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Current efforts to reconstruct the tree of life and histories of
multigene families demand the inference of phylogenies consisting
of thousands of gene sequences. However, for such large data sets
even a moderate exploration of the tree space needed to identify
theoptimal tree isvirtually impossible. For thesecases theneighbor-
joining (NJ) method is frequently used because of its demonstrated
accuracy for smaller data sets and its computational speed. As data
sets grow, however, the fraction of the tree space examined by the
NJ algorithm becomes minuscule. Here, we report the results of our
computer simulation for examining the accuracy of NJ trees for
inferring very large phylogenies. First we present a likelihood
method for the simultaneous estimation of all pairwise distances
by using biologically realistic models of nucleotide substitution.
Use of this method corrects up to 60% of NJ tree errors. Our
simulation results show that the accuracy of NJ trees decline only
by �5% when the number of sequences used increases from 32 to
4,096 (128 times) even in the presence of extensive variation in the
evolutionary rate among lineages or significant biases in the
nucleotide composition and transition�transversion ratio. Our re-
sults encourage the use of complex models of nucleotide substi-
tution for estimating evolutionary distances and hint at bright
prospects for the application of the NJ and related methods in
inferring large phylogenies.

phylogenetics � molecular evolution � distance estimation �
tree of life � maximum likelihood

Inference of phylogenetic trees is becoming increasingly im-
portant in the study of molecular evolution and functional

genomics. However, with the enormous increase in the size of
data sets for orthologous genes from diverse species and ho-
mologous sequences from multigene families, the probability of
finding the optimal tree(s) diminishes rapidly with an astronom-
ical increase in the number of possible topologies to be examined
(Fig. 1A) (1, 4). Even a moderate exploration of topological
(tree) space is not practical because of the enormous amount of
computational time required. These circumstances have led to
the extensive use of the NJ method (2), which quickly generates
a final tree for large phylogenies under the principle of minimum
evolution. This method is especially useful when the number of
sequences to be analyzed is in the order of hundreds or thou-
sands (e.g., 5–7). Furthermore, the accuracy of NJ trees is similar
to other more time-consuming methods for relatively small data
sets (�200 sequences) (1, 4, 8–13).

The NJ method constructs trees by clustering neighboring
sequences in a stepwise manner. In each step of sequence
clustering, it minimizes the sum of branch lengths (2) and thus
examines multiple topologies. For large data sets, however, NJ
examines only a minuscule fraction of the total number of
possible topologies. For instance, it will examine all three
unrooted trees in the case of four sequences but only 1010 of
�1013,867 possible trees when 4,000 sequences are used (Fig. 1B).
The effect of this property on the accuracy of NJ trees has been
unclear. Therefore, we have done computer simulations to study

the accuracy of NJ trees when tens to thousands of sequences are
used.

NJ is known to be statistically consistent in the sense that, if
correct pairwise distances with no statistical errors are used, it
reconstructs the true tree (2). In practice, however, estimates of
all distances are subject to statistical errors, so it may produce
erroneous trees. At present, all distances are estimated inde-
pendently for each pair of sequences [independent estimation
(IE) method] either by analytical formulas (1, 14, 15) or by
likelihood methods (4, 15). The standard errors of the estimates
obtained in this way are rather high unless very long sequences
are used. However, these standard errors can be reduced con-
siderably if all distances for a given set of aligned sequences are
estimated simultaneously [simultaneous estimation (SE)
method]. Recently, we developed an SE method based on the
maximum likelihood principle and found that the use of this
method substantially improves the accuracy of NJ trees. In this
article, we first present this SE method and then discuss the
accuracy of NJ trees obtained for large and small phylogenies.

Methods
Simultaneously Estimating All Pairwise Distances. Pairwise distances
used for constructing NJ trees are currently estimated by the IE
method for a variety of mathematical models to incorporate
varying degrees of complexity of nucleotide or amino acid
substitution (reviewed in refs. 1, 4, 14, 15). The estimates
obtained by the IE method are expected to have larger standard
errors than those obtained by the SE method. These larger errors
are partly because the parameters, such as the transition�
transversion rate ratio in the Kimura model (16), are estimated
independently for each pair of sequences in the IE method,
whereas they are estimated by considering all pairs of sequences
simultaneously in the SE method. There is obviously a greater
advantage of using the SE method for a sophisticated model of
substitution than for a simple model, because in the former
model we have to estimate a larger number of parameters.
Furthermore, the accuracy of parameter estimates obtained by
the SE method is expected to increase as the number of
sequences increases.

