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Abstract

Motivation: Speed, accuracy and robustness of building protein fragment library have important

implications in de novo protein structure prediction since fragment-based methods are one of

the most successful approaches in template-free modeling (FM). Majority of the existing fragment

detection methods rely on database-driven search strategies to identify candidate fragments,

which are inherently time-consuming and often hinder the possibility to locate longer fragments

due to the limited sizes of databases. Also, it is difficult to alleviate the effect of noisy sequence-

based predicted features such as secondary structures on the quality of fragment.

Results: Here, we present FRAGSION, a database-free method to efficiently generate protein fragment

library by sampling from an Input–Output Hidden Markov Model. FRAGSION offers some unique fea-

tures compared to existing approaches in that it (i) is lightning-fast, consuming only few seconds of

CPU time to generate fragment library for a protein of typical length (300 residues); (ii) can generate

dynamic-size fragments of any length (even for the whole protein sequence) and (iii) offers ways to

handle noise in predicted secondary structure during fragment sampling. On a FM dataset from the

most recent Critical Assessment of Structure Prediction, we demonstrate that FGRAGSION provides

advantages over the state-of-the-art fragment picking protocol of ROSETTA suite by speeding up com-

putation by several orders of magnitude while achieving comparable performance in fragment quality.

Availability and implementation: Source code and executable versions of FRAGSION for Linux

and MacOS is freely available to non-commercial users at http://sysbio.rnet.missouri.edu/

FRAGSION/. It is bundled with a manual and example data.

Contact: chengji@missouri.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Fragment library is one of the key components of widely used frag-

ment-based protein structure prediction methods (Kolodny and

Levitt, 2003; Simons et al., 1997), where complete models of the tar-

get structures are generated by combining fragments from the library.

Therefore, improving speed, accuracy and robustness of fragment li-

brary generation have direct impact on the performance of these

methods. Several approaches have been introduced over the last

decade for fragment detection ranging from exhaustive search to

more sophisticated profile hidden Markov models (HMM) based

comparison (Kalev and Habeck, 2011). These methods require a tem-

plate database against which segment of the target sequence is

matched in order to identify suitable fragments. Due to large size of

the template database that includes all representative structures from

the Protein Data Bank (PDB) (Berman et al., 2000), the search is often
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slow. Moreover, the incomplete coverage of PDB makes it difficult to

map a reasonably large fragment for the target protein. Recent devel-

opments in fragment selection using probabilistic models (Boomsma

et al., 2008; Hamelryck et al., 2006) have shown promising directions

to overcome the size and diversity restriction of database-driven

approaches by sampling local structure from a generative model.

Here, we extend their scope by (i) sampling fragments of protein

backbone in full-atomic detail rather than using a coarse-grained rep-

resentation or assuming ideality in backbone planarity and (ii) allow-

ing robustness against noise in sequence-based predicted information

like secondary structure. The resulting application, FRAGSION, has

been compared to the popular database-driven fragment assignment

protocol of ROSETTA (Gront et al., 2011) on template-free modeling

(FM) targets from 11th edition of Critical Assessment of Structure

Prediction (CASP11) experiment. The results show that FRAGSION

(i) provides slightly better coverage than ROSETTA at the expense of

minor loss in precision and (ii) computationally much more efficient

than ROSETTA.

2 Methods

FRAGSION is implemented on top of our recently-developed Input–

Output Hidden Markov Model (IOHMM) (Bhattacharya and Cheng,

2015) tested in the CASP11. In each slice of the IOHMM, a discrete

input node A represents eight groups of residues showing distinct

structural behavior (Gly, Pro, Ile/Val, other general residues and each

of these groups preceding Pro) selected from twenty standard residue

types, while the discrete emission node S denotes the three-state sec-

ondary structure types (Helix, Strand and Coil). We model backbone

torsion angles pairs / and w using mixtures of bivariate von Mises dis-

tributions (Mardia et al., 2007) and x dihedral angle of the peptide

bonds using mixtures of univariate von Mises distributions (Mardia

and Jupp, 2009). A description of the model, training and model selec-

tion is provided in the Supplementary Information. The output emis-

sion nodes can be flagged as observed or hidden for a specific

sequence position. This enables us to deal with noise in the sequence-

derived predicted secondary structure by flagging secondary structure

as observed only in residue positions for confident prediction and leav-

ing the rest as hidden. Furthermore, using a probabilistic model makes

it possible to sample potentially unlimited sequence of angles access-

ible to proteins for any given stretch of sequence.

