ns MD simulation of

agonistþActiveConf2þGai.

The procedure used to build the starting system for the MD simu-

lation is described in detail in Supporting Materials and Methods.

The MD procedure and energy analysis were performed as described

above. The inactive, intermediate, and active states in the energy
Biophysical Journal 110, 2618–2629, June 21, 2016 2621
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analysis are defined as R36 < 8 Å, 8 Å < R36 < 11 Å, and R36 > 11 Å,

respectively.
RESULTS AND DISCUSSION

Method validation

Structure prediction

We validated the ActiveGEnSeMBLE method using the
hb2AR and hM2 receptor systems, for which both active-
state and inactive-state structures have been crystallized.
The ligand of bRho, retinal, is covalently bound to the
GPCR. Since this does not represent the majority of class
A GPCRs, which do not have covalently bound ligands,
we did not consider bRho as a validation case. In addition,
it is nontrivial to quantify the energies of the receptor with
and without the ligand for a covalently bound ligand to ac-
count for the effect of the receptor-ligand interaction energy
on the thermodynamic state of the receptor system. Fig. 1
summarizes the methods tested, with each final structure
sharing the same numbering as the method that generated
the structure. Starting from an active-state structure, an inac-
tive-state structure, and a hybrid structure mixing active-
state (TM6) and inactive-state (TM1–5 and TM7) helices,
we compared the best final structures obtained by different
methods with the active-state crystal structure. The struc-
tural features and energy value of the last node in every
pipeline in Fig. 1 (i.e., the final structure from each method)
are summarized in Table S2, with further details in Table S3.
We assumed that the energy values and R36 values would be
the only information that would be available for selecting
candidate structures to predict an unknown structure. For
hb2AR and hM2, using the active-state crystal structure as
a starting structure to predict active-state structures (method
1.x), the procedure is able to reproduce the TM orientations
in the active-state crystal structure (Tables S2 and S3). This
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sampling (
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wells 
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is a good (and necessary) test of the overall methodology
and the force field, as they are able to identify a conforma-
tion close to the experimentally observed conformation out
of (5� 3� 3)7z 374 billion conformations sampled. Simi-
larly, using the inactive-state crystal structure as a starting
structure to predict inactive-state structures (method 4.x),
the procedure is able to reproduce the TM orientations in
the inactive-state crystal structure (Tables S2 and S3).

Next, as a test of ActiveGEnSeMBLE on more practical
cases, we find that both active-state prediction methods
starting from either the inactive-state crystal structure or
the hybrid structure (methods 2.x and 3.x; see rows with
the first column 2.x and 3.x in Table S2) can reduce the
RMSD of the predicted active-state candidate to the
active-state crystal structure by 1.0 Å for hb2AR and
0.8 Å for hM2. These numbers are significant because the
RMSDs between the inactive-state and active-state crystal
structures are 2.48 Å and 2.30 Å for hb2AR and hM2,
respectively. A comparison of different methods that start
from the inactive-state crystal structure or the hybrid struc-
ture (method 2.1 versus 3.1, and method 3.3 versus 3.2;
Table S2) shows that replacing the inactive-state TM6 shape
with the active-state TM6 shape further lowers the RMSD
between the candidate structure from sampling and the
actual active-state crystal structure by ~0.4 Å. This implies
that the active-like TM6 shape plays an important role and
may be necessary for a high-accuracy computational predic-
tion of active-state GPCR structures.

From the coarse sampling results, two structures are
picked. One is for the inactive-state prediction (structure
4.1 of Fig. 1; Tables S2 and S3) and the other is for the
active-state prediction (structure 3.1 of Fig. 1; Tables S2
and S3). From the energy profiles in Fig. 2 (hb2AR) and
Fig. S3 (hM2), it can be seen that the fine samplings
can effectively achieve lower energies while keeping the
R36 values of the lowest-energy final structures in the
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FIGURE 2 Potential energy profile from sampling hb2AR conforma-

tions. The black curve illustrates how our sampling results can be qualita-

tively translated into a potential energy curve using R36 as the x axis and

does not quantitatively represent any real data. Results of the coarse sam-

pling starting from the inactive-state crystal structure are in blue circles.

Starting from structure 3.1, results of methods that generated structures

3.2 and 3.3 are shown in red crosses and red squares, respectively. Starting

from structure 4.1, results of the fine sampling that generated structure 4.2

are in green dots. Every blue arrow points from a starting structure toward

the optimal structure from the fine sampling of the corresponding method.