In the following we consider the evolutionary distance based
on the TN model (3), which is one of the most sophisticated
models of nucleotide substitution. For this model, the evolu-
tionary distance (d) is given by

d � 4�gA gGa1 � gTgC a2 � gR gYb�, [1]

where a1, a2, and b are the numbers of transitional substitutions
between purines (a1), transitional substitutions between pyrimi-
dines (a2), and transversional substitutions (b) per site, respec-
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tively, and gA, gT, gC, and gG each represent the frequencies of
nucleotides A, T, C, and G. For the distance (dij) between
sequences i and j, Eq. 1 can be rewritten as follows.

dij � 4�gA gGk1 � gT gCk2 � gR gY�bij , [2]

where k1 � a1ij�bij and k2 � a2ij�bij. In Eq. 2, the transition�
transversion rate ratios (k1 and k2) are independent of evolu-
tionary time and are the same for all pairs of sequences, whereas
bij depends on evolutionary time, varying with sequence pair i
and j. When there are m sequences, the total number of bij’s is
m(m � 1)�2. To estimate dij in Eq. 2, we need to know the

estimates of k1, k2, and bij. The maximum likelihood estimates of
k1, k2, and bij in Eq. 2 can be obtained by maximizing the
following log likelihood function (IE method):

Lij � P̂1ij ln�P1ij� � P̂2ij ln�P2ij� � Q̂ij ln�Qij� � �1 � P̂1ij � P̂2ij

� Q̂ij� ln�1 � P1ij � P2ij � Qij�, [3]

where P̂1ij, P̂2ij, and Q̂ij are the observed proportions of nucle-
otide sites showing transitional differences between purines and
between pyrimidines and sites showing transversional differ-
ences when sequences i and j are compared, respectively. P1ij, P2ij,
and Qij are the theoretical values of P̂1ij, P̂2ij, and Q̂ij, respectively,
and are given by

P1ij �
2gAgG

gR
�gR � exp	�2�gRk1 � gY�bij


� gY exp��2bij��, [4]

P2ij �
2gTgC

gY
�gY � exp	�2�gYk2 � gR�bij


� gR exp��2bij��, [5]

Qij � 2gRgY	1 � exp��2bij�
, [6]

where gR � gA � gG and gY � gC � gT .
However, because the parameters k1 and k2 are shared by the

log likelihood functions for all pairs of i and j, they should be
estimated by maximizing the sum of all likelihood functions (SL),
which is

SL � �
i

�
j�i

Lij . [7]

Theoretically, this is not a likelihood function, because dij’s are
not necessarily independent. However, by using the method of
Taylor’s expansion (as in ref. 17), one can show that approxi-
mately unbiased estimates of k1 and k2 can be obtained by
maximizing SL. We therefore suggest the following procedure
for estimating k1, k2, and bij’s. We first compute the initial
estimates of k1, k2, and bij’s by using uncorrected estimates, k1 �
(P̂1ij�gA gT)�(Q̂�gR gY), k2 � (P̂2ij�gT gC)�(Q̂ij�gRgY), and bij �
Q̂ij�(4gR gY). This method is computationally efficient and gives
estimates with smaller standard errors. We then compute the
averages of estimates of k1 and k2 separately and use them for
obtaining improved estimates of bij’s by maximizing Lij in Eq. 3.
We can now obtain improved estimates of k1 and k2 by maxi-
mizing SL in Eq. 7. These estimates are then used for further
improvement of the estimates of bij’s by Eq. 3. The last two
processes are repeated until stable estimates of k1, k2, and bij’s are
obtained. The final estimates are asymptotically unbiased, al-
though they may not be maximum likelihood estimates.

The SE method above can be used for many other substitution
models. For example, the Hasegawa–Kishino–Yano (HKY) model
(18) is a special case of the TN model, in which k1 and k2 are
assumed to be the same. Therefore, the HKY distance for se-
quences i and j can be estimated by using Eq. 3 under the
assumption of k1 � k2 � k. Similarly, the Tamura (19) and the
Kimura (16) models are a special case of the TN model (see ref. 1).
In the case of the Tamura model the G � C content (� � gG � gC)
instead of nucleotide frequencies is considered with a single k
parameter. In the Kimura model all nucleotide frequencies are
assumed to be equal (0.25) with a single k. The SE method can also
be used when the substitution rate varies with site, following the
gamma or other distribution (e.g., refs. 20 and 21).