3 Results

We assessed the performance of FRAGSION using 30 CASP11FM

domains (Supplementary Information) by simulating in a blind de

novo protein structure prediction scenario. First, we obtained se-

quences of the target proteins from CASP11 and executed PSIPRED

(Jones, 1999) to predict secondary structure using a non-redundant

(NR) protein sequence database curated before CASP11. The sequence

and predicted secondary structures were then used to generate 200

fragments for each sequence position with variable fragment lengths

ranging from 3-mer to 20-mer. The experimental structures of target

domains were then downloaded from CASP11 and the residues that

were not present in experimental structures were discarded from frag-

ment libraries. Finally, we assessed the quality of fragment library by

superimposing each fragment in the library on to the experimental

structure. We used two commonly used metrics to measure accuracy

of fragment library: (i) precision (the proportion of good fragments in

the libraries): number of good fragments divided by total number of

fragments in a library and (ii) coverage (the proportion of protein

residues represented by a good fragment): number of residues repre-

sented by at least one good fragment divided by number of residues of

the target. We also executed ROSETTA’s fragment picker application

(Version 3.5) with the same input to generate fragment libraries using

a template database created before CASP11 and after excluding

all homologues fragments during ROSETTA’s fragment picking.

The results show that there is only some minor difference between the

performance of FRAGSION and ROSETTA over the entire dataset at

various RMSD cutoffs between 0.1 and 4.0 Å (Fig. 1). FRAGSION

provides slight advantage in coverage (64 versus 63%) while

ROSETTA is slightly better in terms of precision (26 versus 24%).

Average RMSD of fragments for different fragment lengths are also

comparable (3.8 Å for FRAGSION and 3.7 Å for ROSETTA).

To investigate the effect of fragment quality on the performance

of de novo protein modeling, we executed AbinitioRelax application

of ROSETTA (Simons et al., 1997) to generate two model pools

(each pool has 100 models) for each target using 9mer and 3mer

fragments from FRAGSION and ROSETTA. The average accuracy

of models generated using ROSETTA’s fragments is better than

FRAGSION’s in terms of RMSD (19.980 Å for FRAGSION and

17.995 Å for ROSETTA). The most accurate models in terms of

TM-score (Zhang and Skolnick, 2004) using ROSETTA’s fragments

outperforms that of FRAGSION’s for all targets. Accuracy of

FRAGSION’s best prediction in terms of RMSD, however, is better

than ROSETTA’s for six targets. The models having the lowest

ROSETTA energy generated using FRAGSION’s fragment library

outperforms that of ROSETTA’s for ten targets in terms of RMSD

and only for three targets in terms of TM-score. In general, the ac-

curacy of models generated using ROSETTA’s fragments is better

than FRAGSION’s. The most significant advantage of FRAGSION

is, therefore, speed. Average computation time for FRAGSION

takes only 24 s, more than 75 times faster than ROSETTA with

average computation time exceeding 30 min. A target-by-target

comparison between FRAGSION and ROSETTA is presented in the

supplementary document along with analysis on the qualities of the

model pools produced using fragments generated by FRAGSION

and ROSETTA.

Fig. 1. Comparison between FRAGSION and ROSETTA. Precision (a), cover-

age (b) at various RMSD cutoffs and RMSD (c), computation time (d) at differ-

ent fragment lengths averaged over the dataset generated by FRAGSION

(red) and ROSETTA (blue)
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4 Conclusion

We developed an easy-to-use software tool (FRAGSION) based on an

input-output hidden Markov model (IOHMM) to sample structural

fragments for proteins. The model-based tool without carrying a large

fragment database is light-weighted and very fast and has the perform-

ance comparable to some widely used fragment generation tool, which

makes it a useful tool for template-free protein structure modeling.
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