FIGURE 3 Energy landscape of hb2AR activation from MD simulation.

The horizontal bars are ERþinteraction calculated as described in the Materials

and Methods section. The curved lines are fictitious energy surfaces, with

the barriers being qualitative and the minima defined by the corresponding

ERþinteraction values. Inactive, intermediate, and active states in the figure are

defined as R36 < 10 Å, 10 Å < R36 < 13 Å, and R36 > 13 Å, respectively.

Modeling the GPCR Activation Landscape
active-like energy well similar (within 1 Å) to those of the
starting structures of the corresponding fine sampling. In
other words, the fine sampling helps to locate the local min-
imum of a potential energy well (defined by R36) even when
the activation coordinate R36 is not sampled explicitly.
Although these potential energy profiles are crude, they are
consistent with the hypothesis that structures with R36 values
that deviate by >3–4 Å from R36

(i) correspond to potential
energy wells with higher energy local minima. In addition,
they show that there are multiple higher-energy potential en-
ergy wells, which is consistent with biophysical evidence of
multiple active states for a given GPCR. Furthermore, the
recently published arrestin-bound receptor structure (24)
was used to match arrestin to all the minimum energy struc-
tures of these energy wells for hb2AR. We found conforma-
tions for hb2AR that could accommodate arrestin, but not the
Gs protein (Fig. S2). This is also consistent with the hypoth-
esis that someof these different active statesmight be capable
of activating different signaling pathways by coupling to
different regulators. These results demonstrate that the
ActiveGEnSeMBLE method is able to predict functionally
distinct active-like conformations of GPCRs that might be
responsible for coupling to different signaling pathways.
The method has the potential to map out the activation land-
scape of a GPCR for multiple signaling pathways efficiently.

MD simulation and analysis

So far, only qualitative energy landscapes have been
generated for GPCR activation, and the best-studied case
is hb2AR (25). To obtain a quantitative energy landscape
that might provide more insights into GPCR activation to
develop a strategy to elucidate the activation of GPCRs
for which only predicted structures are available, we carried
out MD simulations of hb2AR starting from its crystal struc-
tures as described in Materials andMethods. Analysis of R36

during the MD simulations showed that the inactive confor-
mation with and without the agonist remained inactive
(Fig. S17), the Gas-bound active conformation remained
stable during MD, and the active conformation that was
not bound to Gas slowly lost its activity (i.e., a decrease
in R36) during the 51 ns MD simulation as expected
(Fig. S18). In addition, the apo-GPCR on average always
had a slightly smaller R36 value than the agonist-bound
GPCR toward the end of the 51 ns, which is consistent
with the notion that the agonist shifts the equilibrium toward
more activated states. We then grouped the conformations in
corresponding trajectories by R36, with inactive, intermedi-
ate, and active states defined as R36 < 10 Å, 10 Å < R36 <
13 Å, and R36 > 13 Å, respectively, and calculated
ERþinteraction for each group. Note that each inactive, inter-
mediate, and active state here contains multiple 3D confor-
mational states that satisfy the respective R36 criterion. The
resulting energy landscape (Fig. 3) is overall consistent with
the qualitative picture obtained from experiments (Fig. S21,
adapted from Ref. (25)).

For agonist-bound (with BI-167107 being the agonist)
and apo-GPCR systems, the energy is lower in the inactive
state than in the active state, but higher than in the interme-
diate state (Fig. 3). This is a signature of BI-167107-bound
hb2AR as opposed to isoproterenol-bound hb2AR, and was
found in previous experiments (25).
Biophysical Journal 110, 2618–2629, June 21, 2016 2623
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When the Ga protein was present, both the agonist-bound
and apo-GPCR energies were significantly lowered for the
active state, which comprises the only group of states that
can accommodate the G protein. This finding of a lower en-
ergy for agonist-bound GPCR upon coupling with Ga is
consistent with experiments. Apo-GPCR coupled with the G
protein is not in the picture of the experimental energy land-
scape, but we were able to do an MD simulation and analysis
of this system, and rationalize our finding regarding its relative
energy. To be specific, our results suggest that if an apo-GPCR
can indeed couple with the G protein, its energy will be lower
upon coupling, but not as low as that of the agonist-bound
GPCR. This explains the basal activity of hb2AR and suggests
that an agonist is able to increase the activity of a GPCR by
shifting the equilibrium from the apo-GPCRþGa complex to-
ward the more stable agonistþGPCRþGa complex.