Fig. 1. (A) Total number of possible bifurcating trees for different number
of sequences. Computed by equation 5.1 of ref. 1. (B) Fraction of all topologies
that are examined by the neighbor-joining (NJ) (2) method in producing a final
tree. For a given number of sequences (m), the number of topologies explored
by the NJ algorithm can be given by [m(m2 � 1)�6] � 7. This formula was
derived from the observation that at each step of sequence clustering the NJ
method examines mi(mi � 1)�2 trees for mi � 5 (assuming that each sequence
pairing in the NJ algorithm examines a distinct tree), where mi is the number
of sequences at step i. For mi � 4, NJ examines all three possible trees. Because
the number of sequences decreases by one in each step of sequence clustering,
the total number of topologies examined is given by ¥mi�5

m mi(mi � 1)�2 � 3 �
m(m2 � 1)�6 � 7. (C) Proportion of data sets in which the original Tamura–Nei
(TN) (3) distance was not applicable for one or more pairwise comparisons for
type B model trees (filled symbols) and type C model trees (open symbols) in
Fig. 2. The expected maximum distance was 0.47 for 32-sequence trees and
0.61 for 4,096-sequence trees. The simulation procedure was as follows. For a
given model tree, a data set of extant nucleotide sequences of n � 1,000 was
generated by using the TN model with k1 � k2 � 20, gA � gT � 0.4 and gC �
gG � 0.1. For each model tree, 100 data sets were generated, and the propor-
tion of data sets in which unestimable distances occurred was computed.
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In Eqs. 4–6, the use of average nucleotide frequencies for the
entire set of sequences is recommended because of the smaller
sampling errors. However, when the distance methods that relax the
assumption of the equality of nucleotide frequencies among lin-
eages (heterogeneity of substitution pattern over the phylogeny) are
used, the sequence-specific nucleotide frequencies should be used
for each comparison (22). Note that these methods do not take into
account the variation of transition�transversion ratio among lin-
eages and are not guaranteed to generate asymptotically unbiased
estimates of evolutionary distances.

The SE approach easily produces estimates of the transition�
transversion rate ratios (k1 and k2) and pairwise distances (dij) for
all sequence pairs simultaneously. Computation of the variances
of these estimates by analytical formulas is somewhat compli-
cated, but they can be obtained by the bootstrap method with site
resampling (1, 23).

Methods of Computer Simulation. In our study of the accuracy of
NJ trees obtained by the IE and SE methods of distance
estimation, we used three different sets of model trees. The first
model tree consisted of 66 sequences (Fig. 2A), of which the
relative branch lengths were derived from the mammalian DNA
sequence data (figure 1 in ref. 24). For this model tree, we
considered 448 different sets of evolutionary parameters (sub-
stitution parameters and sequence lengths), in which the number
of nucleotides per sequence (n) varied from 147 to 9,359, the
evolutionary rate varied 10 times, the G � C content (�) varied
from 0.3 to 0.9, and the transition�transversion rate ratio (k1 �
k2 � k) varied from 2.1 to 26.6 (see ref. 25). Using this model tree
and the set of evolutionary parameters with the TN model, we
evaluated the relative performance of the SE and IE methods in
estimating evolutionary parameters and inferring phylogenies by
the NJ method.

The second and third sets of model trees were used to compare
the accuracy of NJ trees of different sizes. The second set was
based on two predefined model trees in Fig. 2, where the tree in
B represents a case of constant rate evolution for 32 sequences
and the tree in C represents a varying rate case with 32
sequences. Multiple copies of these trees, connected at the roots,
generated increasingly larger model trees consisting of 32 to
4,096 sequences (see also ref. 10). The third set of model trees
was generated by using an agglomerative algorithm. In this
algorithm we combined a given set of sequences and randomly
selected pairs or groups of sequences for making different model
trees in a stepwise manner. This process was continued until the
required number of sequences was clustered. Model trees in Fig.
2 D and E are two examples of such randomly generated trees.
For model trees in Fig. 2 B and D, the exterior branch lengths (0.2
substitutions per site) were 20 times longer than the interior
branch lengths (0.01 substitutions per site). For model trees in
Fig. 2 C and E, the exterior branches were either long (0.2) or
short (0.01). For the type of model trees in Fig. 2E , the exterior
branches were assigned a long or short length randomly. The
number of nucleotides per sequence (n) used in the second and
third data sets was 1,000.