Furthermore, the agonist-bound GPCR had lower energy
than the apo-GPCR for all other states as well, including the
inactive states. This was also found in previous experiments
(25). As the agonist-bound intermediate state remains the
lowest-energy state among the three states, and the energy
is lowered to a greater extent than in the other states, this
supports the notion of a second route for GPCR activation
that starts from an increased equilibrium population of the
intermediate state upon binding with the agonist. Since the
agonist-bound receptor is more dynamic in conformation
than the apo-GPCR (25), the agonist-bound receptor can
then be stabilized by the G protein as it transits from the in-
termediate state to the active state.

The above analysis is based on the quantitative energy
landscape plottedwith ERþinteraction, which we chose because
we wanted to eliminate any possible internal energy changes
in the Ga and the ligand caused by Ga not coupling with the
other subunits of theG protein and by the ligand strain, which
may not be captured accurately by computational methods.
Nevertheless, the energy profiles of ER and ETotal are shown
in Figs. S19 and S20, respectively. Although ETotal is qualita-
tively the same as ERþinteraction for hb2AR, a subsequent anal-
ysis showed that they are different for hSSTR5 (Fig. S13).
The energy profile of the receptor by itself (ER) shows that
the receptor is actually destabilized by the G protein if the
agonist is not present. Based on these results and our previous
analysis, we conclude that uponGPCR coupling to theG pro-
tein, it is the interaction between the G protein and the GPCR
that stabilizes the system, rather than the G protein directly
lowering the energy of the GPCR by itself. This insight
was lacking from experimental profiles, but we are able to
deduce it from our analysis.
Application to hSSTR5

Structure prediction

We applied ActiveGEnSeMBLE to a GPCR without a
known experimental structure, hSSTR5. The workflow is
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shown in Fig. S1, with mOPRM as the starting crystal
structure template. When generating active conformations
from hybrid templates, we carried out the optional BiHelix
step in the flow chart in Fig. S1. The methods used for the
inactive-state structural prediction were discussed in detail
in our previous publication (23). When selecting the
potentially active structure from the coarse sampling, we
used 10.04 Å as a criterion because R36

(it) is 6.04 Å.
Similar to the cases with hb2AR and hM2, Table S4 shows
that fine conformational sampling is able to lower the en-
ergies starting from the results of coarse conformational
sampling. In addition, all structures 3.x have R36 within
1.14 Å of each other, and all structures 4.x have R36

within 1.58 Å of each other. In other words, the R36 values
of the lowest-energy structures from fine samplings are
similar to those of the structures the fine samplings started
with. This means that we successfully explored lower-en-
ergy structures for the inactive- and active-like states in
their respective energy wells.

In addition to the methods described above, we also tested
ActiveGEnSeMBLE using the hb2AR active-state x-ray
structure as the template for all of the hSSTR5 TMs. The
lowest-energy structure has ECNti of �224.7 kcal mol�1,
which is less stable than any of structures 3.x (�265.8
to �306.6 kcal mol�1), for which we used either the
mOPRM inactive-state template or the hybrid template.
As a result, we did not use this structure for the later steps.
This suggests that the crystal structure of the hb2AR active-
state conformation may not be the best template for building
an active-state homology model for many GPCRs. Since
there are more inactive-state templates than active ones, if
a target receptor has the best sequence homology to a recep-
tor with only an inactive-state template, one should build
the starting structure using that template. Then, one can
use ActiveGEnSeMBLE on that structure to predict the
active-state and inactive-state conformations of the target
receptor.

The energy profile of hSSTR5 plotted against R36 is illus-
trated in Fig. S4. Compared with hb2AR and hM2, hSSTR5
seems to have a flatter energy surface. This may be a feature
of hSSTR5, but it could also be affected by the homology
template used. As the energies of ActiveConf1 and Active-
Conf2 are comparable, and we wanted to have a diverse set
of candidate structures, we chose both of these structures as
active-state candidates. To determine whether our predicted
structures were reasonable, we carried out ligand-binding
studies and MD simulations.

Ligand binding studies

To verify the predicted hSSTR5 structures, we docked five
antagonists (26) (Fig. S5) and two agonists (27) (Fig. S6) to
all five candidate structures (InactiveConf1, InactiveConf2,
InactiveConf3, ActiveConf1, and ActiveConf2). Binding
studies of the antagonists docking are discussed in detail in
Dong et al. (23), in which the predicted binding energy of



Modeling the GPCR Activation Landscape
the antagonist series is consistent with experimental binding
constants.

The agonists L-817,818 and F21 were selected because
they have very high affinities (subnanomolar binding con-
stants) for hSSTR5 and display both similar and different
structural features. We did not select a series of agonists
with the same scaffold for SAR analysis due to the lack of
published experimental SAR data. The selected agonists’
structures are shown in Fig. S6. They are both peptide
mimics derived from the endogenous ligand, somatostatin.
They both have polycyclic aromatic groups and have a
group mimicking lysine. However, L-817,818 has one
more positively charged amine group than F21.

For each agonist, docking to the five predicted structures
shows that the lowest-energy poses with the inactive state
and the active state are only slightly different (Table S5;
Figs. S7 and S8). This suggests an easy pathway for the
agonist-bound receptor to interconvert between the inactive
and active states, consistent with experiments on hb2AR
(25). Binding energies from docking have also shown that,
in the absence of a G protein, the agonist stabilizes its inac-
tive conformation. This again is consistent with experiments
on hb2AR (25) and is further supported by an interaction
energy analysis of MD trajectories described in the next
section.

We also found that for both agonists (L-817,818 and F21),
the best active-state pose was achieved with ActiveConf2
(Table S5). Since ActiveConf2 was generated using struc-
ture-prediction method 3.3, this again suggests that the
TM6 shape is an important factor in GPCR activation, and
a more active-like TM6 shape makes computational predic-
tion of active-state conformations more likely to succeed.
Contrary to the antagonist M59 (the highest-binding-affinity
antagonist we docked), which favored InactiveConf1, the
best inactive-state poses for both agonists were observed
with InactiveConf2, which had a slightly higher energy
(by 5 kcal mol�1) and greater R36 (by 0.4 Å) than Inactive-
Conf1. This implies that agonists may stabilize a slightly
more active inactive state than antagonists, and is a direct
demonstration of the ability of ActiveGEnSeMBLE to pre-
dict multiple states, which is crucial for elucidating GPCR
activation mechanisms.

To date, no published mutation studies have probed the
interaction between hSSTR5 and small-molecule ligands. In
addition, only limited mutation data are available regarding
the somatostatin receptors (SSTRs) binding with the endoge-
nous somatostatin-14 (S-14) and somatostatin-28 (S-28),
especially in the TM regions. Here, we will attempt to
compare our binding analysis with the available experimental
mutation data, and suggest mutations that can be experi-
mentally tested to probe the binding of agonists L-817,818
and F21.

As shown in Fig. S7, the positively charged amine group in
the ligand F21 forms a salt bridge with D1193.32 on TM3,
which is common among the closely related opioid receptors.
We can also see that ActiveConf2 forms a hydrophobic
pocket that is in contact with the majority of nonpolar groups
in F21. Note that the hydrophobic pocket includes F2646.51

on TM6. It is known that the mutation F6.52Y in rat
SSTR5 (rSSTR5) can increase the binding affinity of S-14
to rSSTR5 by 20-fold (28), and this means that F2656.52 is
involved in SSTR5-agonist binding. Since F2656.52 and
F2646.51 are neighboring residues and the ligand F21 is
much smaller than S-14, we can hypothesize that F2646.51

is important for F21 binding with the activated hSSTR5.
Notice that residue 6.52 is tyrosine for all other SSTRs, but
F6.51 is conserved in all SSTRs. As a result, we suggest
that F6.51 is responsible for the affinity of SSTRs to the
ligand F21, but not for the selectivity.

L-817,818 has different binding modes because of its two
positively charged amine groups. The 3D visualization and
ligand interaction diagrams (LIDs) of the best pose with the
inactive state (L_i2) and the active state (L_a2) are shown in
Fig. S8. Similar to what was observed for ligand F21, the
salt bridge between one amine group with D1193.32 is pre-
sent, and there is a p-p interaction between the aromatic
groups in L-817,818 and F2646.51. The other lysine-like
amine group in L-817,818 forms a hydrogen bond with
Q1233.36 and has the potential to have an electrostatic inter-
action with D862.50. In the MD simulation discussed in more
detail in the next section, we found that this amine group
was indeed forming a salt bridge with D862.50 in the
active-state simulation. Thus, we suggest that D862.50 is
involved in hSSTR5 activation by L-817,818. Also, the
hSSTR5 mutant F264Y is predicted to have a higher affinity
for L-817,818 due to the potential of an additional hydrogen
bond between the ester oxygen atom in L-817,818 and
Y264.