For the second and third sets of model trees, nucleotide
substitution was simulated by using the TN model with two sets
of biologically realistic values of substitution parameters: (i) k1
� k2 � 4 and gA � gT � gC � gG � 0.25 to simulate nuclear gene
evolution and (ii) k1 � k2 � 20, gA � gT � 0.40, and gC � gG �
0.10 to simulate animal mitochondrial DNA gene evolution.

Using the standard simulation procedure (e.g., refs. 1 and 10),
we generated simulated sequence data for each model tree with
a set of nucleotide substitution parameters and sequence length
(n). A NJ tree was then constructed and compared with the true
tree. The accuracy of the NJ tree was measured by the percent-
age of phylogenetic clades correctly inferred (PC). This was
obtained by PC � 100 [1 � dT�(2m � 6)], where dT is the

topological distance between the inferred and model trees and
m is the number of sequences used (1, 26, 27). PC is 100% when
all clades are correctly inferred and is 0% when none of the
clades is correctly identified. For each model tree (model tree in
Fig. 2 A, B, or C) for a given number of sequences, 100 replicates
of simulated sequence data were generated for the same topol-

Fig. 2. Some of the model trees used in computer simulations for examining
the accuracy of NJ trees. (A) A 66-sequence model tree based on the eutherian
phylogeny (see ref. 24). Branches are drawn with relative lengths. (B and C)
Trees with constant (model tree B) and variable (model tree C) evolutionary
rates that were used to generate increasingly larger trees by connecting their
copies at the roots (marked by filled circle) (see also ref. 10). (D and E) Two
examples of randomly generated model trees, with equal (tree D) and un-
equal (tree E) exterior branch lengths. For all model trees (except in A), the
expected interior branch lengths were assumed to be the same (see text for
details).

11032 � www.pnas.org�cgi�doi�10.1073�pnas.0404206101 Tamura et al.



ogy, whereas in the case of randomly generated trees (trees in
Fig. 2 D and E), a new model tree was generated in each replicate
simulation.

To make the PC values comparable among model trees of
different sizes (except Fig. 2 A), the expected interior branch
lengths were assumed to be the same (0.01 substitutions per site)
for all topologies. This approach is different from that used in
most previous studies, in which the maximum depths of trees or
the maximum evolutionary distances were assumed to be the
same (e.g., refs. 11 and 28). The latter approach makes the
interior branch lengths shorter in large phylogenies than in small
phylogenies and, therefore, the comparison of PC values among
trees of different sizes becomes improper.

Results
Performance of the SE Method. Using the model tree in Fig. 2 A, we
first compared the standard errors of distance estimates ob-
tained by the IE and SE methods. Fig. 3A shows that the standard

errors for the SE method are always smaller than those for the
IE method and that the extent of reduction of the standard errors
for the SE method increases as the standard errors for the IE
method increases. In this case we used the TN model with k1 �
k2 � 4.4, � � 0.61, and n � 1,066. Essentially the same results
were obtained for each of the 448 simulation conditions exam-
ined (data not shown). Fig. 3B shows the accuracy of the
estimates of k obtained by the SE method. In each of the 448
simulation conditions, the mean estimate of k was close to the
true value, and the 95% confident interval was narrow. These
results indicate that the SE method is effective in obtaining
reliable estimates of k without knowing the topology of the tree.

Fig. 4A shows the PC values of NJ trees obtained by the SE and
IE methods for each of the 448 cases. Each data point in this
figure represents the average PC from 100 replicate simulations
for each case. The PC values of NJ trees obtained by the SE
method (NJ-SE) are always higher than those of NJ trees
obtained by the IE method (NJ-IE). On average, 19% of all
erroneously identified phylogenetic clades of NJ-IE trees were
corrected in NJ-SE trees. Large improvements were observed
when evolutionary distances were large or when the base com-
position or the transition�transversion biases were high. In these
cases �50% of erroneous clades of NJ-IE trees were corrected
in NJ-SE trees. Essentially the same results were obtained for
other model trees in Fig. 2.