MD simulation and analysis

To further investigate the activation mechanism of hSSTR5,
we carried out MD simulations on the L-817,818-bound
and apo predicted structures. We considered six cases:
1) agonistþActiveConf2þGai, 2) agonistþActiveConf2,
3) apo-ActiveConf2þGai, 4) apo-ActiveConf2, 5) ago-
nistþInactiveConf2, and 6) apo-InactiveConf2. The binding
site of agonistþActiveConf2 is from L_a2, and that of ago-
nistþInactiveConf2 is from L_i2. As expected, similar to
the case with hb2AR, the inactive state remained inactive
during the MD simulation (Fig. S9), and the coupling of
Gai was able to keep both the agonist-bound GPCR and
apo-GPCR active during the MD simulation (Fig. S11).
Interestingly, contrary to the case with hb2AR, where both
the agonist-bound GPCR and apo-GPCR lost their activity
during the MD simulation, for hSSTR5, starting from
active-state conformations without Gai, the apo-GPCR
was able to keep hSSTR5 with a large R36 capable of
coupling to Gai, whereas the agonist-bound GPCR returned
to its intermediate state within 5 ns and to its inactive state in
28 ns (Fig. S10). This suggests that the constitutive activity
Biophysical Journal 110, 2618–2629, June 21, 2016 2625



Dong et al.
of hSSTR5 plays an important role in its activation mecha-
nism. The G protein is more likely to couple to hSSTR5
before the agonist binds.

For each case, we analyzed the potential energy of the
agonist-bound GPCR and apo-GPCR along the MD trajec-
tory, and the resulting energy landscape (Fig. 4) is consistent
with the picture derived from experimental findings for
hb2AR (20,25). To be more specific, although the active
state of a GPCR has higher energy than its inactive state,
binding of the G protein lowers the energy of the active state
of the GPCR, and ERþinteraction of the apo-GPCRþGai com-
plex is not as low as the agonist-bound complex. This acti-
vation picture is another example (besides hb2AR) that
quantitatively confirms the notion that the G protein facili-
tates GPCR activation by stabilizing both the agonist-bound
GPCR and apo-GPCR. The former leads to agonist-induced
activity and the latter leads to constitutive activity.

When we compare the energy landscape of hb2AR in
Fig. 3 with that of hSSTR5 in Fig. 4, we find that their inter-
mediate states have different features. The intermediate
states of the BI-167107-bound hb2AR have lower energy
than the inactive states, whereas those of the L-817,818-
bound hSSTR5 have higher energy than the inactive states.
This can be reasonable because the energy landscape of
even the same receptor can be altered by different agonists.
For example, another hb2AR agonist, isoproterenol, makes
hb2AR have higher-energy intermediate states than inactive
states (Fig. S21) (25). In addition, the definition of interme-
diate state here includes many different states that have R36

between the inactive state and the states that can couple to
the G protein, and the average energy of these intermediate
FIGURE 4 Energy landscape of hSSTR5 activation fromMD simulation.

The solid horizontal bars are ERþinteraction calculated as described in the

Materials and Methods section. The dashed horizontal bar is fictitious.

The curved lines are fictitious energy surface, with the barriers being

qualitative and minima defined by the corresponding ERþinteraction values.

Inactive, intermediate, and active states in the figure are defined as R36 <

8 Å, 8 Å < R36 < 11 Å, and R36 > 11 Å, respectively.
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states depends on the distribution of these states in the MD
trajectory.

Furthermore, experimental structures of several agonist-
bound GPCRs have exhibited features ranging from inactive
to various degrees of partially active without the presence of
the G protein, suggesting that the agonist plays a role in the
initial steps of GPCR activation that varies with different
GPCRs. For example, for the turkey b1 adrenergic receptor,
the agonist-bound structure is nearly identical to the antag-
onist-bound inactive-state structure except for a 1 Å
contraction of the binding pocket (29), whereas for the hu-
man adenosine A2A receptor, the agonist-bound structure
has all active-like features except that the IC end of TM6
is only partially opened for coupling to the G protein (Table
S1) (30).

The agonist-bound human serotonin 1B (5-HT1B) recep-
tor, human serotonin 2B (5-HT2B) receptor, and rat neuroten-
sin 1 receptor (NTSR1) do not have an antagonist-bound
inactive-state structure of the same receptor for comparison,
but they show partially active features. Bound with the same
agonist, the 5-HT2B receptor has a less active TM6 and a
more active TM7 than the 5-HT1B receptor, and they both
exhibit an outward shift of the TM6 IC end compared with
the inactive-state structures of other aminergic receptors
(31,32). NTSR1 also shows active-like features found in
bRho and hb2AR, with a TM6 position similar to that of
the active-state bRho, but not to the extent of active-state
hb2AR (33).

Therefore, we conclude that different GPCRs may adopt
different activation pathways with different agonists in
terms of the energy ordering of different states dictated by
the respective energy landscapes of activation. It is reason-
able that our agonist-bound inactive states of hSSTR5 have
the lowest energy among its various states that display
different degrees of activation. Thus, we consider that the
computation of the energy landscape of GPCRs using the
method detailed in this work is valuable because it may
allow for the activation mechanisms of a broader variety
of GPCRs to be mapped out efficiently.

Similar to the case with hb2AR, the hSSTR5 energy pro-
file plotted with ER (Fig. S12) also shows that the G protein
destabilizes the receptor, except that in the case of hSSTR5
this occurs regardless of whether the agonist is bound. This
may be reasonable because the hSSTR5 agonist L-817,818
destabilizes hSSTR5, whereas the hb2AR agonist BI-
167107 stabilizes hb2AR. Since ERþinteraction shows a lower
energy for the agonist-bound hSSTR5, we can conclude that
the stabilization of hSSTR5 comes from the interaction be-
tween the agonist and the receptor, in addition to the inter-
action between Gai and the receptor.

The stabilizing effect of the G protein on the active state
of the GPCR can indeed be explained by the specific inter-
actions between the Ga subunit and the GPCR. During the
MD simulation of agonistþActiveConf2þGai, salt-bridge
and hydrogen-bond networks were able to form between
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the C-terminal helix of Gai and ActiveConf2, as shown
in Fig. 5. In particular, the formation of a salt-bridge
network involving Gai’s D261

G.h3s5.2 and D350G.H5.22, and
hSSTR5’s K72 on IC loop 1 (ICL1) and R151 on ICL2,
and the formation of a hydrogen bond between R1373.50

and Gai’s C351G.H5.23 replace the inactive state’s R151-
D1363.49-R1373.50-T2476.34 network. An additional salt-
bridge network is formed between the carboxylate group
on the Gai C-terminal residue F354G.H5.26 and hSSTR5’s
K2456.32 on TM6 and R239 on ICL3. In addition, a
hydrogen bond is formed between R2486.35 and
G352G.H5.24, and a weaker hydrogen bond is formed be-
tween W150 on ICL2 and N347G.H5.19. Furthermore, the
highly conserved L348G.H5.20 and L353G.H5.25 are in a
hydrophobic pocket that consists of V1413.54, I2245.61,
V2466.33, M2496.36, and V228 on ICL3. Since an experi-
mental mutagenesis study (34) showed that the mutations
L348AG.H5.20, L353AG.H5.25, and G352AG.H5.24 severely
a

b

FIGURE 5 (a and b) Interactions between the Gai C-terminus and

hSSTR5 after a 51 ns MD simulation of (a) agonistþActiveConf2þGai
and (b) apo-ActiveConf2þGai. Gai is shown in yellow and hSSTR5 is

shown in cyan. The superscript of Ga residue numbers follows the

common Ga numbering system (53). The coordinates of the agonistþ
ActiveConf2þGai complex shown are included in the Supporting Material

as a separate file in PDB format.
hindered coupling between Gai and light-activated bRho
(bRho*), which has the conserved residues V1393.54,
L2265.61, V2506.33, M2536.36, and R2526.35, we may
conclude that the corresponding interactions we found be-
tween hSSTR5 and Gai are consistent with experiments.
The same experimental study showed that N347AG.H5.19

did not have a significant effect on coupling between Gai
and bRho*, which is consistent with the weak interaction
we found between W150 and N347G.H5.19. Interestingly,
the mutation D350AG.H5.22 seems to stabilize the bRho*-
Gai complex. This may be a property specific to bRho*-
Gai arising from the differences in helix packing and ICL
sequences between bRho and hSSTR5.