Previously we reported that the accuracy of NJ trees is often
higher when p distances (proportions of different nucleotide
sites) are used than when IE distance estimates for the correct
substitution models are used (1, 11, 29, 30). This occurred mainly
because p distances have smaller standard errors than distances
estimated by the IE method. The same results were observed in

Fig. 3. Standard errors and transition�transversion rate ratios obtained by
the SE method. (A) Relationships between the standard errors of evolutionary
distances obtained by the IE and SE methods for a data set of 66 computer-
generated sequences according to the model tree in Fig. 2A. The TN model
was used for generating sequence data with the transition�transversion rate
ratios k1 and k2 � 4.4, G � C content (�) � 0.61, and sequence length n � 1,066
nucleotides. There are (66 
 65)�2 � 2,145 data points in this figure. (B)
Relationships between the estimated and true values of k (� [k1 � k2]�2) for
448 different patterns of nucleotide substitutions (see text). For each pattern
of nucleotide substitution, the average value (circles) and the 95% confidence
limits (lines) of the estimate of k were obtained from 100 data sets generated
by computer simulation with the model tree in Fig. 2A.

Fig. 4. Accuracy of NJ-SE trees. (A) Accuracies (PC) of NJ trees when the SE and
IE methods with the TN model were used for the 66-sequence model tree in
Fig. 2A (see text). (B) Comparison of PC values for NJ-SE trees with those for NJ
trees obtained with p-distance (NJ-p). For each simulation condition, average
PC values from 100 replicate simulations are plotted.
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the present simulation; PC was higher in NJ-p trees than in NJ-IE
trees for 60.4% of the simulation conditions when the TN model
was used. However, NJ-SE trees had a higher PC value than NJ-p
trees in 92.9% of the cases (Fig. 4B). Therefore, the SE method
considerably improved the accuracy of NJ trees when more
realistic models were used. The same results were obtained for
other tree topologies given in Fig. 2. For this reason, we consider
only NJ-SE trees in the following comparison of PC values among
trees of different sizes.

Accuracy of NJ Trees with Increasing Number of Sequences. One
might expect PC to decline significantly as the number of sequences
used (m) increases, because the number of possible topologies
rapidly increases with increasing m. To study this problem, we
examined the PC value for different numbers of sequences (32, 64,
128, 256, 512, 1,024, 2,048, and 4,096 sequences) using the model
trees in Fig. 2. When type B model trees (constant-rate) with
nuclear gene evolution were considered, PC was 79% for m � 32
(Fig. 5A, filled circles). When m was increased to 256, PC declined
only by 0.8%. Even for m � 4,096 (128-times increase), PC was lower
than that for m � 32 only by 3.4%. These results indicate that the
accuracy of NJ-SE trees does not decline significantly even when m
increased by 4,064 sequences. When the evolution of mitochondrial

DNA was considered, PC was much lower than that for nuclear
genes (55% for m � 32) (Fig. 5A, open circles). Yet, the decline of
PC with increasing m was quite small (Fig. 5A, open circles). The PC
value for m � 4,096 was smaller than that for m � 32 only by 2.2%.
A small extent of decline of PC with increasing m was observed even
when type C model trees (varying evolutionary rates) were used
(Fig. 5A, open and filled triangles) or when randomly generated
model trees (types D and E) were used (Fig. 5B, squares and
diamonds). The decrease in PC was �10% in every case in Fig. 5.
These results indicate that PC does not decline very much when m
increases from 32 to 4,096 and, therefore, NJ can be used efficiently
even when hundreds or thousands of sequences are used.

Similar results were obtained for NJ-SE trees when the
substitution pattern and G � C content vary with evolutionary
lineage or when the sequence length is reduced to a half (results
not shown). Therefore, although the absolute values of PC
depend on the substitution pattern or sequence length, the
relationship between PC and m is nearly the same for all cases.
In other words, PC generally declines with increasing m, but the
extent of the decline is remarkably small.

Discussion
We have seen that the SE of evolutionary distances reduces the
variances of distance estimates considerably and consequently
increases the accuracy (PC) of NJ trees. We have also seen that
the PC of NJ trees does not decrease significantly when the
number of sequences (m) increases from 32 to 4,096. However,
this latter property is not necessarily due to the use of SE
distances, because a similar property was observed even with IE
distances when m was �100 (10). Some authors have reported a
substantial decrease of PC when m increased from 50 to 100 (e.g.,
ref. 28). In the latter study the lengths of interior branches were
considerably smaller for large trees than for small trees, and this
difference contributed to the substantial decrease of PC. There-
fore, it is important to maintain the same interior branch lengths
for a comparison of PC for large and small trees, as mentioned
earlier.