After the agonist is removed, K72 on ICL1 breaks away
from D350G.H5.22 and D261G.h3s5.2, and forms a hydrogen
bond with the backbone oxygen atom of D350G.H5.22. In
addition, the hydrogen bond between R1373.50 and the
C351G.H5.23 backbone oxygen atom, and the hydrogen
bond between R2486.35 and the G352G.H5.24 backbone oxy-
gen atom become water mediated. The weakening of the
interaction between the apo-GPCR and Ga is consistent
with the notion that the agonist stabilizes the binding of
the G protein with GPCR.

When we examined the protein-ligand interactions in
more detail, we found a characteristic interaction that
formed at ~25 ns of the agonistþActiveConf2þGai
MD simulation but was absent in the entire ago-
nistþInactiveConf2 MD trajectory: a salt bridge between
the lysine-like positively charged amine of L-817,818 and
D862.50 on hSSTR5 (Figs. S14–S16). The highly conserva-
tive residue 2.50 has been studied in several GPCRs, but its
role is not well understood and varies across different sys-
tems (35,36). In particular, the mutation D2.50N has
different effects in SSTR1 and SSTR2. Although D2.50 is
widely viewed as an allosteric site, our result suggests that
the orthosteric site of L-817,818 in hSSTR5 may extend
to D2.50. Therefore, our result raises the possibility that
D862.50 plays a crucial role in hSSTR5 activation by
engaging in the interaction with the agonist, and further
experimental investigations of this residue would be worth-
while. If the significance of D862.50 is verified, designing
agonists that are able to form salt bridges with both
D1193.32 and D862.50 may be a desirable path toward devel-
oping drugs that target hSSTR5.
CONCLUSIONS

We have presented a new, to our knowledge, method for
GPCR structure prediction, termed ActiveGEnSeMBLE,
that overcomes the conformational sampling limits of MD
simulations. This method can be used to identify multiple
energetically accessible conformations for a GPCR that
might play a role in its activation in addition to multiple
lower-energy structures that might correspond to in inactive
states. We validated ActiveGEnSeMBLE by predicting
Biophysical Journal 110, 2618–2629, June 21, 2016 2627
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active hb2AR and hM2 crystal structures. We found that
ActiveGEnSeMBLE sampled the orientations of the TM he-
lices and located structures in various energy wells spanning
the range of TM3–TM6 distances (R36) traversed in the pro-
cess of activation. Subsequent analysis revealed a local min-
imum in each of these energy wells that was close or
identical to a crystal-structure conformation with a similar
R36 value. MD simulations of the crystal structures of
hb2AR with and without the G protein and the agonist
generated energy profiles that are consistent with the quali-
tative energy landscape of hb2AR obtained from experi-
ments, providing information about how the ligand and G
protein may play a role in activation. These results indicate
that the agonist alone is not enough to stabilize the active
state, and that the Ga C-terminal chain needs to be bound
to the GPCR to promote activation, in agreement with con-
clusions from experiments.

We then applied the validated ActiveGEnSeMBLE
method to the hSSTR5 receptor, for which there is no
available experimental structure. Importantly, we found
that a hybrid template consisting of the TM6 from the
available active-state crystal structure combined with
TM1–5 and TM7 of inactive-state crystal structures from
GPCRs with high sequence identity generated even
lower-energy active-like structures than a template based
purely on the available active-state crystal structures.
Thus, it is not necessary to have the full structure for an
active GPCR to apply ActiveGEnSeMBLE. Docking of ag-
onists and subsequent MD simulations identified important
residues involved in hSSTR5 activation by the respective
agonists. MD simulations of the predicted structures of
hSSTR5 with and without the G protein and the agonist
generated energy profiles that are consistent with the
qualitative energy landscape of hb2AR obtained from ex-
periments and also with the quantitative energy landscape
of hb2AR presented in this study. The differences are
compatible with previous findings from agonist-bound
experimental structures for various GPCRs in that the
agonist promoted the initial steps of GPCR activation to
degrees that varied among different GPCRs. These energy
profiles indicate that the G protein helps to stabilize the
agonist-bound GPCR. These results confirm that Active-
GEnSeMBLE is effective in predicting the active-state
conformations of at least class A GPCRs, and provides a
powerful new tool for elucidating the activation mecha-
nisms of GPCRs by identifying the sequence of conforma-
tions along the pathway for activation. We hope that this
will accelerate the rational design of new, more potent
and selective agonists.
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