Fig. 6. Distribution of relative optimality scores (R) of NJ-SE trees (filled bars)
and NJ-IE trees (open bars) when a type B model tree (Fig. 2B) with 4,096
sequences is used. R is defined as (SNJ � ST)�ST, where SNJ and ST are the sum of
all branch lengths for a NJ tree and the true tree, respectively (32). Therefore,
when a NJ tree is the same as the true tree, R is 0. The sum (SNJ) of branch
lengths of a NJ tree is often smaller than that of the true tree when the number
of sequences is large, and R is usually negative. However, in general, the R
values for NJ-SE trees are closer to 0 (R value for the true tree) than those for
NJ-IE trees are. In this simulation the TN model with k1 � k2 � 4, gA � gT � gC

� gG � 0.25, and n � 1,000 was used.

Fig. 5. Accuracies (PC) of NJ-SE trees with increasing numbers of sequences
when the TN model was used. (A) Type B and type C model trees in Fig. 2 were
used. For nuclear gene evolution, k1 � k2 � 4, gA � gT � gC � gG � 0.25, and
n � 1,000 were used for both type B trees (filled circles) and type C trees (filled
triangles). For mitochondrial gene evolution, k1 � k2 � 20, gA � gT � 0.40, gC �
gG � 0.10, and n � 1,000 were used for both type B trees (open circles) and type
C trees (open triangles). (B) Type D and type E model trees in Fig. 2 were used.
For nuclear gene evolution, k1 � k2 � 4, gA � gT � gC � gG � 0.25, and n � 1,000
were used for both type D trees (filled squares) and type E trees (filled
diamonds). For mitochondrial gene evolution, k1 � k2 � 20, gA � gT � 0.40,
gC � gG � 0.10, and n � 1,000 were used for both type D trees (open squares)
and type E trees (open diamonds).

11034 � www.pnas.org�cgi�doi�10.1073�pnas.0404206101 Tamura et al.



In reality, however, our assumption that all interior branches
have the same length irrespective of the tree size is unrealistic.
When the number of sequences used is very large, it is quite likely
that some interior branches are relatively long and others are
very short. If the expected length of an interior branch is very
short, no substitutions may occur in the branch when the number
of nucleotides examined is small. In this case it would be difficult
to resolve the clades associated with the short branches. There-
fore, our results should be interpreted only as a guideline. As
long as the interior branch is sufficiently long and a sufficient
number of nucleotides per sequence is used, the NJ method is
capable of producing reasonably accurate trees.

The relatively high PC values obtained for large trees in this
study are partly due to the use of SE distances, which have
smaller standard errors than IE distances. This SE approach is
effectively the same as the use of a larger number of nucleotides
in the IE approach. For example, when model tree B was used,
the average standard error of SE distances for the TN model with
k1 � k2 � 20, gA � gT � 0.4, gC � gG � 0.1, and n � 1,000 was
similar to that of IE distances with n � 1,650. Furthermore,
another merit of using the SE approach instead of the IE
approach exists. That is, when the number of sequences (m) is
as large as 1,000, estimates of IE distances are not always
obtainable, because the arguments of logarithms in the analytical
formulas may become negative by chance (31). The proportion
of such unestimable cases increases as m increases in the IE
method (Fig. 1C). By contrast, we have encountered no such
cases in our simulation when the SE method was used. Of course,
unestimable cases might happen even with the SE method, if the
extent of sequence divergence is very high, but the probability of
occurrence of such events is much smaller in the SE approach
than in the IE approach.

The higher accuracy of NJ-SE trees also appears to be related
to the fact that the sum of branch lengths (S) for NJ-SE trees is
on average closer to that of the true tree than the S value for
NJ-IE trees (Fig. 6). It is already known that the S value for
NJ-IE trees is on average considerably smaller than that of the
true tree when the number of sequences relative to the sequence
length is small (8, 11, 12, 32). Our simulation results indicate that
the S values for NJ-SE trees are closer to that of the true tree
although, in general, they are still smaller than that of the true
tree (Fig. 6). These results also indicate that although the NJ
method examines a minuscule portion of the entire tree space,
a further search for trees with smaller S values does not
necessarily lead to a tree closer to the true tree. This is because
the optimization principle does not work well in phylogenetic
inference when m is large relative to n, whether the minimum
evolution, maximum parsimony, or maximum likelihood method
is used (1, 32).

We therefore conclude that the prospects are bright for using
the NJ method for generating initial evolutionary hypotheses for
very large species and multigene family trees. These large
phylogenies often span long evolutionary times in which the
pattern of nucleotide substitution is expected to be complex (1,
4). In these cases, the use of the SE approach with sophisticated
models of DNA substitution is expected to improve the accuracy
of phylogenetic inference.
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